Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mutualistic interplay between bacteriophages and bacteria in the human gut

Abstract

Bacteriophages (phages) are often described as obligate predators of their bacterial hosts, and phage predation is one of the leading forces controlling the density and distribution of bacterial populations. Every 48 h half of all bacteria on Earth are killed by phages. Efficient killing also forms the basis of phage therapy in humans and animals and the use of phages as food preservatives. In turn, bacteria have a plethora of resistance systems against phage attack, but very few bacterial species, if any, have entirely escaped phage predation. However, in complex communities and environments such as the human gut, this antagonistic model of attack and counter-defence does not fully describe the scope of phage–bacterium interactions. In this Review, we explore some of the more mutualistic aspects of phage–bacterium interactions in the human gut, and we suggest that the relationship between phages and their bacterial hosts in the gut is best characterized not as a fight to the death between enemies but rather as a mutualistic relationship between partners.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Outcomes of phage–bacterium interactions.
Fig. 2: Bacterial populations benefit from the presence of phages.
Fig. 3: Three types of phage transduction.

Similar content being viewed by others

References

  1. Hendrix, R. W., Smith, M. C. M., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mushegian, A. R. Are there 1031 virus particles on earth, or more, or fewer? J. Bacteriol. 202, e00052-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dennehy, J. J. & Abedon, S. T. in Bacteriophages: Biology, Technology, Therapy (eds Harper, D. R., Abedon, S. T., Burrowes, B. H. & McConville, M. L.) 1–43 (Springer International Publishing, 2020).

  4. Hobbs, Z. & Abedon, S. T. Diversity of phage infection types and associated terminology: the problem with ‘Lytic or lysogenic’. FEMS Microbiol. Lett. 363, fnw047 (2016).

    Article  PubMed  Google Scholar 

  5. Bondy-Denomy, J. & Davidson, A. R. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52, 235–242 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Harrison, E. & Brockhurst, M. A. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. BioEssays 39, 1700112 (2017).

    Article  Google Scholar 

  7. Rakonjac, J., Bennett, N. J., Spagnuolo, J., Gagic, D. & Russel, M. Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr. Issues Mol. Biol. 13, 51–76 (2011).

    CAS  PubMed  Google Scholar 

  8. Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Proctor, L. M. & Fuhrman, J. A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990).

    Article  Google Scholar 

  10. Suttle, C. A. The significance of viruses to mortality in aquatic microbial communities. Microb. Ecol. 28, 237–243 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Touchon, M., Bernheim, A. & Rocha, E. P. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 10, 2744–2754 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, R. et al. Viral control of biomass and diversity of bacterioplankton in the deep sea. Commun. Biol. 3, 1–10 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Luria, S. E. & Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Obeng, N., Pratama, A. A. & van Elsas, J. D. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol. 24, 440–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Argov, T. et al. Temperate bacteriophages as regulators of host behavior. Curr. Opin. Microbiol. 38, 81–87 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Rodríguez-Rubio, L., Blanco-Picazo, P. & Muniesa, M. in Biocommunication of Phages (ed. Witzany, G.) 143–162 (Springer International Publishing, 2020).

  18. Liang, G. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581, 470–474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pannaraj, P. S. et al. Shared and distinct features of human milk and infant stool viromes. Front. Microbiol. 9, 1162 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aggarwala, V., Liang, G. & Bushman, F. D. Viral communities of the human gut: metagenomic analysis of composition and dynamics. Mob. DNA 8, 12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26, 764–778.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: the “known unknown” of the microbiome. Cell Host Microbe 25, 195–209 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Grice, E. A. & Segre, J. A. The human microbiome: our second genome. Annu. Rev. Genom. Hum. Genet. 13, 151–170 (2012).

    Article  CAS  Google Scholar 

  25. Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res. 49, D764–D775 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Benler, S. et al. Thousands of previously unknown phages discovered in whole-community human gut metagenomes. Microbiome 9, 78 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fujimoto, K. et al. Metagenome data on intestinal phage-bacteria associations aids the development of phage therapy against pathobionts. Cell Host Microbe 28, 380–389.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Jang, H. B. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0100-8 (2019).

    Article  Google Scholar 

  32. Adriaenssens, E. M. Phage diversity in the human gut microbiome: a taxonomist’s perspective. mSystems 6, e00799-21 (2021).

    Article  PubMed Central  Google Scholar 

  33. Zablocki, O. et al. VirION2: a short- and long-read sequencing and informatics workflow to study the genomic diversity of viruses in nature. PeerJ 9, e11088 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yahara, K. et al. Long-read metagenomics using PromethION uncovers oral bacteriophages and their interaction with host bacteria. Nat. Commun. 12, 27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marbouty, M., Baudry, L., Cournac, A. & Koszul, R. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci. Adv. 3, e1602105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Marbouty, M., Thierry, A., Millot, G. A. & Koszul, R. MetaHiC phage-bacteria infection network reveals active cycling phages of the healthy human gut. eLife 10, e60608 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yaffe, E. & Relman, D. A. Tracking microbial evolution in the human gut using Hi-C reveals extensive horizontal gene transfer, persistence and adaptation. Nat. Microbiol. 5, 343–353 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Zheng, W. et al. High-throughput single-microbe genomics with strain resolution applied to a human gut microbiome. Science https://doi.org/10.1126/science.abm1483 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fitzgerald, C. B. et al. Probing the “dark matter” of the human gut phageome: culture assisted metagenomics enables rapid discovery and host-linking for novel bacteriophages. Front. Cell. Infect. Microbiol. 11, 100 (2021).

    Article  Google Scholar 

  40. de Jonge, P. A. et al. Adsorption sequencing as a rapid method to link environmental bacteriophages to hosts. iScience 23, 101439 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hsu, B. B. et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 25, 803–814.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reyes, A., Wu, M., McNulty, N. P., Rohwer, F. L. & Gordon, J. I. Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut. Proc. Natl Acad. Sci. USA 110, 20236–20241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hargreaves, K. R., Kropinski, A. M. & Clokie, M. R. Bacteriophage behavioral ecology. Bacteriophage 4, e29866 (2014).

  44. Williams, H. T. Phage-induced diversification improves host evolvability. BMC Evol. Biol. 13, 17 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Goyal, A., Wang, T., Dubinkina, V. & Maslov, S. Ecology-guided prediction of cross-feeding interactions in the human gut microbiome. Nat. Commun. 12, 1335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, T., Goyal, A., Dubinkina, V. & Maslov, S. Evidence for a multi-level trophic organization of the human gut microbiome. PLoS Comput. Biol. 15, e1007524 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bohannan, B. J. M. & Lenski, R. E. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol. Lett. 3, 362–377 (2000).

    Article  Google Scholar 

  48. Maura, D. et al. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ. Microbiol. 14, 1844–1854 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Weiss, M. et al. In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli. Virology 393, 16–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. De Sordi, L., Lourenço, M. & Debarbieux, L. “I will survive”: a tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes 10, 92–99 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Scanlan, P. D. Bacteria–bacteriophage coevolution in the human gut: implications for microbial diversity and functionality. Trends Microbiol. 25, 614–623 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Mangalea, M. R. & Duerkop, B. A. Fitness trade-offs resulting from bacteriophage resistance potentiate synergistic antibacterial strategies. Infect. Immun. 88, e00926-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Burmeister, A. R. & Turner, P. E. Trading-off and trading-up in the world of bacteria–phage evolution. Curr. Biol. 30, R1120–R1124 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Lourenço, M. et al. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe 28, 390–401.e5 (2020).

    Article  PubMed  Google Scholar 

  55. Shkoporov, A. et al. Viral biogeography of gastrointestinal tract and parenchymal organs in two representative species of mammals. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-803286/v1 (2021).

    Article  Google Scholar 

  56. Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barr, J. J. et al. Bacteriophage adhering to mucus provide a non–host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Green, S. I. et al. Targeting of mammalian glycans enhances phage predation in the gastrointestinal tract. mBio 12, e03474-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zou, Y. et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat. Biotechnol. 37, 179–185 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thomas, A. M. & Segata, N. Multiple levels of the unknown in microbiome research. BMC Biol. 17, 48 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Carrow, H. C., Batachari, L. E. & Chu, H. Strain diversity in the microbiome: lessons from Bacteroides fragilis. PLoS Pathog. 16, e1009056 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded human microbiome project. Nature 550, 61 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yan, Y., Nguyen, L. H., Franzosa, E. A. & Huttenhower, C. Strain-level epidemiology of microbial communities and the human microbiome. Genome Med. 12, 71 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kelsen, J. R. & Wu, G. D. The gut microbiota, environment and diseases of modern society. Gut Microbes 3, 374–382 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rainey, P. B. & Quistad, S. D. Toward a dynamical understanding of microbial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190248 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lourenço, M., De Sordi, L. & Debarbieux, L. The diversity of bacterial lifestyles hampers bacteriophage tenacity. Viruses 10, 327 (2018).

    Article  PubMed Central  Google Scholar 

  69. Silveira, C. B. & Rohwer, F. L. Piggyback-the-Winner in host-associated microbial communities. npj Biofilms Microbiomes 2, 16010 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Koonin, E. V. & Yutin, N. The crAss-like phage group: how metagenomics reshaped the human virome. Trends Microbiol. 28, 349–359 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, 4498 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Guerin, E. et al. Biology and taxonomy of crass-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe 24, 653–664.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Yutin, N. et al. Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features. Nat. Commun. 12, 1044 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3, 38–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Edwards, R. A. et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat. Microbiol. 4, 1727–1736 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shkoporov, A. N. et al. Long-term persistence of crAss-like phage crAss001 is associated with phase variation in Bacteroides intestinalis. BMC Biol. 19, 163 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guerin, E. et al. Isolation and characterisation of ΦcrAss002, a crAss-like phage from the human gut that infects Bacteroides xylanisolvens. Microbiome 9, 89 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gulyaeva, A. et al. Discovery, diversity, and functional associations of crAss-like phages in human gut metagenomes from four Dutch cohorts. Cell Rep. 38, 110204 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Porter, N. T. et al. Phase-variable capsular polysaccharides and lipoproteins modify bacteriophage susceptibility in Bacteroides thetaiotaomicron. Nat. Microbiol. 5, 1170–1181 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hryckowian, A. J. et al. Bacteroides thetaiotaomicron-infecting bacteriophage isolates inform sequence-based host range predictions. Cell Host Microbe 28, 371–379.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Siringan, P., Connerton, P. L., Cummings, N. J. & Connerton, I. F. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni. Open Biol. 4, 130200 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Devoto, A. E. et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat. Microbiol. 4, 693 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Minot, S. et al. Rapid evolution of the human gut virome. Proc. Natl Acad. Sci. USA 110, 12450–12455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, L. et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184, 2302–2315.e12 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Moreno-Gallego, J. L. et al. Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe 25, 261–272.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Roux, S., Krupovic, M., Poulet, A., Debroas, D. & Enault, F. Evolution and diversity of the Microviridae viral family through a collection of 81 new complete genomes assembled from virome reads. PLoS ONE 7, e40418 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Diard, M. et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 355, 1211–1215 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. De Sordi, L., Lourenço, M. & Debarbieux, L. The battle within: interactions of bacteriophages and bacteria in the gastrointestinal tract. Cell Host Microbe 25, 210–218 (2019).

    Article  PubMed  Google Scholar 

  93. Minot, S., Grunberg, S., Wu, G. D., Lewis, J. D. & Bushman, F. D. Hypervariable loci in the human gut virome. Proc. Natl Acad. Sci. USA 109, 3962–3966 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Morozova, V. et al. First crAss-like phage genome encoding the diversity-generating retroelement (DGR). Viruses 12, 573 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  95. Mills, S. et al. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 4, 4–16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Turkington, C. J. R., Morozov, A., Clokie, M. R. J. & Bayliss, C. D. Phage-resistant phase-variant sub-populations mediate herd immunity against bacteriophage invasion of bacterial meta-populations. Front. Microbiol. 10, 1473 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Eriksen, R. S., Svenningsen, S. L., Sneppen, K. & Mitarai, N. A growing microcolony can survive and support persistent propagation of virulent phages. Proc. Natl Acad. Sci. USA 115, 337–342 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. De Sordi, L., Khanna, V. & Debarbieux, L. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses. Cell Host Microbe 22, 801–808.e3 (2017).

    Article  PubMed  Google Scholar 

  99. Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Samson, J. E., Magadán, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ofir, G. & Sorek, R. Contemporary phage biology: from classic models to new insights. Cell 172, 1260–1270 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Burmeister, A. R. et al. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc. Natl Acad. Sci. USA 117, 11207–11216 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rigottier-Gois, L. et al. The surface rhamnopolysaccharide epa of Enterococcus faecalis is a key determinant of intestinal colonization. J. Infect. Dis. 211, 62–71 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Chatterjee, A. et al. Bacteriophage resistance alters antibiotic-mediated intestinal expansion of enterococci. Infect. Immun. 87, e00085-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Moulton-Brown, C. E. & Friman, V.-P. Rapid evolution of generalized resistance mechanisms can constrain the efficacy of phage–antibiotic treatments. Evol. Appl. 11, 1630–1641 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hosseinidoust, Z., van de Ven, T. G. M. & Tufenkji, N. Evolution of Pseudomonas aeruginosa virulence as a result of phage predation. Appl. Environ. Microbiol. 79, 6110–6116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Alseth, E. O. et al. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature 574, 549–552 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Christen, M. et al. Quantitative selection analysis of bacteriophage φCbK susceptibility in Caulobacter crescentus. J. Mol. Biol. 428, 419–430 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Pal, C., Maciá, M. D., Oliver, A., Schachar, I. & Buckling, A. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450, 1079–1081 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Bayliss, C. D. Determinants of phase variation rate and the fitness implications of differing rates for bacterial pathogens and commensals. FEMS Microbiol. Rev. 33, 504–520 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Moxon, R., Bayliss, C. & Hood, D. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40, 307–333 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Cota, I., Blanc-Potard, A. B. & Casadesús, J. STM2209-STM2208 (opvAB): a phase variation locus of Salmonella enterica involved in control of O-antigen chain length. PLoS ONE 7, e36863 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sekulovic, O., Ospina Bedoya, M., Fivian-Hughes, A. S., Fairweather, N. F. & Fortier, L.-C. The Clostridium difficile cell wall protein CwpV confers phase-variable phage resistance. Mol. Microbiol. 98, 329–342 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gencay, Y. E., Sørensen, M. C. H., Wenzel, C. Q., Szymanski, C. M. & Brøndsted, L. Phase variable expression of a single phage receptor in Campylobacter jejuni NCTC12662 influences sensitivity toward several diverse CPS-dependent phages. Front. Microbiol. 9, 82 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Neff, C. P. et al. Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties. Cell Host Microbe 20, 535–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Porter, N. T., Canales, P., Peterson, D. A. & Martens, E. C. A subset of polysaccharide capsules in the human symbiont bacteroides thetaiotaomicron promote increased competitive fitness in the mouse gut. Cell Host Microbe 22, 494–506.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sørensen, M. C. H. et al. Campylobacter phages use hypermutable polyG tracts to create phenotypic diversity and evade bacterial resistance. Cell Rep. 35, 109214 (2021).

    Article  PubMed  Google Scholar 

  120. Bossi, L., Fuentes, J. A., Mora, G. & Figueroa-Bossi, N. Prophage contribution to bacterial population dynamics. J. Bacteriol. 185, 6467–6471 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Barr, J. J. et al. Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. Proc. Natl Acad. Sci. USA 112, 13675–13680 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tzipilevich, E., Habusha, M. & Ben-Yehuda, S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors. Cell 168, 186–199.e12 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Lu, H.-P. et al. Spatial heterogeneity of gut microbiota reveals multiple bacterial communities with distinct characteristics. Sci. Rep. 4, 6185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Paterson, S. et al. Antagonistic coevolution accelerates molecular evolution. Nature 464, 275–278 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Scanlan, P. D., Hall, A. R., Lopez-Pascua, L. D. C. & Buckling, A. Genetic basis of infectivity evolution in a bacteriophage. Mol. Ecol. 20, 981–989 (2011).

    Article  PubMed  Google Scholar 

  127. Hyman, P. & Abedon, S. T. Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol. 70, 217–248 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Betts, A., Gray, C., Zelek, M., MacLean, R. C. & King, K. C. High parasite diversity accelerates host adaptation and diversification. Science 360, 907–911 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Brown, B. P. et al. crAssphage genomes identified in fecal samples of an adult and infants with evidence of positive genomic selective pressure within tail protein genes. Virus Res. 292, 198219 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Stewart, F. M. & Levin, B. R. The population biology of bacterial viruses: why be temperate. Theor. Popul. Biol. 26, 93–117 (1984).

    Article  CAS  PubMed  Google Scholar 

  131. Maslov, S. & Sneppen, K. Well-temperate phage: optimal bet-hedging against local environmental collapses. Sci. Rep. 5, 10523 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wahl, A., Battesti, A. & Ansaldi, M. Prophages in Salmonella enterica: a driving force in reshaping the genome and physiology of their bacterial host? Mol. Microbiol. 111, 303–316 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Calero-Cáceres, W., Ye, M. & Balcázar, J. L. Bacteriophages as environmental reservoirs of antibiotic resistance. Trends Microbiol. 27, 570–577 (2019).

    Article  PubMed  Google Scholar 

  135. Wang, X. et al. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1, 147 (2010).

    Article  PubMed  Google Scholar 

  136. Arnold, J. W. & Koudelka, G. B. The Trojan horse of the microbiological arms race: phage-encoded toxins as a defence against eukaryotic predators. Environ. Microbiol. 16, 454–466 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Dragoš, A. et al. Pervasive prophage recombination occurs during evolution of spore-forming bacilli. ISME J. 15, 1344–1358 (2021).

    Article  PubMed  Google Scholar 

  138. Brown, E. M. et al. Gut microbiome ADP-ribosyltransferases are widespread phage-encoded fitness factors. Cell Host Microbe 29, 1351–1365.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fogg, P. C. M., Allison, H. E., Saunders, J. R. & McCarthy, A. J. Bacteriophage lambda: a paradigm revisited. J. Virol. 84, 6876–6879 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sausset, R., Petit, M. A., Gaboriau-Routhiau, V. & De Paepe, M. New insights into intestinal phages. Mucosal Immunol. 13, 205–215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. De Paepe, M. et al. Carriage of λ latent virus is costly for its bacterial host due to frequent reactivation in monoxenic mouse intestine. PLoS Genet. 12, e1005861 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Duerkop, B. A., Clements, C. V., Rollins, D., Rodrigues, J. L. M. & Hooper, L. V. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc. Natl Acad. Sci. USA 109, 17621–17626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Haaber, J. et al. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat. Commun. 7, 1–8 (2016).

    Article  Google Scholar 

  144. Wendling, C. C., Refardt, D. & Hall, A. R. Fitness benefits to bacteria of carrying prophages and prophage-encoded antibiotic-resistance genes peak in different environments. Evolution 75, 515–528 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chuang, C.-H. et al. Shanghai fever: a distinct Pseudomonas aeruginosa enteric disease. Gut 63, 736–743 (2014).

    Article  PubMed  Google Scholar 

  147. Khatoon, H., Iyer, R. V. & Iyer, V. N. A new filamentous bacteriophage with sex-factor specificity. Virology 48, 145–155 (1972).

    Article  CAS  PubMed  Google Scholar 

  148. Wang, Q., Kan, B. & Wang, R. Isolation and characterization of the new mosaic filamentous phage VFJ Φ of Vibrio cholerae. PLoS ONE 8, e70934 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Roux, S. et al. Cryptic inoviruses revealed as pervasive in bacteria and archaea across earth’s biomes. Nat. Microbiol. 4, 1895–1906 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Garmaeva, S. et al. Stability of the human gut virome and effect of gluten-free diet. Cell Rep. 35, 109132 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I–restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Van Belleghem, J. D., Clement, F., Merabishvili, M., Lavigne, R. & Vaneechoutte, M. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci. Rep. 7, 8004 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Stecher, B. et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl Acad. Sci. USA 109, 1269–1274 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Wiser, M. J., Ribeck, N. & Lenski, R. E. Long-term dynamics of adaptation in asexual populations. Science 342, 1364–1367 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lerner, A., Matthias, T. & Aminov, R. Potential effects of horizontal gene exchange in the human gut. Front. Immunol. 8, 1630 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Sitaraman, R. Prokaryotic horizontal gene transfer within the human holobiont: ecological-evolutionary inferences, implications and possibilities. Microbiome 6, 163 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Baron, S. A., Diene, S. M. & Rolain, J.-M. Human microbiomes and antibiotic resistance. Hum. Microbiome J. 10, 43–52 (2018).

    Article  Google Scholar 

  163. Brinkac, L., Voorhies, A., Gomez, A. & Nelson, K. E. The threat of antimicrobial resistance on the human microbiome. Microb. Ecol. 74, 1001–1008 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Penders, J., Stobberingh, E. E., Savelkoul, P. H. M. & Wolffs, P. The human microbiome as a reservoir of antimicrobial resistance. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00087 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Enault, F. et al. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J. 11, 237–247 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Duranti, S. et al. Prevalence of antibiotic resistance genes among human gut-derived bifidobacteria. Appl. Environ. Microbiol. 83, e02894-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Jeong, H., Arif, B., Caetano-Anollés, G., Kim, K. M. & Nasir, A. Horizontal gene transfer in human-associated microorganisms inferred by phylogenetic reconstruction and reconciliation. Sci. Rep. 9, 1–18 (2019).

    Article  Google Scholar 

  168. Chiang, Y. N., Penadés, J. R. & Chen, J. Genetic transduction by phages and chromosomal islands: the new and noncanonical. PLoS Pathog. 15, e1007878 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chen, J. et al. Genome hypermobility by lateral transduction. Science 362, 207–212 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Humphrey, S. et al. Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nat. Commun. 12, 6509 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Fillol-Salom, A. et al. Lateral transduction is inherent to the life cycle of the archetypical Salmonella phage P22. Nat. Commun. 12, 6510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Touchon, M., Moura de Sousa, J. A. & Rocha, E. P. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr. Opin. Microbiol. 38, 66–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Kenzaka, T., Tani, K. & Nasu, M. High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J. 4, 648–659 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Bárdy, P. et al. Structure and mechanism of DNA delivery of a gene transfer agent. Nat. Commun. 11, 3034 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Kleiner, M., Bushnell, B., Sanderson, K. E., Hooper, L. V. & Duerkop, B. A. Transductomics: sequencing-based detection and analysis of transduced DNA in pure cultures and microbial communities. Microbiome 8, 158 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zolfo, M. et al. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 37, 1408–1412 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499, 219–222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Quistad, S. D., Doulcier, G. & Rainey, P. B. Experimental manipulation of selfish genetic elements links genes to microbial community function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Langille, M. G. I., Meehan, C. J. & Beiko, R. G. Human microbiome: a genetic bazaar for microbes? Curr. Biol. 22, R20–R22 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Fullmer, M., Soucy, S. & Gogarten, J. P. The pan-genome as a shared genomic resource: mutual cheating, cooperation and the black queen hypothesis. Front. Microbiol. 6, 728 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Fitzgerald, C. B. et al. Comparative analysis of Faecalibacterium prausnitzii genomes shows a high level of genome plasticity and warrants separation into new species-level taxa. BMC Genomics 19, 931 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhu, A., Sunagawa, S., Mende, D. R. & Bork, P. Inter-individual differences in the gene content of human gut bacterial species. Genome Biol. 16, 82 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Sarker, S. A. et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine 4, 124–137 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Jault, P. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 19, 35–45 (2019).

    Article  PubMed  Google Scholar 

  187. Leitner, L. et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect. Dis. 21, 427–436 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Ott, S. J. et al. Efficacy of sterile fecal filtrate transfer for treating patients with clostridium difficile infection. Gastroenterology 152, 799–811.e7 (2017).

    Article  PubMed  Google Scholar 

  189. Draper, L. A. et al. Autochthonous faecal viral transfer (FVT) impacts the murine microbiome after antibiotic perturbation. BMC Biol. 18, 173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Draper, L. A. et al. Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome 6, 220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hsu, B. B. et al. In situ reprogramming of gut bacteria by oral delivery. Nat. Commun. 11, 5030 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hevroni, G., Flores-Uribe, J., Béjà, O. & Philosof, A. Seasonal and diel patterns of abundance and activity of viruses in the Red Sea. Proc. Natl Acad. Sci. USA 117, 29738–29747 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Wigington, C. H. et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 1, 1–9 (2016).

    Article  Google Scholar 

  195. Džunková, M. et al. Defining the human gut host–phage network through single-cell viral tagging. Nat. Microbiol. 4, 2192–2203 (2019).

    Article  PubMed  Google Scholar 

  196. Carding, S. R., Davis, N. & Hoyles, L. Review article: the human intestinal virome in health and disease. Aliment. Pharmacol. Ther. 46, 800–815 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Maslov, S. & Sneppen, K. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems. Sci. Rep. 7, 1–8 (2017).

    Article  Google Scholar 

  198. Zuo, T. et al. Human-gut-DNA virome variations across geography, ethnicity, and urbanization. Cell Host Microbe 28, 741–751.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Lee, C. Z. et al. The gut virome in two indigenous populations from Malaysia. Sci. Rep. 12, 1824 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yan, Q. et al. Characterization of the gut DNA and RNA viromes in a cohort of Chinese residents and visiting Pakistanis. Virus Evol. 7, veab022 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Oh, J.-H. et al. Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont Lactobacillus reuteri. Cell Host Microbe 25, 273–284.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Boling, L. et al. Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome. Gut Microbes 11, 721–734 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Zuo, T. et al. Gut mucosal virome alterations in ulcerative colitis. Gut 68, 1169–1179 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Khan Mirzaei, M. et al. Bacteriophages isolated from stunted children can regulate gut bacterial communities in an age-specific manner. Cell Host Microbe 27, 199–212.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Monaco, C. L. et al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe 19, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tomofuji, Y. et al. Whole gut virome analysis of 476 Japanese revealed a link between phage and autoimmune disease. Ann. Rheum. Dis. 81, 278–288 (2022).

    Article  PubMed  Google Scholar 

  207. Roach, D. R. et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22, 38–47.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sutcliffe, S. G., Shamash, M., Hynes, A. P. & Maurice, C. F. Common oral medications lead to prophage induction in bacterial isolates from the human gut. Viruses 13, 455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.N.S. was supported by a Wellcome Trust Research Career Development Fellowship (220646/Z/20/Z) and the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101001684). C.J.T. and C.H. were supported by Science Foundation Ireland under grant no. SFI/12/RC/2273.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Andrey N. Shkoporov or Colin Hill.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Luisa De Sordi, Corinne Maurice and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Abortive infection systems

Bacterial toxin–antitoxin systems that prevent the completion of the viral infection through facilitating suicide of the infected bacterial cell.

Lysogenic conversion

Alteration in bacterial phenotypes following temperate bacteriophage infection via expression of genes encoded within the bacteriophage genome.

Horizontal gene transfer

(HGT). The transfer of genes between organisms that does not involve their direct passing to progeny through replication.

Chemostats

Vessels used for the continuous culture of microorganisms via constant maintenance of conditions required for growth (for example, nutrient levels).

Gnotobiotic animals

Animals free of microbial colonization.

Phase variation

Genetic phenomenon characterized by the stochastic, high-frequency, reversible alteration in gene expression.

Arms race dynamics

The continuous and reciprocal co-evolutionary adaptions that occur between bacteriophages and their bacterial hosts. Bacteria develop means to prevent infection (such as removal or alteration of receptors), whereas bacteriophages adapt to overcome bacterial defences (such as targeting different bacterial receptors).

Fluctuating selection

Transient oscillations in genotype frequencies within phage and bacterial communities via negative frequency-dependent selection. Here, bacteriophages evolve to infect common bacterial genotypes, resulting in a selective advantage for low-frequency bacterial resistance alleles and therefore enabling those rare alleles to increase in frequency. As bacterial subpopulations with an allele rise in abundance, they become the focus of bacteriophage infectivity evolution, driving diversification of bacteriophage infectivity, and again providing a selective advantage for rare bacterial genotypes, causing the cycle to continue.

Diversity-generating retroelements

Genetic elements able to accelerate mutation rates within specific genomic regions through error-prone reverse transcription.

Piggyback-the-winner model

A model that describes a cooperative relationship between bacteria and temperate bacteriophages, via lysogeny, that is believed to dominate when bacterial densities are high. Temperate bacteriophages ‘piggyback’ on the success of a high-density bacterial host through lysogenic infection so that the bacteriophage replicates together with the host genome and is maintained in the population. At the same time, lysogenic infection of this already ‘winning’ bacterial host can enable the bacterium to receive further competitive advantages via lysogenic conversion and superinfection exclusion.

Superinfection immunity

Bacterial resistance to secondary bacteriophage infection that results from an existing bacteriophage infection.

Peyer patches

Lymphoid follicles in the small intestine involved in organizing immune responses to luminal antigens.

Gene transfer agents

Gene delivery systems that can package random sections of host DNA and transfer them to another cell.

Black Queen hypothesis

A hypothesis proposing that reductive genome evolution is acceptable through a ‘leaky’ common good function, wherein reductions in each organism’s genome can be offset by the presence of corresponding regions within the genomes of other members of a wider population.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkoporov, A.N., Turkington, C.J. & Hill, C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol 20, 737–749 (2022). https://doi.org/10.1038/s41579-022-00755-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00755-4

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology