Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mutualistic interplay between bacteriophages and bacteria in the human gut

Abstract

Bacteriophages (phages) are often described as obligate predators of their bacterial hosts, and phage predation is one of the leading forces controlling the density and distribution of bacterial populations. Every 48 h half of all bacteria on Earth are killed by phages. Efficient killing also forms the basis of phage therapy in humans and animals and the use of phages as food preservatives. In turn, bacteria have a plethora of resistance systems against phage attack, but very few bacterial species, if any, have entirely escaped phage predation. However, in complex communities and environments such as the human gut, this antagonistic model of attack and counter-defence does not fully describe the scope of phage–bacterium interactions. In this Review, we explore some of the more mutualistic aspects of phage–bacterium interactions in the human gut, and we suggest that the relationship between phages and their bacterial hosts in the gut is best characterized not as a fight to the death between enemies but rather as a mutualistic relationship between partners.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Outcomes of phage–bacterium interactions.
Fig. 2: Bacterial populations benefit from the presence of phages.
Fig. 3: Three types of phage transduction.

References

  1. Hendrix, R. W., Smith, M. C. M., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Mushegian, A. R. Are there 1031 virus particles on earth, or more, or fewer? J. Bacteriol. 202, e00052-20 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  3. Dennehy, J. J. & Abedon, S. T. in Bacteriophages: Biology, Technology, Therapy (eds Harper, D. R., Abedon, S. T., Burrowes, B. H. & McConville, M. L.) 1–43 (Springer International Publishing, 2020).

  4. Hobbs, Z. & Abedon, S. T. Diversity of phage infection types and associated terminology: the problem with ‘Lytic or lysogenic’. FEMS Microbiol. Lett. 363, fnw047 (2016).

    PubMed  Article  CAS  Google Scholar 

  5. Bondy-Denomy, J. & Davidson, A. R. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52, 235–242 (2014).

    CAS  PubMed  Article  Google Scholar 

  6. Harrison, E. & Brockhurst, M. A. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. BioEssays 39, 1700112 (2017).

    Article  Google Scholar 

  7. Rakonjac, J., Bennett, N. J., Spagnuolo, J., Gagic, D. & Russel, M. Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr. Issues Mol. Biol. 13, 51–76 (2011).

    CAS  PubMed  Google Scholar 

  8. Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  9. Proctor, L. M. & Fuhrman, J. A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990).

    Article  Google Scholar 

  10. Suttle, C. A. The significance of viruses to mortality in aquatic microbial communities. Microb. Ecol. 28, 237–243 (1994).

    CAS  PubMed  Article  Google Scholar 

  11. Touchon, M., Bernheim, A. & Rocha, E. P. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 10, 2744–2754 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754 (2018).

    CAS  PubMed  Article  Google Scholar 

  13. Zhang, R. et al. Viral control of biomass and diversity of bacterioplankton in the deep sea. Commun. Biol. 3, 1–10 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  14. Luria, S. E. & Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Obeng, N., Pratama, A. A. & van Elsas, J. D. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol. 24, 440–449 (2016).

    CAS  PubMed  Article  Google Scholar 

  16. Argov, T. et al. Temperate bacteriophages as regulators of host behavior. Curr. Opin. Microbiol. 38, 81–87 (2017).

    CAS  PubMed  Article  Google Scholar 

  17. Rodríguez-Rubio, L., Blanco-Picazo, P. & Muniesa, M. in Biocommunication of Phages (ed. Witzany, G.) 143–162 (Springer International Publishing, 2020).

  18. Liang, G. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581, 470–474 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Pannaraj, P. S. et al. Shared and distinct features of human milk and infant stool viromes. Front. Microbiol. 9, 1162 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  21. Aggarwala, V., Liang, G. & Bushman, F. D. Viral communities of the human gut: metagenomic analysis of composition and dynamics. Mob. DNA 8, 12 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26, 764–778.e5 (2019).

    CAS  PubMed  Article  Google Scholar 

  23. Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: the “known unknown” of the microbiome. Cell Host Microbe 25, 195–209 (2019).

    CAS  PubMed  Article  Google Scholar 

  24. Grice, E. A. & Segre, J. A. The human microbiome: our second genome. Annu. Rev. Genom. Hum. Genet. 13, 151–170 (2012).

    CAS  Article  Google Scholar 

  25. Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res. 49, D764–D775 (2021).

    CAS  PubMed  Article  Google Scholar 

  29. Benler, S. et al. Thousands of previously unknown phages discovered in whole-community human gut metagenomes. Microbiome 9, 78 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Fujimoto, K. et al. Metagenome data on intestinal phage-bacteria associations aids the development of phage therapy against pathobionts. Cell Host Microbe 28, 380–389.e9 (2020).

    CAS  PubMed  Article  Google Scholar 

  31. Jang, H. B. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0100-8 (2019).

    Article  Google Scholar 

  32. Adriaenssens, E. M. Phage diversity in the human gut microbiome: a taxonomist’s perspective. mSystems 6, e00799-21 (2021).

    PubMed Central  Article  Google Scholar 

  33. Zablocki, O. et al. VirION2: a short- and long-read sequencing and informatics workflow to study the genomic diversity of viruses in nature. PeerJ 9, e11088 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  34. Yahara, K. et al. Long-read metagenomics using PromethION uncovers oral bacteriophages and their interaction with host bacteria. Nat. Commun. 12, 27 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Marbouty, M., Baudry, L., Cournac, A. & Koszul, R. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci. Adv. 3, e1602105 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Marbouty, M., Thierry, A., Millot, G. A. & Koszul, R. MetaHiC phage-bacteria infection network reveals active cycling phages of the healthy human gut. eLife 10, e60608 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Yaffe, E. & Relman, D. A. Tracking microbial evolution in the human gut using Hi-C reveals extensive horizontal gene transfer, persistence and adaptation. Nat. Microbiol. 5, 343–353 (2020).

    CAS  PubMed  Article  Google Scholar 

  38. Zheng, W. et al. High-throughput single-microbe genomics with strain resolution applied to a human gut microbiome. Science https://doi.org/10.1126/science.abm1483 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fitzgerald, C. B. et al. Probing the “dark matter” of the human gut phageome: culture assisted metagenomics enables rapid discovery and host-linking for novel bacteriophages. Front. Cell. Infect. Microbiol. 11, 100 (2021).

    Article  CAS  Google Scholar 

  40. de Jonge, P. A. et al. Adsorption sequencing as a rapid method to link environmental bacteriophages to hosts. iScience 23, 101439 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. Hsu, B. B. et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 25, 803–814.e5 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Reyes, A., Wu, M., McNulty, N. P., Rohwer, F. L. & Gordon, J. I. Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut. Proc. Natl Acad. Sci. USA 110, 20236–20241 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Hargreaves, K. R., Kropinski, A. M. & Clokie, M. R. Bacteriophage behavioral ecology. Bacteriophage 4, e29866 (2014).

  44. Williams, H. T. Phage-induced diversification improves host evolvability. BMC Evol. Biol. 13, 17 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  45. Goyal, A., Wang, T., Dubinkina, V. & Maslov, S. Ecology-guided prediction of cross-feeding interactions in the human gut microbiome. Nat. Commun. 12, 1335 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Wang, T., Goyal, A., Dubinkina, V. & Maslov, S. Evidence for a multi-level trophic organization of the human gut microbiome. PLoS Comput. Biol. 15, e1007524 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. Bohannan, B. J. M. & Lenski, R. E. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol. Lett. 3, 362–377 (2000).

    Article  Google Scholar 

  48. Maura, D. et al. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ. Microbiol. 14, 1844–1854 (2012).

    CAS  PubMed  Article  Google Scholar 

  49. Weiss, M. et al. In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli. Virology 393, 16–23 (2009).

    CAS  PubMed  Article  Google Scholar 

  50. De Sordi, L., Lourenço, M. & Debarbieux, L. “I will survive”: a tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes 10, 92–99 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. Scanlan, P. D. Bacteria–bacteriophage coevolution in the human gut: implications for microbial diversity and functionality. Trends Microbiol. 25, 614–623 (2017).

    CAS  PubMed  Article  Google Scholar 

  52. Mangalea, M. R. & Duerkop, B. A. Fitness trade-offs resulting from bacteriophage resistance potentiate synergistic antibacterial strategies. Infect. Immun. 88, e00926-19 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  53. Burmeister, A. R. & Turner, P. E. Trading-off and trading-up in the world of bacteria–phage evolution. Curr. Biol. 30, R1120–R1124 (2020).

    CAS  PubMed  Article  Google Scholar 

  54. Lourenço, M. et al. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe 28, 390–401.e5 (2020).

    PubMed  Article  CAS  Google Scholar 

  55. Shkoporov, A. et al. Viral biogeography of gastrointestinal tract and parenchymal organs in two representative species of mammals. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-803286/v1 (2021).

    Article  Google Scholar 

  56. Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Barr, J. J. et al. Bacteriophage adhering to mucus provide a non–host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Green, S. I. et al. Targeting of mammalian glycans enhances phage predation in the gastrointestinal tract. mBio 12, e03474-20 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  59. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Zou, Y. et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat. Biotechnol. 37, 179–185 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Thomas, A. M. & Segata, N. Multiple levels of the unknown in microbiome research. BMC Biol. 17, 48 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  62. Carrow, H. C., Batachari, L. E. & Chu, H. Strain diversity in the microbiome: lessons from Bacteroides fragilis. PLoS Pathog. 16, e1009056 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded human microbiome project. Nature 550, 61 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Yan, Y., Nguyen, L. H., Franzosa, E. A. & Huttenhower, C. Strain-level epidemiology of microbial communities and the human microbiome. Genome Med. 12, 71 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  65. Kelsen, J. R. & Wu, G. D. The gut microbiota, environment and diseases of modern society. Gut Microbes 3, 374–382 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  66. Rainey, P. B. & Quistad, S. D. Toward a dynamical understanding of microbial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190248 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  68. Lourenço, M., De Sordi, L. & Debarbieux, L. The diversity of bacterial lifestyles hampers bacteriophage tenacity. Viruses 10, 327 (2018).

    PubMed Central  Article  CAS  Google Scholar 

  69. Silveira, C. B. & Rohwer, F. L. Piggyback-the-Winner in host-associated microbial communities. npj Biofilms Microbiomes 2, 16010 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  70. Koonin, E. V. & Yutin, N. The crAss-like phage group: how metagenomics reshaped the human virome. Trends Microbiol. 28, 349–359 (2020).

    CAS  PubMed  Article  Google Scholar 

  71. Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, 4498 (2014).

    CAS  PubMed  Article  Google Scholar 

  72. Guerin, E. et al. Biology and taxonomy of crass-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe 24, 653–664.e6 (2018).

    CAS  PubMed  Article  Google Scholar 

  73. Yutin, N. et al. Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features. Nat. Commun. 12, 1044 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3, 38–46 (2018).

    CAS  PubMed  Article  Google Scholar 

  75. Edwards, R. A. et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat. Microbiol. 4, 1727–1736 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Shkoporov, A. N. et al. Long-term persistence of crAss-like phage crAss001 is associated with phase variation in Bacteroides intestinalis. BMC Biol. 19, 163 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Guerin, E. et al. Isolation and characterisation of ΦcrAss002, a crAss-like phage from the human gut that infects Bacteroides xylanisolvens. Microbiome 9, 89 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Gulyaeva, A. et al. Discovery, diversity, and functional associations of crAss-like phages in human gut metagenomes from four Dutch cohorts. Cell Rep. 38, 110204 (2022).

    CAS  PubMed  Article  Google Scholar 

  79. Porter, N. T. et al. Phase-variable capsular polysaccharides and lipoproteins modify bacteriophage susceptibility in Bacteroides thetaiotaomicron. Nat. Microbiol. 5, 1170–1181 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Hryckowian, A. J. et al. Bacteroides thetaiotaomicron-infecting bacteriophage isolates inform sequence-based host range predictions. Cell Host Microbe 28, 371–379.e5 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Siringan, P., Connerton, P. L., Cummings, N. J. & Connerton, I. F. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni. Open Biol. 4, 130200 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. Devoto, A. E. et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat. Microbiol. 4, 693 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e5 (2019).

    CAS  PubMed  Article  Google Scholar 

  85. Minot, S. et al. Rapid evolution of the human gut virome. Proc. Natl Acad. Sci. USA 110, 12450–12455 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Chen, L. et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184, 2302–2315.e12 (2021).

    CAS  PubMed  Article  Google Scholar 

  87. Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Moreno-Gallego, J. L. et al. Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe 25, 261–272.e5 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Roux, S., Krupovic, M., Poulet, A., Debroas, D. & Enault, F. Evolution and diversity of the Microviridae viral family through a collection of 81 new complete genomes assembled from virome reads. PLoS ONE 7, e40418 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. Diard, M. et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 355, 1211–1215 (2017).

    CAS  PubMed  Article  Google Scholar 

  92. De Sordi, L., Lourenço, M. & Debarbieux, L. The battle within: interactions of bacteriophages and bacteria in the gastrointestinal tract. Cell Host Microbe 25, 210–218 (2019).

    PubMed  Article  CAS  Google Scholar 

  93. Minot, S., Grunberg, S., Wu, G. D., Lewis, J. D. & Bushman, F. D. Hypervariable loci in the human gut virome. Proc. Natl Acad. Sci. USA 109, 3962–3966 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Morozova, V. et al. First crAss-like phage genome encoding the diversity-generating retroelement (DGR). Viruses 12, 573 (2020).

    CAS  PubMed Central  Article  Google Scholar 

  95. Mills, S. et al. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 4, 4–16 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  96. Turkington, C. J. R., Morozov, A., Clokie, M. R. J. & Bayliss, C. D. Phage-resistant phase-variant sub-populations mediate herd immunity against bacteriophage invasion of bacterial meta-populations. Front. Microbiol. 10, 1473 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  97. Eriksen, R. S., Svenningsen, S. L., Sneppen, K. & Mitarai, N. A growing microcolony can survive and support persistent propagation of virulent phages. Proc. Natl Acad. Sci. USA 115, 337–342 (2018).

    CAS  PubMed  Article  Google Scholar 

  98. De Sordi, L., Khanna, V. & Debarbieux, L. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses. Cell Host Microbe 22, 801–808.e3 (2017).

    PubMed  Article  CAS  Google Scholar 

  99. Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    CAS  PubMed  Article  Google Scholar 

  100. Samson, J. E., Magadán, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013).

    CAS  PubMed  Article  Google Scholar 

  101. van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  102. Ofir, G. & Sorek, R. Contemporary phage biology: from classic models to new insights. Cell 172, 1260–1270 (2018).

    CAS  PubMed  Article  Google Scholar 

  103. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    CAS  PubMed  Article  Google Scholar 

  104. Burmeister, A. R. et al. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc. Natl Acad. Sci. USA 117, 11207–11216 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Rigottier-Gois, L. et al. The surface rhamnopolysaccharide epa of Enterococcus faecalis is a key determinant of intestinal colonization. J. Infect. Dis. 211, 62–71 (2015).

    CAS  PubMed  Article  Google Scholar 

  106. Chatterjee, A. et al. Bacteriophage resistance alters antibiotic-mediated intestinal expansion of enterococci. Infect. Immun. 87, e00085-19 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  107. Moulton-Brown, C. E. & Friman, V.-P. Rapid evolution of generalized resistance mechanisms can constrain the efficacy of phage–antibiotic treatments. Evol. Appl. 11, 1630–1641 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Hosseinidoust, Z., van de Ven, T. G. M. & Tufenkji, N. Evolution of Pseudomonas aeruginosa virulence as a result of phage predation. Appl. Environ. Microbiol. 79, 6110–6116 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Alseth, E. O. et al. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature 574, 549–552 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Christen, M. et al. Quantitative selection analysis of bacteriophage φCbK susceptibility in Caulobacter crescentus. J. Mol. Biol. 428, 419–430 (2016).

    CAS  PubMed  Article  Google Scholar 

  111. Pal, C., Maciá, M. D., Oliver, A., Schachar, I. & Buckling, A. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450, 1079–1081 (2007).

    CAS  PubMed  Article  Google Scholar 

  112. Bayliss, C. D. Determinants of phase variation rate and the fitness implications of differing rates for bacterial pathogens and commensals. FEMS Microbiol. Rev. 33, 504–520 (2009).

    CAS  PubMed  Article  Google Scholar 

  113. Moxon, R., Bayliss, C. & Hood, D. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40, 307–333 (2006).

    CAS  PubMed  Article  Google Scholar 

  114. Cota, I., Blanc-Potard, A. B. & Casadesús, J. STM2209-STM2208 (opvAB): a phase variation locus of Salmonella enterica involved in control of O-antigen chain length. PLoS ONE 7, e36863 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. Sekulovic, O., Ospina Bedoya, M., Fivian-Hughes, A. S., Fairweather, N. F. & Fortier, L.-C. The Clostridium difficile cell wall protein CwpV confers phase-variable phage resistance. Mol. Microbiol. 98, 329–342 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. Gencay, Y. E., Sørensen, M. C. H., Wenzel, C. Q., Szymanski, C. M. & Brøndsted, L. Phase variable expression of a single phage receptor in Campylobacter jejuni NCTC12662 influences sensitivity toward several diverse CPS-dependent phages. Front. Microbiol. 9, 82 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  117. Neff, C. P. et al. Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties. Cell Host Microbe 20, 535–547 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. Porter, N. T., Canales, P., Peterson, D. A. & Martens, E. C. A subset of polysaccharide capsules in the human symbiont bacteroides thetaiotaomicron promote increased competitive fitness in the mouse gut. Cell Host Microbe 22, 494–506.e8 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. Sørensen, M. C. H. et al. Campylobacter phages use hypermutable polyG tracts to create phenotypic diversity and evade bacterial resistance. Cell Rep. 35, 109214 (2021).

    PubMed  Article  CAS  Google Scholar 

  120. Bossi, L., Fuentes, J. A., Mora, G. & Figueroa-Bossi, N. Prophage contribution to bacterial population dynamics. J. Bacteriol. 185, 6467–6471 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Barr, J. J. et al. Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. Proc. Natl Acad. Sci. USA 112, 13675–13680 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. Tzipilevich, E., Habusha, M. & Ben-Yehuda, S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors. Cell 168, 186–199.e12 (2017).

    CAS  PubMed  Article  Google Scholar 

  123. Lu, H.-P. et al. Spatial heterogeneity of gut microbiota reveals multiple bacterial communities with distinct characteristics. Sci. Rep. 4, 6185 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    CAS  PubMed  Article  Google Scholar 

  125. Paterson, S. et al. Antagonistic coevolution accelerates molecular evolution. Nature 464, 275–278 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. Scanlan, P. D., Hall, A. R., Lopez-Pascua, L. D. C. & Buckling, A. Genetic basis of infectivity evolution in a bacteriophage. Mol. Ecol. 20, 981–989 (2011).

    PubMed  Article  Google Scholar 

  127. Hyman, P. & Abedon, S. T. Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol. 70, 217–248 (2010).

    CAS  PubMed  Article  Google Scholar 

  128. Betts, A., Gray, C., Zelek, M., MacLean, R. C. & King, K. C. High parasite diversity accelerates host adaptation and diversification. Science 360, 907–911 (2018).

    CAS  PubMed  Article  Google Scholar 

  129. Brown, B. P. et al. crAssphage genomes identified in fecal samples of an adult and infants with evidence of positive genomic selective pressure within tail protein genes. Virus Res. 292, 198219 (2021).

    CAS  PubMed  Article  Google Scholar 

  130. Stewart, F. M. & Levin, B. R. The population biology of bacterial viruses: why be temperate. Theor. Popul. Biol. 26, 93–117 (1984).

    CAS  PubMed  Article  Google Scholar 

  131. Maslov, S. & Sneppen, K. Well-temperate phage: optimal bet-hedging against local environmental collapses. Sci. Rep. 5, 10523 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  133. Wahl, A., Battesti, A. & Ansaldi, M. Prophages in Salmonella enterica: a driving force in reshaping the genome and physiology of their bacterial host? Mol. Microbiol. 111, 303–316 (2019).

    CAS  PubMed  Article  Google Scholar 

  134. Calero-Cáceres, W., Ye, M. & Balcázar, J. L. Bacteriophages as environmental reservoirs of antibiotic resistance. Trends Microbiol. 27, 570–577 (2019).

    PubMed  Article  CAS  Google Scholar 

  135. Wang, X. et al. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1, 147 (2010).

    PubMed  Article  CAS  Google Scholar 

  136. Arnold, J. W. & Koudelka, G. B. The Trojan horse of the microbiological arms race: phage-encoded toxins as a defence against eukaryotic predators. Environ. Microbiol. 16, 454–466 (2014).

    CAS  PubMed  Article  Google Scholar 

  137. Dragoš, A. et al. Pervasive prophage recombination occurs during evolution of spore-forming bacilli. ISME J. 15, 1344–1358 (2021).

    PubMed  Article  CAS  Google Scholar 

  138. Brown, E. M. et al. Gut microbiome ADP-ribosyltransferases are widespread phage-encoded fitness factors. Cell Host Microbe 29, 1351–1365.e11 (2021).

    CAS  PubMed  Article  Google Scholar 

  139. Fogg, P. C. M., Allison, H. E., Saunders, J. R. & McCarthy, A. J. Bacteriophage lambda: a paradigm revisited. J. Virol. 84, 6876–6879 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. Sausset, R., Petit, M. A., Gaboriau-Routhiau, V. & De Paepe, M. New insights into intestinal phages. Mucosal Immunol. 13, 205–215 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. De Paepe, M. et al. Carriage of λ latent virus is costly for its bacterial host due to frequent reactivation in monoxenic mouse intestine. PLoS Genet. 12, e1005861 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  142. Duerkop, B. A., Clements, C. V., Rollins, D., Rodrigues, J. L. M. & Hooper, L. V. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc. Natl Acad. Sci. USA 109, 17621–17626 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. Haaber, J. et al. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat. Commun. 7, 1–8 (2016).

    Article  CAS  Google Scholar 

  144. Wendling, C. C., Refardt, D. & Hall, A. R. Fitness benefits to bacteria of carrying prophages and prophage-encoded antibiotic-resistance genes peak in different environments. Evolution 75, 515–528 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. Chuang, C.-H. et al. Shanghai fever: a distinct Pseudomonas aeruginosa enteric disease. Gut 63, 736–743 (2014).

    PubMed  Article  Google Scholar 

  147. Khatoon, H., Iyer, R. V. & Iyer, V. N. A new filamentous bacteriophage with sex-factor specificity. Virology 48, 145–155 (1972).

    CAS  PubMed  Article  Google Scholar 

  148. Wang, Q., Kan, B. & Wang, R. Isolation and characterization of the new mosaic filamentous phage VFJ Φ of Vibrio cholerae. PLoS ONE 8, e70934 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. Roux, S. et al. Cryptic inoviruses revealed as pervasive in bacteria and archaea across earth’s biomes. Nat. Microbiol. 4, 1895–1906 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. Garmaeva, S. et al. Stability of the human gut virome and effect of gluten-free diet. Cell Rep. 35, 109132 (2021).

    CAS  PubMed  Article  Google Scholar 

  151. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I–restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    CAS  PubMed  Article  Google Scholar 

  152. Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299.e8 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. Van Belleghem, J. D., Clement, F., Merabishvili, M., Lavigne, R. & Vaneechoutte, M. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci. Rep. 7, 8004 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  154. Stecher, B. et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl Acad. Sci. USA 109, 1269–1274 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

    CAS  PubMed  Article  Google Scholar 

  156. Wiser, M. J., Ribeck, N. & Lenski, R. E. Long-term dynamics of adaptation in asexual populations. Science 342, 1364–1367 (2013).

    CAS  PubMed  Article  Google Scholar 

  157. Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  158. Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  159. Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667.e8 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. Lerner, A., Matthias, T. & Aminov, R. Potential effects of horizontal gene exchange in the human gut. Front. Immunol. 8, 1630 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  161. Sitaraman, R. Prokaryotic horizontal gene transfer within the human holobiont: ecological-evolutionary inferences, implications and possibilities. Microbiome 6, 163 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  162. Baron, S. A., Diene, S. M. & Rolain, J.-M. Human microbiomes and antibiotic resistance. Hum. Microbiome J. 10, 43–52 (2018).

    Article  Google Scholar 

  163. Brinkac, L., Voorhies, A., Gomez, A. & Nelson, K. E. The threat of antimicrobial resistance on the human microbiome. Microb. Ecol. 74, 1001–1008 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. Penders, J., Stobberingh, E. E., Savelkoul, P. H. M. & Wolffs, P. The human microbiome as a reservoir of antimicrobial resistance. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00087 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Enault, F. et al. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J. 11, 237–247 (2017).

    CAS  PubMed  Article  Google Scholar 

  166. Duranti, S. et al. Prevalence of antibiotic resistance genes among human gut-derived bifidobacteria. Appl. Environ. Microbiol. 83, e02894-16 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  167. Jeong, H., Arif, B., Caetano-Anollés, G., Kim, K. M. & Nasir, A. Horizontal gene transfer in human-associated microorganisms inferred by phylogenetic reconstruction and reconciliation. Sci. Rep. 9, 1–18 (2019).

    Article  CAS  Google Scholar 

  168. Chiang, Y. N., Penadés, J. R. & Chen, J. Genetic transduction by phages and chromosomal islands: the new and noncanonical. PLoS Pathog. 15, e1007878 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. Chen, J. et al. Genome hypermobility by lateral transduction. Science 362, 207–212 (2018).

    CAS  PubMed  Article  Google Scholar 

  170. Humphrey, S. et al. Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nat. Commun. 12, 6509 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  171. Fillol-Salom, A. et al. Lateral transduction is inherent to the life cycle of the archetypical Salmonella phage P22. Nat. Commun. 12, 6510 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. Touchon, M., Moura de Sousa, J. A. & Rocha, E. P. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr. Opin. Microbiol. 38, 66–73 (2017).

    CAS  PubMed  Article  Google Scholar 

  173. Kenzaka, T., Tani, K. & Nasu, M. High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J. 4, 648–659 (2010).

    CAS  PubMed  Article  Google Scholar 

  174. Bárdy, P. et al. Structure and mechanism of DNA delivery of a gene transfer agent. Nat. Commun. 11, 3034 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  175. Kleiner, M., Bushnell, B., Sanderson, K. E., Hooper, L. V. & Duerkop, B. A. Transductomics: sequencing-based detection and analysis of transduced DNA in pure cultures and microbial communities. Microbiome 8, 158 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  177. Zolfo, M. et al. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 37, 1408–1412 (2019).

    CAS  PubMed  Article  Google Scholar 

  178. Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499, 219–222 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. Quistad, S. D., Doulcier, G. & Rainey, P. B. Experimental manipulation of selfish genetic elements links genes to microbial community function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190681 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  180. Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  181. Langille, M. G. I., Meehan, C. J. & Beiko, R. G. Human microbiome: a genetic bazaar for microbes? Curr. Biol. 22, R20–R22 (2012).

    CAS  PubMed  Article  Google Scholar 

  182. Fullmer, M., Soucy, S. & Gogarten, J. P. The pan-genome as a shared genomic resource: mutual cheating, cooperation and the black queen hypothesis. Front. Microbiol. 6, 728 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  183. Fitzgerald, C. B. et al. Comparative analysis of Faecalibacterium prausnitzii genomes shows a high level of genome plasticity and warrants separation into new species-level taxa. BMC Genomics 19, 931 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  184. Zhu, A., Sunagawa, S., Mende, D. R. & Bork, P. Inter-individual differences in the gene content of human gut bacterial species. Genome Biol. 16, 82 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  185. Sarker, S. A. et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine 4, 124–137 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  186. Jault, P. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 19, 35–45 (2019).

    PubMed  Article  Google Scholar 

  187. Leitner, L. et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect. Dis. 21, 427–436 (2021).

    CAS  PubMed  Article  Google Scholar 

  188. Ott, S. J. et al. Efficacy of sterile fecal filtrate transfer for treating patients with clostridium difficile infection. Gastroenterology 152, 799–811.e7 (2017).

    PubMed  Article  Google Scholar 

  189. Draper, L. A. et al. Autochthonous faecal viral transfer (FVT) impacts the murine microbiome after antibiotic perturbation. BMC Biol. 18, 173 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  190. Draper, L. A. et al. Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome 6, 220 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  191. Hsu, B. B. et al. In situ reprogramming of gut bacteria by oral delivery. Nat. Commun. 11, 5030 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  192. Hevroni, G., Flores-Uribe, J., Béjà, O. & Philosof, A. Seasonal and diel patterns of abundance and activity of viruses in the Red Sea. Proc. Natl Acad. Sci. USA 117, 29738–29747 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  193. Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2016).

    CAS  PubMed  Article  Google Scholar 

  194. Wigington, C. H. et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 1, 1–9 (2016).

    Article  CAS  Google Scholar 

  195. Džunková, M. et al. Defining the human gut host–phage network through single-cell viral tagging. Nat. Microbiol. 4, 2192–2203 (2019).

    PubMed  Article  CAS  Google Scholar 

  196. Carding, S. R., Davis, N. & Hoyles, L. Review article: the human intestinal virome in health and disease. Aliment. Pharmacol. Ther. 46, 800–815 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  197. Maslov, S. & Sneppen, K. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems. Sci. Rep. 7, 1–8 (2017).

    Article  CAS  Google Scholar 

  198. Zuo, T. et al. Human-gut-DNA virome variations across geography, ethnicity, and urbanization. Cell Host Microbe 28, 741–751.e4 (2020).

    CAS  PubMed  Article  Google Scholar 

  199. Lee, C. Z. et al. The gut virome in two indigenous populations from Malaysia. Sci. Rep. 12, 1824 (2022).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  200. Yan, Q. et al. Characterization of the gut DNA and RNA viromes in a cohort of Chinese residents and visiting Pakistanis. Virus Evol. 7, veab022 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  201. Oh, J.-H. et al. Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont Lactobacillus reuteri. Cell Host Microbe 25, 273–284.e6 (2019).

    CAS  PubMed  Article  Google Scholar 

  202. Boling, L. et al. Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome. Gut Microbes 11, 721–734 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  203. Zuo, T. et al. Gut mucosal virome alterations in ulcerative colitis. Gut 68, 1169–1179 (2019).

    CAS  PubMed  Article  Google Scholar 

  204. Khan Mirzaei, M. et al. Bacteriophages isolated from stunted children can regulate gut bacterial communities in an age-specific manner. Cell Host Microbe 27, 199–212.e5 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  205. Monaco, C. L. et al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe 19, 311–322 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  206. Tomofuji, Y. et al. Whole gut virome analysis of 476 Japanese revealed a link between phage and autoimmune disease. Ann. Rheum. Dis. 81, 278–288 (2022).

    PubMed  Article  Google Scholar 

  207. Roach, D. R. et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22, 38–47.e4 (2017).

    CAS  PubMed  Article  Google Scholar 

  208. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  209. Sutcliffe, S. G., Shamash, M., Hynes, A. P. & Maurice, C. F. Common oral medications lead to prophage induction in bacterial isolates from the human gut. Viruses 13, 455 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

A.N.S. was supported by a Wellcome Trust Research Career Development Fellowship (220646/Z/20/Z) and the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101001684). C.J.T. and C.H. were supported by Science Foundation Ireland under grant no. SFI/12/RC/2273.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Andrey N. Shkoporov or Colin Hill.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Luisa De Sordi, Corinne Maurice and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Abortive infection systems

Bacterial toxin–antitoxin systems that prevent the completion of the viral infection through facilitating suicide of the infected bacterial cell.

Lysogenic conversion

Alteration in bacterial phenotypes following temperate bacteriophage infection via expression of genes encoded within the bacteriophage genome.

Horizontal gene transfer

(HGT). The transfer of genes between organisms that does not involve their direct passing to progeny through replication.

Chemostats

Vessels used for the continuous culture of microorganisms via constant maintenance of conditions required for growth (for example, nutrient levels).

Gnotobiotic animals

Animals free of microbial colonization.

Phase variation

Genetic phenomenon characterized by the stochastic, high-frequency, reversible alteration in gene expression.

Arms race dynamics

The continuous and reciprocal co-evolutionary adaptions that occur between bacteriophages and their bacterial hosts. Bacteria develop means to prevent infection (such as removal or alteration of receptors), whereas bacteriophages adapt to overcome bacterial defences (such as targeting different bacterial receptors).

Fluctuating selection

Transient oscillations in genotype frequencies within phage and bacterial communities via negative frequency-dependent selection. Here, bacteriophages evolve to infect common bacterial genotypes, resulting in a selective advantage for low-frequency bacterial resistance alleles and therefore enabling those rare alleles to increase in frequency. As bacterial subpopulations with an allele rise in abundance, they become the focus of bacteriophage infectivity evolution, driving diversification of bacteriophage infectivity, and again providing a selective advantage for rare bacterial genotypes, causing the cycle to continue.

Diversity-generating retroelements

Genetic elements able to accelerate mutation rates within specific genomic regions through error-prone reverse transcription.

Piggyback-the-winner model

A model that describes a cooperative relationship between bacteria and temperate bacteriophages, via lysogeny, that is believed to dominate when bacterial densities are high. Temperate bacteriophages ‘piggyback’ on the success of a high-density bacterial host through lysogenic infection so that the bacteriophage replicates together with the host genome and is maintained in the population. At the same time, lysogenic infection of this already ‘winning’ bacterial host can enable the bacterium to receive further competitive advantages via lysogenic conversion and superinfection exclusion.

Superinfection immunity

Bacterial resistance to secondary bacteriophage infection that results from an existing bacteriophage infection.

Peyer patches

Lymphoid follicles in the small intestine involved in organizing immune responses to luminal antigens.

Gene transfer agents

Gene delivery systems that can package random sections of host DNA and transfer them to another cell.

Black Queen hypothesis

A hypothesis proposing that reductive genome evolution is acceptable through a ‘leaky’ common good function, wherein reductions in each organism’s genome can be offset by the presence of corresponding regions within the genomes of other members of a wider population.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shkoporov, A.N., Turkington, C.J. & Hill, C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol (2022). https://doi.org/10.1038/s41579-022-00755-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-022-00755-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing