Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Robinson, G. E., Page, R. E. Jr, Strambi, C. & Strambi, A. Hormonal and genetic control of behavioral integration in honey bee colonies. Science 246, 109–112 (1989).
Menzel, R. The honeybee as a model for understanding the basis of cognition. Nat. Rev. Neurosci. 13, 758–768 (2012).
Zayed, A. & Robinson, G. E. Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annu. Rev. Genet. 46, 591–615 (2012).
Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).
Romero, S., Nastasa, A., Chapman, A., Kwong, W. K. & Foster, L. J. The honey bee gut microbiota: strategies for study and characterization. Insect Mol. Biol. 28, 455–472 (2019).
Cox-Foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287 (2007).
Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628 (2011).
Moran, N. A., Hansen, A. K., Powell, J. E. & Sabree, Z. L. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS ONE 7, e36393 (2012).
Martinson, V. G., Moy, J. & Moran, N. A. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 78, 2830–2840 (2012).
Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).
Zheng, J. et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70, 2782–2858 (2020).
D’Alvise, P. et al. The impact of winter feed type on intestinal microbiota and parasites in honey bees. Apidologie 49, 252–264 (2018).
Corby-Harris, V., Maes, P. & Anderson, K. E. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS ONE 9, e95056 (2014).
Rothman, J. A., Carroll, M. J., Meikle, W. G., Anderson, K. E. & McFrederick, Q. S. Longitudinal effects of supplemental forage on the honey bee (Apis mellifera) microbiota and inter- and intra-colony variability. Microb. Ecol. 76, 814–824 (2018).
Kapheim, K. M. et al. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS ONE 10, e0123911 (2015).
Wu, J. et al. Honey bee genetics shape the strain-level structure of gut microbiota in social transmission. Microbiome 9, 225 (2021).
Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14, 801–814 (2020).
Jones, J. C. et al. Gut microbiota composition is associated with environmental landscape in honey bees. Ecol. Evol. 8, 441–451 (2018).
Olofsson, T. C., Alsterfjord, M., Nilson, B., Butler, È. & Vásquez, A. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int. J. Syst. Evol. Microbiol. 64, 3109–3119 (2014).
Engel, P., Kwong, W. K. & Moran, N. A. Frischella perrara gen. nov., sp. nov., a Gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera. Int. J. Syst. Evol. Microbiol. 63, 3646–3651 (2013).
Kešnerová, L., Moritz, R. & Engel, P. Bartonella apis sp. nov., a honey bee gut symbiont of the class Alphaproteobacteria. Int. J. Syst. Evol. Microbiol. 66, 414–421 (2016).
Ludvigsen, J., Porcellato, D., Amdam, G. V. & Rudi, K. Addressing the diversity of the honeybee gut symbiont Gilliamella: description of Gilliamella apis sp. nov., isolated from the gut of honeybees (Apis mellifera). Int. J. Syst. Evol. Microbiol. 68, 1762–1770 (2018).
Milani, C. et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl. Environ. Microbiol. 80, 6290–6302 (2014).
Kwong, W. K. & Moran, N. A. Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria. Int. J. Syst. Evol. Microbiol. 63, 2008–2018 (2013).
Ellegaard, K. M. & Engel, P. Genomic diversity landscape of the honey bee gut microbiota. Nat. Commun. 10, 446 (2019). Shotgun metagenomics allows the assessment of honeybee gut microbiota diversity, showing that previously described phylotypes contain sequence-discrete populations or species, which tend to co-exist in individual bees and show age-specific abundance profiles.
Parish, A. J., Rice, D. W., Tanquary, V. M., Tennessen, J. M. & Newton, I. L. G. Honey bee symbiont buffers larvae against nutritional stress and supplements lysine. ISME J. 16, 2160–2168 (2022).
Powell, J. E., Eiri, D., Moran, N. A. & Rangel, J. Modulation of the honey bee queen microbiota: effects of early social contact. PLoS ONE 13, e0200527 (2018).
Callegari, M. et al. Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. NPJ Biofilms Microbiomes 7, 42 (2021).
Gómez-Moracho, T. et al. Experimental evidence of harmful effects of Crithidia mellificae and Lotmaria passim on honey bees. Int. J. Parasitol. 50, 1117–1124 (2020).
Tokarev, Y. S. et al. A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. J. Invertebr. Pathol. 169, 107279 (2020).
Grupe, A. C. II & Quandt, C. A. A growing pandemic: a review of Nosema parasites in globally distributed domesticated and native bees. PLoS Pathog. 16, e1008580 (2020).
Decker, L. E. et al. Higher variability in fungi compared to bacteria in the foraging honey bee gut. Microb. Ecol. 85, 330–334 (2023).
Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, e1600513 (2017). The distribution and phylogenies of the core bacterial lineages in the microbiota of social bees suggest that these lineages have co-evolved with bee hosts since the origin of the Corbiculata clade, about 80 million years ago.
Ellegaard, K. M., Suenami, S., Miyazaki, R. & Engel, P. Vast differences in strain-level diversity in the gut microbiota of two closely related honey bee species. Curr. Biol. 30, 2520–2531.e7 (2020).
Hammer, T. J., Le, E., Martin, A. N. & Moran, N. A. The gut microbiota of bumblebees. Insectes Soc. 68, 287–301 (2021).
Sarton-Lohéac, G. et al. Deep divergence and genomic diversification of gut symbionts of neotropical stingless bees. MBio 14, e0353822 (2023).
Cerqueira, A. E. S. et al. Extinction of anciently associated gut bacterial symbionts in a clade of stingless bees. ISME J. 15, 2813–2816 (2021).
Figueroa, L. L., Maccaro, J. J., Krichilsky, E., Yanega, D. & McFrederick, Q. S. Why did the bee eat the chicken? Symbiont gain, loss, and retention in the vulture bee microbiome. MBio 12, e0231721 (2021).
Kueneman, J. G., Bonadies, E., Thomas, D., Roubik, D. W. & Wcislo, W. T. Neotropical bee microbiomes point to a fragmented social core and strong species-level effects. Microbiome 11, 150 (2023).
Holley, J.-A. C., Jackson, M. N., Pham, A. T., Hatcher, S. C. & Moran, N. A. Carpenter bees (Xylocopa) harbor a distinctive gut microbiome related to that of honey bees and bumble bees. Appl. Environ. Microbiol. 88, e0020322 (2022).
Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl Acad. Sci. USA 109, 11002–11007 (2012).
Zheng, H. et al. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc. Natl Acad. Sci. USA 116, 25909–25916 (2019). Honeybee gut symbionts, including Bifidobacterium, Gilliamella and Lactobacillus strains, encode specific pectate lyases and glycoside hydrolases that are highly variable between strains and are involved in the degradation of recalcitrant components within pollen husks.
Zheng, H. et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio 7, e01326-16 (2016).
Lee, F. J., Miller, K. I., McKinlay, J. B. & Newton, I. L. G. Differential carbohydrate utilization and organic acid production by honey bee symbionts. FEMS Microbiol. Ecol. 94, fiy113 (2018).
Kwong, W. K., Mancenido, A. L. & Moran, N. A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 4, 170003 (2017).
Horak, R. D., Leonard, S. P. & Moran, N. A. Symbionts shape host innate immunity in honeybees. Proc. Biol. Sci. 287, 20201184 (2020). The honeybee symbiont S. alvi activates the expression of host AMPs, such as apidaecin, defensin and hymenoptaecin, but live S. alvi cells appear to suppress some parts of innate immune signalling.
Raymann, K. & Moran, N. A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr. Opin. Insect Sci. 26, 97–104 (2018).
Steele, M. I., Motta, E. V. S., Gattu, T., Martinez, D. & Moran, N. A. The gut microbiota protects bees from invasion by a bacterial pathogen. Microbiol. Spectr. 9, e0039421 (2021).
Palmer-Young, E. C., Markowitz, L. M., Huang, W.-F. & Evans, J. D. High temperatures augment inhibition of parasites by a honey bee gut symbiont. Appl. Environ. Microbiol. 89, e01023 (2023).
Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl Acad. Sci. USA 114, 4775–4780 (2017).
Motta, E. V. S., Powell, J. E., Leonard, S. P. & Moran, N. A. Prospects for probiotics in social bees. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20210156 (2022). This paper summarizes recent research on probiotics for bees and presents new evidence that the use of defined native gut bacteria is a promising way to restore perturbed microbial communities in bees exposed to agrochemicals.
Wang, X. et al. High-fat diets with differential fatty acids induce obesity and perturb gut microbiota in honey bee. Int. J. Mol. Sci. 22, 834 (2021).
Zhang, Z. et al. Honeybee gut Lactobacillus modulates host learning and memory behaviors via regulating tryptophan metabolism. Nat. Commun. 13, 2037 (2022).
Engel, P. et al. The bee microbiome: impact on bee health and model for evolution and ecology of host–microbe interactions. MBio 7, e02164-15 (2016).
Emery, O., Schmidt, K. & Engel, P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol. Ecol. 26, 2576–2590 (2017).
Engel, P., Bartlett, K. D. & Moran, N. A. The bacterium Frischella perrara causes scab formation in the gut of its honeybee host. MBio 6, e00193-15 (2015).
Li, Y., Leonard, S. P., Powell, J. E. & Moran, N. A. Species divergence in gut-restricted bacteria of social bees. Proc. Natl Acad. Sci. USA 119, e2115013119 (2022). This study describes the use of genome sequences from isolates of S. alvi and Gilliamella spp. to identify ‘populations’ defined by evidence for homologous exchange and therefore representing biological species.
Bobay, L.-M., Wissel, E. F. & Raymann, K. Strain structure and dynamics revealed by targeted deep sequencing of the honey bee gut microbiome. mSphere 5, e11694-20 (2020).
Raymann, K., Bobay, L.-M. & Moran, N. A. Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome. Mol. Ecol. 27, 2057–2066 (2018).
Steele, M. I., Kwong, W. K., Whiteley, M. & Moran, N. A. Diversification of type VI secretion system toxins reveals ancient antagonism among bee gut microbes. MBio 8, e01630-17 (2017).
Brochet, S. et al. Niche partitioning facilitates coexistence of closely related honey bee gut bacteria. eLife 10, e68583 (2021).
Ellegaard, K. M. et al. Genomic changes underlying host specialization in the bee gut symbiont Lactobacillus Firm5. Mol. Ecol. 28, 2224–2237 (2019).
Motta, E. V. S. et al. Host-microbiome metabolism of a plant toxin in bees. eLife 11, e82595 (2022).
Kešnerová, L. et al. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 15, e2003467 (2017). This study combines metabolomics and gnotobiotic bees to investigate the metabolic contributions of individual members of the bee gut microbiota.
Koch, H. et al. Host and gut microbiome modulate the antiparasitic activity of nectar metabolites in a bumblebee pollinator. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20210162 (2022). This study disentangles the contributions of host and gut microbial enzymes to the metabolism of some plant secondary metabolites.
Tauber, J. P. et al. Colony-level effects of amygdalin on honeybees and their microbes. Insects 11, 783 (2020).
Kwong, W. K., Engel, P., Koch, H. & Moran, N. A. Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc. Natl Acad. Sci. USA 111, 11509–11514 (2014).
Quinn, A. et al. Foraging on host synthesized metabolites enables the bacterial symbiont Snodgrassella alvi to colonize the honey bee gut. Preprint at bioRxiv https://doi.org/10.1101/2023.01.23.524906 (2023).
Powell, J. E., Leonard, S. P., Kwong, W. K., Engel, P. & Moran, N. A. Genome-wide screen identifies host colonization determinants in a bacterial gut symbiont. Proc. Natl Acad. Sci. USA 113, 13887–13892 (2016).
Cabirol, A. et al. A defined community of core gut microbiota members promotes cognitive performance in honey bees. Preprint at bioRxiv https://doi.org/10.1101/2023.01.03.522593 (2023).
Steele, M. I. & Moran, N. A. Evolution of interbacterial antagonism in bee gut microbiota reflects host and symbiont diversification. mSystems 6, e00063-21 (2021).
Chen, C., Yang, X. & Shen, X. Confirmed and potential roles of bacterial T6SSs in the intestinal ecosystem. Front. Microbiol. 10, 1484 (2019).
Schmidt, K. et al. Integration host factor regulates colonization factors in the bee gut symbiont Frischella perrara. eLife 12, e76182 (2023).
Le, N.-H., Pinedo, V., Lopez, J., Cava, F. & Feldman, M. F. Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector. Proc. Natl Acad. Sci. USA 118, e2106555118 (2021).
Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).
Heilbronner, S., Krismer, B., Brötz-Oesterhelt, H. & Peschel, A. The microbiome-shaping roles of bacteriocins. Nat. Rev. Microbiol. 19, 726–739 (2021).
Zendo, T. et al. Kunkecin A, a new nisin variant bacteriocin produced by the fructophilic lactic acid bacterium, Apilactobacillus kunkeei FF30-6 isolated from honey bees. Front. Microbiol. 11, 571903 (2020).
Shkoporov, A. N., Turkington, C. J. & Hill, C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat. Rev. Microbiol. 20, 737–749 (2022).
Bonilla-Rosso, G., Steiner, T., Wichmann, F., Bexkens, E. & Engel, P. Honey bees harbor a diverse gut virome engaging in nested strain-level interactions with the microbiota. Proc. Natl Acad. Sci. USA 117, 7355–7362 (2020). This study shows that honeybee guts harbour bacteriophage communities that have co-evolved with core bacterial symbionts and may fulfil crucial roles in mediating antagonistic and beneficial interactions within the bee gut microbiota.
Busby, T. J., Miller, C. R., Moran, N. A. & Van Leuven, J. T. Global composition of the bacteriophage community in honey bees. mSystems 7, e0119521 (2022).
Deboutte, W. et al. Honey-bee–associated prokaryotic viral communities reveal wide viral diversity and a profound metabolic coding potential. Proc. Natl Acad. Sci. USA 117, 10511–10519 (2020).
Wang, J. et al. Stably transmitted defined microbial community in honeybees preserves Hafnia alvei inhibition by regulating the immune system. Front. Microbiol. 13, 1074153 (2022).
Miller, D. L., Smith, E. A. & Newton, I. L. G. A bacterial symbiont protects honey bees from fungal disease. MBio 12, e0050321 (2021). This study shows that the symbiont B. apis protects honeybee larvae against the fungal pathogen A. flavus by producing specific antifungal molecules.
Lang, H. et al. Engineered symbiotic bacteria interfering Nosema redox system inhibit microsporidia parasitism in honeybees. Nat. Commun. 14, 2778 (2023).
Huang, Q., Lariviere, P. J., Powell, J. E. & Moran, N. A. Engineered gut symbiont inhibits microsporidian parasite and improves honey bee survival. Proc. Natl Acad. Sci. USA 120, e2220922120 (2023).
Li, J. H. et al. New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee’s vulnerability to Nosema infection. PLoS ONE 12, e0187505 (2017).
Dosch, C. et al. The gut microbiota can provide viral tolerance in the honey bee. Microorganisms 9, 871 (2021).
Lang, H. et al. Specific strains of honeybee gut Lactobacillus stimulate host immune system to protect against pathogenic Hafnia alvei. Microbiol. Spectr. 10, e0189621 (2022).
Evans, J. D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15, 645–656 (2006).
Nappi, A. J. & Christensen, B. M. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem. Mol. Biol. 35, 443–459 (2005).
Raymann, K., Coon, K. L., Shaffer, Z., Salisbury, S. & Moran, N. A. Pathogenicity of Serratia marcescens strains in honey bees. MBio 9, e01649-18 (2018).
Burritt, N. L. et al. Sepsis and hemocyte loss in honey bees (Apis mellifera) infected with Serratia marcescens strain Sicaria. PLoS ONE 11, e0167752 (2016).
El Sanousi, S. M., El Sarag, M. S. A. & Mohamed, S. E. Properties of Serratia marcescens isolated from diseased honeybee (Apis mellifera) larvae. Microbiology 133, 215–219 (1987).
Evans, J. D. & Spivak, M. Socialized medicine: individual and communal disease barriers in honey bees. J. Invertebr. Pathol. 103, S62–S72 (2010).
Baracchi, D., Fadda, A. & Turillazzi, S. Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. J. Insect Physiol. 58, 1589–1596 (2012).
Raymann, K., Shaffer, Z. & Moran, N. A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15, e2001861 (2017).
Forsgren, E. European foulbrood in honey bees. J. Invertebr. Pathol. 103, S5–S9 (2010).
Genersch, E. American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 103, S10–S19 (2010).
Kačániová, M., Gasper, J. & Terentjeva, M. Antagonistic effect of gut microbiota of honeybee (Apis mellifera) against causative agent of American foulbrood Paenibacillus larvae. J. Microbiol. Biotechnol. Food Sci. 9, 478–481 (2019).
Al-Ghamdi, A. et al. In vitro antagonistic potential of gut bacteria isolated from indigenous honey bee race of Saudi Arabia against Paenibacillus larvae. J. Apic. Res. 59, 825–833 (2020).
Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011).
Koch, H. & Schmid-Hempel, P. Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host–parasite system. Ecol. Lett. 15, 1095–1103 (2012).
Mockler, B. K., Kwong, W. K., Moran, N. A. & Koch, H. Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees. Appl. Environ. Microbiol. 84, e02335-17 (2018).
Koch, H., Woodward, J., Langat, M. K., Brown, M. J. F. & Stevenson, P. C. Flagellum removal by a nectar metabolite inhibits infectivity of a bumblebee parasite. Curr. Biol. 29, 3494–3500.e5 (2019).
Palmer-Young, E. C., Raffel, T. R. & McFrederick, Q. S. pH-mediated inhibition of a bumble bee parasite by an intestinal symbiont. Parasitology 146, 380–388 (2019).
Floyd, A. S. et al. Microbial ecology of European foul brood disease in the honey bee (Apis mellifera): towards a microbiome understanding of disease susceptibility. Insects 11, 555 (2020).
Rubanov, A., Russell, K. A., Rothman, J. A., Nieh, J. C. & McFrederick, Q. S. Intensity of Nosema ceranae infection is associated with specific honey bee gut bacteria and weakly associated with gut microbiome structure. Sci. Rep. 9, 3820 (2019).
Guo, J. et al. Characterization of gut bacteria at different developmental stages of Asian honey bees, Apis cerana. J. Invertebr. Pathol. 127, 110–114 (2015).
Kim, C. et al. Analysis of the gut microbiome of susceptible and resistant honeybees (Apis cerana) against sacbrood virus disease. J. Appl. Entomol. 146, 1078–1086 (2022).
Sullivan, J. P., Fahrbach, S. E. & Robinson, G. E. Juvenile hormone paces behavioral development in the adult worker honey bee. Horm. Behav. 37, 1–14 (2000).
Toth, A. L., Kantarovich, S., Meisel, A. F. & Robinson, G. E. Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. 208, 4641–4649 (2005).
Bajgar, A., Jindra, M. & Dolezel, D. Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc. Natl Acad. Sci. USA 110, 4416–4421 (2013).
Zhang, Z., Mu, X., Shi, Y. & Zheng, H. Distinct roles of honeybee gut bacteria on host metabolism and neurological processes. Microbiol. Spectr. 10, e0243821 (2022).
Li, L. et al. Gut microbiome drives individual memory variation in bumblebees. Nat. Commun. 12, 6588 (2021).
Liberti, J. et al. The gut microbiota affects the social network of honeybees. Nat. Ecol. Evol. 6, 1471–1479 (2022). This study shows that microbiota-colonized bees, when compared with microbiota-deprived bees, exhibit increased levels of brain metabolites, such as serine and ornithine, and increased specialized head-to-head interactions between nestmates.
Cabirol, A., Moriano-Gutierrez, S. & Engel, P. Neuroactive metabolites modulated by the gut microbiota in honey bees. Mol. Microbiol. https://doi.org/10.1111/mmi.15167 (2023).
Billard, J.-M. d-Amino acids in brain neurotransmission and synaptic plasticity. Amino Acids 43, 1851–1860 (2012).
Scofield, H. N. & Mattila, H. R. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults. PLoS ONE 10, e0121731 (2015).
Brodschneider, R. & Crailsheim, K. Nutrition and health in honey bees. Apidologie 41, 278–294 (2010).
Wu, Y. et al. Honey bee (Apis mellifera) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microb. Biotechnol. 13, 1201–1212 (2020).
Tian, B., Fadhil, N. H., Powell, J. E., Kwong, W. K. & Moran, N. A. Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees. MBio 3, 00377-12 (2012).
Soares, K. O. et al. Tetracycline exposure alters key gut microbiota in africanized honey bees (Apis mellifera scutellata x spp.). Front. Ecol. Evol. 9, 716660 (2021).
Baffoni, L. et al. Honeybee exposure to veterinary drugs: how is the gut microbiota affected? Microbiol. Spectr. 9, e0017621 (2021).
Motta, E. V. S. & Moran, N. A. Impact of glyphosate on the honey bee gut microbiota: effects of intensity, duration, and timing of exposure. mSystems 5, e00268-20 (2020).
Powell, J. E., Carver, Z., Leonard, S. P. & Moran, N. A. Field-realistic tylosin exposure impacts honey bee microbiota and pathogen susceptibility, which is ameliorated by native gut probiotics. Microbiol. Spectr. 9, e0010321 (2021).
Ortiz-Alvarado, Y. et al. Antibiotics in hives and their effects on honey bee physiology and behavioral development. Biol. Open 9, bio053884 (2020).
Duan, X. et al. Antibiotic treatment decrease the fitness of honeybee (Apis mellifera) larvae. Insects 12, 301 (2021).
Raymann, K. in Honey Bee Medicine for the Veterinary Practitioner (eds Kane, T. R. & Faux, C. M.) 125–134 (Wiley, 2021).
Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl Acad. Sci. USA 116, 1792–1801 (2019).
Yu, L. et al. Honey bee Apis mellifera larvae gut microbial and immune, detoxication responses towards flumethrin stress. Environ. Pollut. 290, 118107 (2021).
Qi, S. et al. Acaricide flumethrin-induced sublethal risks in honeybees are associated with gut symbiotic bacterium Gilliamella apicola through microbe–host metabolic interactions. Chemosphere 307, 136030 (2022).
Kakumanu, M. L., Reeves, A. M., Anderson, T. D., Rodrigues, R. R. & Williams, M. A. Honey bee gut microbiome is altered by in-hive pesticide exposures. Front. Microbiol. 7, 1255 (2016).
Rouzé, R., Moné, A., Delbac, F., Belzunces, L. & Blot, N. The honeybee gut microbiota is altered after chronic exposure to different families of insecticides and infection by Nosema ceranae. Microbes Environ. 34, 226–233 (2019).
Diaz, T., Del-Val, E., Ayala, R. & Larsen, J. Alterations in honey bee gut microorganisms caused by Nosema spp. and pest control methods. Pest Manag. Sci. 75, 835–843 (2019).
Cuesta-Maté, A. et al. Resistance and vulnerability of honeybee (Apis mellifera) gut bacteria to commonly used pesticides. Front. Microbiol. 12, 717990 (2021).
Hladik, M. L. et al. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA. Environ. Pollut. 235, 1022–1029 (2018).
Buszewski, B., Bukowska, M., Ligor, M. & Staneczko-Baranowska, I. A holistic study of neonicotinoids neuroactive insecticides—properties, applications, occurrence, and analysis. Environ. Sci. Pollut. Res. Int. 26, 34723–34740 (2019).
Liu, Y.-J. et al. Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees. J. Hazard Mater. 389, 121818 (2020).
Castelli, L., Branchiccela, B., Zunino, P. & Antúnez, K. Insights into the effects of sublethal doses of pesticides glufosinate-ammonium and sulfoxaflor on honey bee health. Sci. Total Environ. 868, 161331 (2023).
Raymann, K. et al. Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Appl. Environ. Microbiol. 84, e00545-18 (2018).
Rothman, J. A., Russell, K. A., Leger, L., McFrederick, Q. S. & Graystock, P. The direct and indirect effects of environmental toxicants on the health of bumblebees and their microbiomes. Proc. Biol. Sci. 287, 20200980 (2020).
Blot, N., Veillat, L., Rouzé, R. & Delatte, H. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS ONE 14, e0215466 (2019).
Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl Acad. Sci. USA 115, 10305–10310 (2018).
Castelli, L. et al. Impact of chronic exposure to sublethal doses of glyphosate on honey bee immunity, gut microbiota and infection by pathogens. Microorganisms 9, 845 (2021).
Almasri, H., Liberti, J., Brunet, J.-L., Engel, P. & Belzunces, L. P. Mild chronic exposure to pesticides alters physiological markers of honey bee health without perturbing the core gut microbiota. Sci. Rep. 12, 4281 (2022).
Thompson, H. M. et al. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example. Integr. Environ. Assess. Manag. 10, 463–470 (2014).
Motta, E. V. S. & Moran, N. A. The effects of glyphosate, pure or in herbicide formulation, on bumble bees and their gut microbial communities. Sci. Total Environ. 872, 162102 (2023).
Cullen, M. G., Bliss, L., Stanley, D. A. & Carolan, J. C. Investigating the effects of glyphosate on the bumblebee proteome and microbiota. Sci. Total Environ. 864, 161074 (2023).
Helander, M. et al. Glyphosate and a glyphosate-based herbicide affect bumblebee gut microbiota. FEMS Microbiol. Ecol. 99, fiad065 (2023).
Motta, E. V. S., Powell, J. E. & Moran, N. A. Glyphosate induces immune dysregulation in honey bees. Anim. Microbiome 4, 16 (2022).
Motta, E. V. S. et al. Oral or topical exposure to glyphosate in herbicide formulation impacts the gut microbiota and survival rates of honey bees. Appl. Environ. Microbiol. 86, 116–126 (2020).
Tan, S. et al. Effects of glyphosate exposure on honeybees. Environ. Toxicol. Pharmacol. 90, 103792 (2022).
Pettis, J. S. et al. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS ONE 8, e70182 (2013).
Al Naggar, Y., Singavarapu, B., Paxton, R. J. & Wubet, T. Bees under interactive stressors: the novel insecticides flupyradifurone and sulfoxaflor along with the fungicide azoxystrobin disrupt the gut microbiota of honey bees and increase opportunistic bacterial pathogens. Sci. Total. Environ. 849, 157941 (2022).
Ludvigsen, J., Amdam, G. V., Rudi, K. & L’Abée-Lund, T. M. Detection and characterization of streptomycin resistance (strA-strB) in a honeybee gut symbiont (Snodgrassella alvi) and the associated risk of antibiotic resistance transfer. Microb. Ecol. 76, 588–591 (2018).
Huang, S. K. et al. Influence of feeding type and Nosema ceranae infection on the gut microbiota of Apis cerana workers. mSystems 3, e00177-18 (2018).
Castelli, L. et al. Impact of nutritional stress on honeybee gut microbiota, immunity, and Nosema ceranae Infection. Microb. Ecol. 80, 908–919 (2020).
Powell, J. E. et al. The microbiome and gene expression of honey bee workers are affected by a diet containing pollen substitutes. PLoS ONE 18, e0286070 (2023).
Chmiel, J. A., Pitek, A. P., Burton, J. P., Thompson, G. J. & Reid, G. Meta-analysis on the effect of bacterial interventions on honey bee productivity and the treatment of infection. Apidologie 52, 960–972 (2021).
Damico, M. E., Beasley, B., Greenstein, D. & Raymann, K. A need for stronger regulation: commercially sold probiotics for honey bees do not live up to their claims. Preprint at bioRxiv https://doi.org/10.1101/2023.09.13.557574 (2023).
Daisley, B. A. et al. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. ISME J. 14, 476–491 (2020).
Stephan, J. G. et al. Honeybee-specific lactic acid bacterium supplements have no effect on American foulbrood-infected honeybee colonies. Appl. Environ. Microbiol. 85, e00606–e00619 (2019).
Lamei, S. et al. Feeding honeybee colonies with honeybee-specific lactic acid bacteria (Hbs-LAB) does not affect colony-level Hbs-LAB composition or Paenibacillus larvae spore levels, although American foulbrood affected colonies harbor a more diverse Hbs-LAB community. Microb. Ecol. 79, 743–755 (2020).
Daisley, B. A. et al. Delivery mechanism can enhance probiotic activity against honey bee pathogens. ISME J. 17, 1382–1395 (2023).
Leonard, S. P. et al. Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synth. Biol. 7, 1279–1290 (2018).
Lariviere, P. J., Leonard, S. P., Horak, R. D., Powell, J. E. & Barrick, J. E. Honey bee functional genomics using symbiont-mediated RNAi. Nat. Protoc. 18, 902–928 (2023).
Leonard, S. P. et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science 367, 573–576 (2020).
Wang, Y., Kaftanoglu, O., Brent, C. S., Page, R. E. Jr & Amdam, G. V. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.). J. Exp. Biol. 219, 949–959 (2016).
Faita, M. R., Cardozo, M. M., Amandio, D. T. T., Orth, A. I. & Nodari, R. O. Glyphosate-based herbicides and Nosema sp. microsporidia reduce honey bee (Apis mellifera L.) survivability under laboratory conditions. J. Apic. Res. 59, 332–342 (2020).
Kwong, W. K., Zheng, H. & Moran, N. A. Convergent evolution of a modified, acetate-driven TCA cycle in bacteria. Nat. Microbiol. 2, 17067 (2017).
Acknowledgements
This work was supported by the US NIH (award R35GM131738) and the USDA National Institute of Food and Agriculture (award 2018-67013-27540) to N.A.M.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
N.A.M. is an author on a patent application (US20220152128A1) for using native bee gut bacteria as bee probiotics. E.V.S.M. declares no competing interests.
Peer review
Peer review information
Nature Reviews Microbiology thanks Tobias Engl and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Motta, E.V.S., Moran, N.A. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 22, 122–137 (2024). https://doi.org/10.1038/s41579-023-00990-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41579-023-00990-3