Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Co‐evolution of early Earth environments and microbial life

Abstract

Two records of Earth history capture the evolution of life and its co-evolving ecosystems with interpretable fidelity: the geobiological and geochemical traces preserved in rocks and the evolutionary histories captured within genomes. The earliest vestiges of life are recognized mostly in isotopic fingerprints of specific microbial metabolisms, whereas fossils and organic biomarkers become important later. Molecular biology provides lineages that can be overlayed on geologic and geochemical records of evolving life. All these data lie within a framework of biospheric evolution that is primarily characterized by the transition from an oxygen-poor to an oxygen-rich world. In this Review, we explore the history of microbial life on Earth and the degree to which it shaped, and was shaped by, fundamental transitions in the chemical properties of the oceans, continents and atmosphere. We examine the diversity and evolution of early metabolic processes, their couplings with biogeochemical cycles and their links to the oxygenation of the early biosphere. We discuss the distinction between the beginnings of metabolisms and their subsequent proliferation and their capacity to shape surface environments on a planetary scale. The evolution of microbial life and its ecological impacts directly mirror the Earth’s chemical and physical evolution through cause-and-effect relationships.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of atmospheric oxygen content on Earth through time.
Fig. 2: The biogeochemical nitrogen cycle on Earth.
Fig. 3: The biogeochemical iron cycle on Earth.
Fig. 4: The biogeochemical sulfur cycle on Earth.
Fig. 5: Co-evolution of oceans and microbial pathways on Earth through time.

Similar content being viewed by others

References

  1. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Kendall, B. Recent advances in geochemical paleo-oxybarometers. Annu. Rev. Earth Planet. Sci. 49, 399–433 (2021).

    Article  CAS  Google Scholar 

  3. Ostrander, C. M., Johnson, A. C. & Anbar, A. D. Earth’s first redox revolution. Annu. Rev. Earth Planet. Sci. 49, 337–366 (2021).

    Article  CAS  Google Scholar 

  4. Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).

    Article  CAS  Google Scholar 

  5. Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).

    Article  CAS  Google Scholar 

  6. Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Bekker, A. et al. The Paleoproterozoic Francevillian succession of Gabon and the Lomagundi-Jatuli event: comment. Geology 49, e527 (2021).

    Article  Google Scholar 

  9. Anbar, A. D. et al. Technical comment on “Reexamination of 2.5-Ga ‘whiff’ of oxygen interval points to anoxic ocean before GOE”. Sci. Adv. 9, eabq3736 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Slotznick, S. P. et al. Reexamination of 2.5-Ga “whiff” of oxygen interval points to anoxic ocean before GOE. Sci. Adv. 8, eabj7190 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Slotznick, S. P. et al. Response to comment on “Reexamination of 2.5-Ga ‘whiff’ of oxygen interval points to anoxic ocean before GOE”. Sci. Adv. 9, eadg1530 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mayika, K. B. et al. The Paleoproterozoic Francevillian succession of Gabon and the Lomagundi-Jatuli event. Geology 48, 1099–1104 (2020).

    Article  Google Scholar 

  13. Wood, R. et al. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nat. Ecol. Evol. 3, 528–538 (2019).

    Article  PubMed  Google Scholar 

  14. Wallace, M. W. et al. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth. Planet. Sci. Lett. 466, 12–19 (2017).

    Article  CAS  Google Scholar 

  15. Bosak, T., Liang, B., Sim, M. S. & Petroff, A. P. Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl Acad. Sci. USA 106, 10939–10943 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dodd, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stüeken, E. E., Kipp, M. A., Koehler, M. C. & Buick, R. The evolution of Earth’s biogeochemical nitrogen cycle. Earth Sci. Rev. 160, 220–239 (2016).

    Article  Google Scholar 

  19. Fike, D. A., Bradley, A. S. & Rose, C. V. Rethinking the ancient sulfur cycle. Annu. Rev. Earth Planet. Sci. 43, 593–622 (2015).

    Article  CAS  Google Scholar 

  20. Fournier, G. P. et al. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc. R. Soc. B Biol. Sci. 288, 20210675 (2021).

    Article  CAS  Google Scholar 

  21. Bromham, L. et al. Bayesian molecular dating: opening up the black box. Biol. Rev. 93, 1165–1191 (2018).

    Article  PubMed  Google Scholar 

  22. Rothman, D. H. et al. Methanogenic burst in the end-Permian carbon cycle. Proc. Natl Acad. Sci. USA 111, 5462–5467 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Greening, C. & Grinter, R. Microbial oxidation of atmospheric trace gases. Nat. Rev. Microbiol. 20, 513–528 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Fournier, G. P., Parsons, C. W., Cutts, E. M. & Tamre, E. in Environmental Microbial Evolution. Methods and Protocols (ed. Haiwei Luo, H.) 41–74 (Humana, 2022).

  25. Sánchez-Baracaldo, P. Origin of marine planktonic cyanobacteria. Sci. Rep. 5, 17418 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Agić, H. in Prebiotic Chemistry and the Origin of Life. Advances in Astrobiology and Biogeophysics (eds Neubeck, A. & McMahon, S.) 255–289 (Springer, 2021).

  27. Lyons, T. W., Diamond, C. W., Planavsky, N. J., Reinhard, C. T. & Li, C. Oxygenation, life, and the planetary system during Earth’s middle history: an overview. Astrobiology 21, 906–923 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mills, D. B. et al. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520–532 (2022).

    Article  PubMed  Google Scholar 

  29. Sperling, E. A. et al. Breathless through time: oxygen and animals across Earth’s history. Biol. Bull. 243, 184–206 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Ward, B. in Fundamentals of Geobiology (eds Knoll, A. H., Canfield, D. E. & Konhauser, K. O.) 36–48 (Wiley, 2012).

  31. Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Giblin, A. et al. The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography 26, 124–131 (2013).

    Article  Google Scholar 

  33. Michiels, C. C. et al. Iron-dependent nitrogen cycling in a ferruginous lake and the nutrient status of Proterozoic oceans. Nat. Geosci. 10, 217–221 (2017).

    Article  CAS  Google Scholar 

  34. Devol, A. H. Solution to a marine mystery. Nature 422, 575–576 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Rios-Del Toro, E. E. et al. Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments. Biodegradation 29, 429–442 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Johnson, A. C. et al. Reconciling evidence of oxidative weathering and atmospheric anoxia on Archean Earth. Sci. Adv. 7, eabj0108 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scott, C. et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456–459 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Raymond, J., Siefert, J. L., Staples, C. R. & Blankenship, R. E. The natural history of nitrogen fixation. Mol. Biol. Evol. 21, 541–554 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Boyd, E. S. et al. A late methanogen origin for molybdenum-dependent nitrogenase. Geobiology 9, 221–232 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Boyd, E. S. & Peters, J. W. New insights into the evolutionary history of biological nitrogen fixation. Front. Microbiol. 4, 201 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mus, F., Colman, D. R., Peters, J. W. & Boyd, E. S. Geobiological feedbacks, oxygen, and the evolution of nitrogenase. Free. Radic. Biol. Med. 140, 250–259 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Garcia, A. K., McShea, H., Kolaczkowski, B. & Kaçar, B. Reconstructing the evolutionary history of nitrogenases: evidence for ancestral molybdenum‐cofactor utilization. Geobiology 18, 394–411 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Parsons, C., Stüeken, E. E., Rosen, C. J., Mateos, K. & Anderson, R. E. Radiation of nitrogen‐metabolizing enzymes across the tree of life tracks environmental transitions in Earth history. Geobiology 19, 18–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Stüeken, E. E., Buick, R., Guy, B. M. & Koehler, M. C. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520, 666–669 (2015).

    Article  PubMed  Google Scholar 

  46. Evans, G. N., Coogan, L. A., Kaçar, B. & Seyfried, W. E. Molybdenum in basalt-hosted seafloor hydrothermal systems: experimental, theoretical, and field sampling approaches. Geochim. Cosmochim. Acta 353, 28–44 (2023).

    Article  CAS  Google Scholar 

  47. Glass, J. B., Poret-Peterson, A. T., Wolfe-Simon, F. & Anbar, A. D. Molybdenum limitation induces expression of the molybdate-binding protein mop in a freshwater nitrogen-fixing cyanobacterium. Adv. Microbiol. 3, 9–15 (2013).

    Article  CAS  Google Scholar 

  48. Glass, J. B., Wolfe-Simon, F. & Anbar, A. D. Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology 7, 100–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Zerkle, A. L., House, C., Cox, R. P. & Canfield, D. E. Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle. Geobiology 4, 285–297 (2006).

    Article  CAS  Google Scholar 

  50. Navarro‐González, R., Molina, M. J. & Molina, L. T. Nitrogen fixation by volcanic lightning in the early Earth. Geophys. Res. Lett. 25, 3123–3126 (1998).

    Article  Google Scholar 

  51. Brandes, J. A. et al. Abiotic nitrogen reduction on the early Earth. Nature 395, 365–367 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Smirnov, A., Hausner, D., Laffers, R., Strongin, D. & Schoonen, M. A. Abiotic ammonium formation in the presence of Ni–Fe metals and alloys and its implications for the Hadean nitrogen cycle. Geochem. Trans. 9, 5 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Barth, P. et al. Isotopic constraints on lightning as a source of fixed nitrogen in Earth’s early biosphere. Nat. Geosci. 16, 478–484 (2023).

    Article  CAS  Google Scholar 

  54. Lilley, M. D. et al. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364, 45–47 (1993).

    Article  CAS  Google Scholar 

  55. Li, L. et al. N2 in deep subsurface fracture fluids of the Canadian Shield: source and possible recycling processes. Chem. Geol. 585, 120571 (2021).

    Article  CAS  Google Scholar 

  56. Moore, E. K., Jelen, B. I., Giovannelli, D., Raanan, H. & Falkowski, P. G. Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat. Geosci. 10, 629–636 (2017).

    Article  CAS  Google Scholar 

  57. Robbins, L. J. et al. Trace elements at the intersection of marine biological and geochemical evolution. Earth Sci. Rev. 163, 323–348 (2016).

    Article  CAS  Google Scholar 

  58. Parham, J. F. et al. Best practices for justifying fossil calibrations. Syst. Biol. 61, 346–359 (2012).

    Article  PubMed  Google Scholar 

  59. Liao, T., Wang, S., Stüeken, E. E. & Luo, H. Phylogenomic evidence for the origin of obligate anaerobic anammox bacteria around the Great Oxidation Event. Mol. Biol. Evol. 39, msac170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Article  CAS  Google Scholar 

  61. Planavsky, N. J. et al. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477, 448–451 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Zhu-Barker, X., Cavazos, A. R., Ostrom, N. E., Horwath, W. R. & Glass, J. B. The importance of abiotic reactions for nitrous oxide production. Biogeochemistry 126, 251–267 (2015).

    Article  CAS  Google Scholar 

  63. Stanton, C. L. et al. Nitrous oxide from chemodenitrification: a possible missing link in the Proterozoic greenhouse and the evolution of aerobic respiration. Geobiology 16, 597–609 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Buick, R. Did the Proterozoic Canfield ocean cause a laughing gas greenhouse? Geobiology 5, 97–100 (2007).

    Article  CAS  Google Scholar 

  65. Garvin, J., Buick, R., Anbar, A. D., Arnold, G. L. & Kaufman, A. J. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323, 1045–1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Godfrey, L. V. & Falkowski, P. G. The cycling and redox state of nitrogen in the Archaean ocean. Nat. Geosci. 2, 725–729 (2009).

    Article  CAS  Google Scholar 

  67. Koehler, M. C., Buick, R., Kipp, M. A., Stüeken, E. E. & Zaloumis, J. Transient surface ocean oxygenation recorded in the 2.66-Ga Jeerinah Formation, Australia. Proc. Natl Acad. Sci. USA 115, 7711–7716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Konhauser, K. O., Kappler, A. & Roden, E. E. Iron in microbial metabolisms. Elements 7, 89–93 (2011).

    Article  CAS  Google Scholar 

  69. Kendall, B., Anbar, A. D., Kappler, A. & Konhauser, K. O. in Fundamentals of Geobiology (eds Knoll, A. H., Canfield, D. E. & Konhauser, K. O.) 65–92 (Wiley, 2012).

  70. Posth, N. R., Canfield, D. E. & Kappler, A. Biogenic Fe(III) minerals: from formation to diagenesis and preservation in the rock record. Earth Sci. Rev. 135, 103–121 (2014).

    Article  CAS  Google Scholar 

  71. Konhauser, K. O. et al. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth Sci. Rev. 172, 140–177 (2017).

    Article  CAS  Google Scholar 

  72. Czaja, A. D. et al. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet. Sci. Lett. 363, 192–203 (2013).

    Article  CAS  Google Scholar 

  73. Kappler, A., Pasquero, C., Konhauser, K. O. & Newman, D. K. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33, 865 (2005).

    Article  CAS  Google Scholar 

  74. Konhauser, K. O., Newman, D. K. & Kappler, A. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3, 167–177 (2005).

    Article  CAS  Google Scholar 

  75. Walker, J. C. G. Suboxic diagenesis in banded iron formations. Nature 309, 340–342 (1984).

    Article  CAS  PubMed  Google Scholar 

  76. Johnson, C. M., Beard, B. L., Klein, C., Beukes, N. J. & Roden, E. E. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim. Cosmochim. Acta 72, 151–169 (2008).

    Article  CAS  Google Scholar 

  77. Craddock, P. R. & Dauphas, N. Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth Planet. Sci. Lett. 303, 121–132 (2011).

    Article  CAS  Google Scholar 

  78. Kappler, A. et al. An evolving view on biogeochemical cycling of iron. Nat. Rev. Microbiol. 19, 360–374 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Riedinger, N. et al. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 12, 172–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Rico, K. I. et al. Resolving the fate of trace metals during microbial remineralization of phytoplankton biomass in precursor banded iron formation sediments. Earth Planet. Sci. Lett. 607, 118068 (2023).

    Article  CAS  Google Scholar 

  81. Thompson, K. J. et al. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans. Sci. Adv. 5, eaav2869 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schad, M., Konhauser, K. O., Sánchez-Baracaldo, P., Kappler, A. & Bryce, C. How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient Earth? Free. Radic. Biol. Med. 140, 154–166 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Sánchez-Baracaldo, P., Hayes, P. K. & Blank, C. E. Morphological and habitat evolution in the cyanobacteria using a compartmentalization approach. Geobiology 3, 145–165 (2005).

    Article  Google Scholar 

  84. Blank, C. E. & Sanchez-Baracaldo, P. Timing of morphological and ecological innovations in the cyanobacteria. Geobiology 8, 1–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Swanner, E. D. et al. Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity. Nat. Geosci. 8, 126–130 (2015).

    Article  CAS  Google Scholar 

  86. Holm, N. G. The 13C/12C ratios of siderite and organic matter of a modern metalliferous hydrothermal sediment and their implications for banded iron formations. Chem. Geol. 77, 41–45 (1989).

    Article  CAS  Google Scholar 

  87. Chan, C. S., Emerson, D. & Luther, G. W. The role of microaerophilic Fe‐oxidizing micro‐organisms in producing banded iron formations. Geobiology 14, 509–528 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C. & Kappler, A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 12, 797–808 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Bryce, C. et al. Microbial anaerobic Fe(II) oxidation — ecology, mechanisms and environmental implications. Environ. Microbiol. 20, 3462–3483 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).

    Article  CAS  Google Scholar 

  91. Isley, A. E. & Abbott, D. H. Plume‐related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res. Solid. Earth 104, 15461–15477 (1999).

    Article  CAS  Google Scholar 

  92. Karl, D. M., Brittain, A. M. & Tilbrook, B. D. Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano. Deep Sea Res. A Oceanogr. Res. Pap. 36, 1655–1673 (1989).

    Article  CAS  Google Scholar 

  93. Johnson, J. E., Webb, S. M., Ma, C. & Fischer, W. W. Manganese mineralogy and diagenesis in the sedimentary rock record. Geochim. Cosmochim. Acta 173, 210–231 (2016).

    Article  CAS  Google Scholar 

  94. Robbins, L. J. et al. Manganese oxides, Earth surface oxygenation, and the rise of oxygenic photosynthesis. Earth Sci. Rev. 239, 104368 (2023).

    Article  CAS  Google Scholar 

  95. Mhlanga, X. R. et al. The Palaeoproterozoic Hotazel BIF-Mn formation as an archive of Earth’s earliest oxygenation. Earth Sci. Rev. 240, 104389 (2023).

    Article  CAS  Google Scholar 

  96. Johnson, J. E. et al. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc. Natl Acad. Sci. USA 110, 11238–11243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Daye, M. et al. Light-driven anaerobic microbial oxidation of manganese. Nature 576, 311–314 (2019).

    Article  PubMed  Google Scholar 

  98. Bauer, K. W., Planavsky, N. J., Reinhard, C. T. & Cole, D. B. The Chromium Isotope System as a Tracer of Ocean and Atmosphere Redox (Cambridge Univ. Press, 2021).

  99. Frei, R., Gaucher, C., Poulton, S. W. & Canfield, D. E. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461, 250–253 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Planavsky, N. J. et al. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Hlohowskyj, S. R., Chappaz, A. & Dickson, A. J. Molybdenum as a Paleoredox Proxy: Past, Present, and Future (Cambridge Univ. Press, 2021).

  102. Owens, J. D. Application of Thallium Isotopes: Tracking Marine Oxygenation through Manganese Oxide Burial (Cambridge Univ. Press, 2020).

  103. Arnold, G. L., Anbar, A. D., Barling, J. & Lyons, T. W. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science 304, 87–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Ostrander, C. M. et al. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat. Geosci. 12, 186–191 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jones, C. et al. Biogeochemistry of manganese in ferruginous Lake Matano, Indonesia. Biogeosciences 8, 2977–2991 (2011).

    Article  CAS  Google Scholar 

  106. Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 931–950 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Seinfeld, J. & Pandis, S. in Atmospheric Chemistry and Physics: From Air Pollution to Climate Change 265–324 (Wiley, 2016).

  108. Ohmoto, H. & Goldhaber, M. B. in Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.) 517–611 (Wiley, 1997).

  109. Fakhraee, M., Hancisse, O., Canfield, D. E., Crowe, S. A. & Katsev, S. Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry. Nat. Geosci. 12, 375–380 (2019).

    Article  CAS  Google Scholar 

  110. Rabus, R. et al. in Advances in Microbial Physiology Vol. 66 (ed. Poole, R. K.) 55–321 (Elsevier, 2015).

  111. Wasmund, K., Mußmann, M. & Loy, A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environ. Microbiol. Rep. 9, 323–344 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Jørgensen, B. B., Findlay, A. J. & Pellerin, A. The biogeochemical sulfur cycle of marine sediments. Front. Microbiol. 10, 849 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Anantharaman, K. et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 12, 1715–1728 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Berner, R. A. & Canfield, D. E. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989).

    Article  CAS  PubMed  Google Scholar 

  116. Frigaard, N. U. & Dahl, C. in Advances in Microbial Physiology Vol. 54 (ed. Poole, R. K.) 103–200 (Elsevier, 2008).

  117. Hanson, T. E., Luther, G. W., Findlay, A. J., MacDonald, D. J. & Hess, D. Phototrophic sulfide oxidation: environmental insights and a method for kinetic analysis. Front. Microbiol. 4, 382 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zopfi, J., Ferdelman, T. G. & Fossing, H. in Sulfur Biogeochemistry — Past and Present (eds Amend, J. P., Edwards, K. J. & Lyons, T. W.) 97–116 (Geological Society of America, 2004).

  119. Slobodkin, A. I. & Slobodkina, G. B. Diversity of sulfur-disproportionating microorganisms. Microbiology 88, 509–522 (2019).

    Article  CAS  Google Scholar 

  120. Roerdink, D. L., Mason, P. R. D., Whitehouse, M. J. & Brouwer, F. M. Reworking of atmospheric sulfur in a Paleoarchean hydrothermal system at Londozi, Barberton greenstone belt, Swaziland. Precambrian Res. 280, 195–204 (2016).

    Article  CAS  Google Scholar 

  121. Shen, Y., Buick, R. & Canfield, D. E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 77–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Ueno, Y., Ono, S., Rumble, D. & Maruyama, S. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675–5691 (2008).

    Article  CAS  Google Scholar 

  123. Canfield, D. E., Habicht, K. S. & Thamdrup, B. The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288, 658–661 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Crowe, S. A. et al. Sulfate was a trace constituent of Archean seawater. Science 346, 735–739 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Mateos, K. et al. The evolution and spread of sulfur cycling enzymes reflect the redox state of the early Earth. Sci. Adv. 9, eade4847 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Meyer, B. & Kuever, J. Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Appl. Environ. Microbiol. 73, 7664–7679 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Müller, A. L., Kjeldsen, K. U., Rattei, T., Pester, M. & Loy, A. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME J. 9, 1152–1165 (2015).

    Article  PubMed  Google Scholar 

  128. Meyer, Birte & Kuever, J. Phylogeny of the ɑ and β subunits of the dissimilatory adenosine-5′-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes — origin and evolution of the dissimilatory sulfate-reduction pathway. Microbiology 153, 2026–2044 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Colman, D. R. et al. Phylogenomic analysis of novel Diaforarchaea is consistent with sulfite but not sulfate reduction in volcanic environments on early Earth. ISME J. 14, 1316–1331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Blank, C. E. Evolutionary timing of the origins of mesophilic sulphate reduction and oxygenic photosynthesis: a phylogenomic dating approach. Geobiology 2, 1–20 (2004).

    Article  CAS  Google Scholar 

  131. Ward, L. M., Bertran, E. & Johnston, D. T. Expanded genomic sampling refines current understanding of the distribution and evolution of sulfur metabolisms in the Desulfobulbales. Front. Microbiol. 12, 666052 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Halevy, I. Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment. Proc. Natl Acad. Sci. USA 110, 17644–17649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Johnston, D. T. Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle. Earth Sci. Rev. 106, 161–183 (2011).

    Article  CAS  Google Scholar 

  134. Leavitt, W. D., Bradley, A. S., Santos, A. A., Pereira, I. A. C. & Johnston, D. T. Sulfur isotope effects of dissimilatory sulfite reductase. Front. Microbiol. 6, 1392 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Pellerin, A. et al. Large sulfur isotope fractionation by bacterial sulfide oxidation. Sci. Adv. 5, eaaw1480 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Philippot, P. et al. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317, 1534–1537 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Magnabosco, C., Moore, K. R., Wolfe, J. M. & Fournier, G. P. Dating phototrophic microbial lineages with reticulate gene histories. Geobiology 16, 179–189 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Crockford, P. W. et al. Claypool continued: extending the isotopic record of sedimentary sulfate. Chem. Geol. 513, 200–225 (2019).

    Article  CAS  Google Scholar 

  139. Bryant, R. N. et al. Deconvolving microbial and environmental controls on marine sedimentary pyrite sulfur isotope ratios. Science 382, 912–915 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. Halevy, I. et al. Sedimentary parameters control the sulfur isotope composition of marine pyrite. Science 382, 946–951 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Meyer, B., Imhoff, J. F. & Kuever, J. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria — evolution of the Sox sulfur oxidation enzyme system. Environ. Microbiol. 9, 2957–2977 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Hoffman, P. F. Big time. Annu. Rev. Earth Planet. Sci. 47, 1–17 (2019).

    Article  CAS  Google Scholar 

  143. Bergman, N. M. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

    Article  CAS  Google Scholar 

  144. Canfield, D. E. & Farquhar, J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc. Natl Acad. Sci. USA 106, 8123–8127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Garcia, P. S., Gribaldo, S. & Borrel, G. Diversity and evolution of methane-related pathways in Archaea. Annu. Rev. Microbiol. 76, 727–755 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Borrel, G. et al. Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol. Evol. 5, 1769–1780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, Y. & Whitman, W. B. Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea. Ann. NY Acad. Sci. 1125, 171–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson Prize Lecture. Microbiology 144, 2377–2406 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Wolfe, J. M. & Fournier, G. P. Horizontal gene transfer constrains the timing of methanogen evolution. Nat. Ecol. Evol. 2, 897–903 (2018).

    Article  PubMed  Google Scholar 

  150. Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Sherwood-Lollar, B. & McCollom, T. M. Biosignatures and abiotic constraints on early life. Nature 444, E18 (2006).

    Article  Google Scholar 

  152. Kiehl, J. T. & Dickinson, R. E. A study of the radiative effects of enhanced atmospheric CO2 and CH4 on early Earth surface temperatures. J. Geophys. Res. 92, 2991 (1987).

    Article  CAS  Google Scholar 

  153. Sagan, C. & Mullen, G. Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972).

    Article  CAS  PubMed  Google Scholar 

  154. Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 1127–1137 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Etiope, G. & Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 51, 276–299 (2013).

    Article  Google Scholar 

  156. Schuchmann, K. & Müller, V. Energetics and application of heterotrophy in acetogenic bacteria. Appl. Environ. Microbiol. 82, 4056–4069 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Li, Z., Gu, J., Ding, J., Ren, N. & Xing, D. Molecular mechanism of ethanol–H2 co-production fermentation in anaerobic acidogenesis: challenges and perspectives. Biotechnol. Adv. 46, 107679 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Tutolo, B. M., Seyfried, W. E. & Tosca, N. J. A seawater throttle on H2 production in Precambrian serpentinizing systems. Proc. Natl Acad. Sci. USA 117, 14756–14763 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Worman, S. L., Pratson, L. F., Karson, J. A. & Klein, E. M. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere. Geophys. Res. Lett. 43, 6435–6443 (2016).

    Article  CAS  Google Scholar 

  160. Klein, F., Grozeva, N. G. & Seewald, J. S. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proc. Natl Acad. Sci. USA 116, 17666–17672 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zahnle, K. J., Lupu, R., Catling, D. C. & Wogan, N. Creation and evolution of impact-generated reduced atmospheres of early Earth. Planet. Sci. J. 1, 11 (2020).

    Article  Google Scholar 

  162. Bradley, A. S. The sluggish speed of making abiotic methane. Proc. Natl Acad. Sci. USA 113, 13944–13946 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Krissansen-Totton, J., Olson, S. & Catling, D. C. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 4, eaao5747 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Olson, S. L., Reinhard, C. T. & Lyons, T. W. Limited role for methane in the mid-Proterozoic greenhouse. Proc. Natl Acad. Sci. USA 113, 11447–11452 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Konhauser, K. O. et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458, 750–753 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Rosing, M. T., Bird, D. K., Sleep, N. H. & Bjerrum, C. J. No climate paradox under the faint early Sun. Nature 464, 744–747 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Arney, G. et al. The pale orange dot: the spectrum and habitability of hazy Archean Earth. Astrobiology 16, 873–899 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hayes, J. M. in Early life on Earth Vol. 84 (ed. Bengston, S.) 220–236 (Columbia Univ. Press, 1994).

  170. Glodowska, M., Welte, C. U. & Kurth, J. M. in Advances in Microbial Physiology Vol. 80 (eds. Poole, R. K. & Kelly, D. J.) 157–201 (Elsevier, 2022).

  171. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    Article  CAS  PubMed  Google Scholar 

  172. Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mai, V. V. & Korenaga, J. What controlled the thickness of continental crust in the Archean? Geology 50, 1091–1095 (2022).

    Article  Google Scholar 

  174. Syverson, D. D. et al. Nutrient supply to planetary biospheres from anoxic weathering of mafic oceanic crust. Geophys. Res. Lett. 48, e2021GL094442 (2021).

    Article  CAS  Google Scholar 

  175. Walton, C. R. et al. Phosphorus availability on the early Earth and the impacts of life. Nat. Geosci. 16, 399–409 (2023).

    Article  CAS  Google Scholar 

  176. Chen, M. Y. et al. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J. 15, 211–227 (2021).

    Article  PubMed  Google Scholar 

  177. Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D. & Knoll, A. H. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 30, 143–157 (2022).

    Article  PubMed  Google Scholar 

  178. Satkoski, A. M., Beukes, N. J., Li, W., Beard, B. L. & Johnson, C. M. A redox-stratified ocean 3.2 billion years ago. Earth Planet. Sci. Lett. 430, 43–53 (2015).

    Article  CAS  Google Scholar 

  179. Korenaga, J. Crustal evolution and mantle dynamics through Earth history. Philos. Trans. A Math. Phys. Eng. Sci. 376, 20170408 (2018).

    PubMed  PubMed Central  Google Scholar 

  180. Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Harris, D. F. et al. Mo-, V-, and Fe-nitrogenases use a universal eight-electron reductive-elimination mechanism to achieve N2 reduction. Biochemistry 58, 3293–3301 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Stone, J., Edgar, J. O., Gould, J. A. & Telling, J. Tectonically-driven oxidant production in the hot biosphere. Nat. Commun. 13, 4529 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. He, H. et al. A mineral-based origin of Earth’s initial hydrogen peroxide and molecular oxygen. Proc. Natl Acad. Sci. USA 120, e2221984120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Saito, M. A., Sigman, D. M. & Morel, F. M. M. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary? Inorg. Chim. Acta 356, 308–318 (2003).

    Article  CAS  Google Scholar 

  185. Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).

    Article  CAS  PubMed  Google Scholar 

  186. Dupont, C. L., Butcher, A., Valas, R. E., Bourne, P. E. & Caetano-Anollés, G. History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc. Natl Acad. Sci. USA 107, 10567–10572 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gupta, R. S. in Advances is Botanical Research Vol. 66 (ed. Beatty, J. T.) 37–66 (Elsevier, 2013).

  188. Olson, J. M. Photosynthesis in the Archean era. Photosynth. Res. 88, 109–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Pearce, B. K. D., Tupper, A. S., Pudritz, R. E. & Higgs, P. G. Constraining the time interval for the origin of life on Earth. Astrobiology 18, 343–364 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Scott, C. T. et al. Late Archean euxinic conditions before the rise of atmospheric oxygen. Geology 39, 119–122 (2011).

    Article  CAS  Google Scholar 

  191. Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D. & Lyons, T. W. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. Kuypers, M. M. M. et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422, 608–611 (2003).

    Article  CAS  PubMed  Google Scholar 

  193. Doolittle, W. F. & Booth, A. It’s the song, not the singer: an exploration of holobiosis and evolutionary theory. Biol. Philos. 32, 5–24 (2017).

    Article  Google Scholar 

  194. Boden, J. S., Konhauser, K. O., Robbins, L. J. & Sánchez-Baracaldo, P. Timing the evolution of antioxidant enzymes in cyanobacteria. Nat. Commun. 12, 4742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bjerrum, C. J. & Canfield, D. E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  196. Mahmoudi, N., Steen, A. D. & Halverson, G. P. O. Biogeochemistry of Earth before exoenzymes. Nat. Geosci. 16, 845–850 (2023).

    Article  CAS  Google Scholar 

  197. Schwieterman, E. W. et al. Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18, 663–708 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Daines, S. J., Mills, B. J. W. & Lenton, T. M. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat. Commun. 8, 14379 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic Oxygenation Event: environmental perturbations and biogeochemical cycling. Earth. Sci. Rev. 110, 26–57 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided through the NASA Astrobiology Institute under Cooperative Agreement No. NNA15BB03A issued through the Science Mission Directorate and the NASA Interdisciplinary Consortia for Astrobiology Research (ICAR).

Author information

Authors and Affiliations

Authors

Contributions

T.W.L., C.J.T. and E.E.S. contributed to all aspects of the manuscript. G.P.F., R.E.A., W.D.L. and K.O.K. contributed to the research and compilation of materials for the article, to meaningful discussions and to initial drafting of at least one section and corresponding figure within the article.

Corresponding authors

Correspondence to Timothy W. Lyons or Christopher J. Tino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Magdalena Osburn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyons, T.W., Tino, C.J., Fournier, G.P. et al. Co‐evolution of early Earth environments and microbial life. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01044-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01044-y

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology