Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial oxidation of atmospheric trace gases

Abstract

The atmosphere has recently been recognized as a major source of energy sustaining life. Diverse aerobic bacteria oxidize the three most abundant reduced trace gases in the atmosphere, namely hydrogen (H2), carbon monoxide (CO) and methane (CH4). This Review describes the taxonomic distribution, physiological role and biochemical basis of microbial oxidation of these atmospheric trace gases, as well as the ecological, environmental, medical and astrobiological importance of this process. Most soil bacteria and some archaea can survive by using atmospheric H2 and CO as alternative energy sources, as illustrated through genetic studies on Mycobacterium cells and Streptomyces spores. Certain specialist bacteria can also grow on air alone, as confirmed by the landmark characterization of Methylocapsa gorgona, which grows by simultaneously consuming atmospheric CH4, H2 and CO. Bacteria use high-affinity lineages of metalloenzymes, namely hydrogenases, CO dehydrogenases and methane monooxygenases, to utilize atmospheric trace gases for aerobic respiration and carbon fixation. More broadly, trace gas oxidizers enhance the biodiversity and resilience of soil and marine ecosystems, drive primary productivity in extreme environments such as Antarctic desert soils and perform critical regulatory services by mitigating anthropogenic emissions of greenhouse gases and toxic pollutants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enzyme lineages responsible for trace gas oxidation.
Fig. 2: Contribution of trace gas oxidation to energy conservation and carbon assimilation processes during bacterial growth and survival.
Fig. 3: The structural and biochemical basis of atmospheric H2, CO and CH4 oxidation.
Fig. 4: Mediators and importance of atmospheric H2, CO and CH4 oxidation at the ecosystem level.

Similar content being viewed by others

References

  1. Novelli, P. C. et al. Molecular hydrogen in the troposphere: global distribution and budget. J. Geophys. Res. Atmos. 104, 30427–30444 (1999).

    Article  CAS  Google Scholar 

  2. Novelli, P. C., Masarie, K. A. & Lang, P. M. Distributions and recent changes of carbon monoxide in the lower troposphere. J. Geophys. Res. Atmos. 103, 19015–19033 (1998).

    Article  CAS  Google Scholar 

  3. Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Article  Google Scholar 

  4. Seiler, W., Liebl, K. H., Stöhr, W. T. & Zakosek, H. CO-und H2-Abbau in Böden [German]. Z. Pflanzenernaehr. Bodenkd. 272, 257–272 (1977).

    Article  Google Scholar 

  5. Conrad, R. & Seiler, W. Decomposition of atmospheric hydrogen by soil microorganisms and soil enzymes. Soil. Biol. Biochem. 13, 43–49 (1981).

    Article  CAS  Google Scholar 

  6. Rhee, T. S., Brenninkmeijer, Ca. M. & Röckmann, T. The overwhelming role of soils in the global atmospheric hydrogen cycle. Atmos. Chem. Phys. Discuss. 5, 11215–11248 (2005).

    Google Scholar 

  7. Ehhalt, D. H. & Rohrer, F. The tropospheric cycle of H2: a critical review. Tellus Ser. B Chem. Phys. Meteorol. 61, 500–535 (2009).

    Article  CAS  Google Scholar 

  8. Bartholomew, G. W. & Alexander, M. Soil as a sink for atmospheric carbon monoxide. Science 212, 1389–1391 (1981).

    Article  CAS  Google Scholar 

  9. Khalil, M. A. K. & Rasmussen, R. A. The global cycle of carbon monoxide: trends and mass balance. Chemosphere 20, 227–242 (1990).

    Article  CAS  Google Scholar 

  10. Bender, M. & Conrad, R. Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios. FEMS Microbiol. Lett. 101, 261–270 (1992).

    Article  CAS  Google Scholar 

  11. Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).

    Article  CAS  Google Scholar 

  12. Jones, R. D. & Morita, R. Y. Carbon monoxide oxidation by chemolithotrophic ammonium oxidizers. Can. J. Microbiol. 29, 1545–1551 (1983).

    Article  CAS  Google Scholar 

  13. Conrad, R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 60, 609–640 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo, R. & Conrad, R. Extraction and characterization of soil hydrogenases oxidizing atmospheric hydrogen. Soil. Biol. Biochem. 40, 1149–1154 (2008).

    Article  CAS  Google Scholar 

  15. Conrad, R. & Seiler, W. The role of hydrogen bacteria during the decomposition of hydrogen by soil. FEMS Microbiol. Lett. 6, 143–145 (1979).

    Article  CAS  Google Scholar 

  16. Hardy, K. R. & King, G. M. Enrichment of high-affinity CO oxidizers in Maine forest soil. Appl. Environ. Microbiol. 67, 3671–3676 (2001). This work reports the first culture-based characterization of bacteria adapted to atmospheric levels of CO.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. King, G. M. Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Appl. Environ. Microbiol. 69, 7257–7265 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Constant, P., Poissant, L. & Villemur, R. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2. ISME J. 2, 1066–1076 (2008). This work provides the first observation of atmospheric H2 oxidation by a bacterium, helping to overturn the paradigm that cell-free enzymes are responsible for the soil H2 sink.

    Article  CAS  PubMed  Google Scholar 

  19. Constant, P., Chowdhury, S. P., Hesse, L. & Conrad, R. Co-localization of atmospheric H2 oxidation activity and high affinity H2-oxidizing bacteria in non-axenic soil and sterile soil amended with Streptomyces sp. PCB7. Soil. Biol. Biochem. 43, 1888–1893 (2011).

    Article  CAS  Google Scholar 

  20. Constant, P., Chowdhury, S. P., Pratscher, J. & Conrad, R. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ. Microbiol. 12, 821–829 (2010). This work observes that atmospheric H2 oxidation is restricted to streptomycete spores and is likely mediated by a novel enzyme.

    Article  CAS  PubMed  Google Scholar 

  21. Greening, C., Berney, M., Hards, K., Cook, G. M. & Conrad, R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc. Natl Acad. Sci. USA 111, 4257–4261 (2014). This work provides genetic proof that atmospheric H2 oxidation is mediated by high-affinity hydrogenases and is linked to long-term survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Knief, C. & Dunfield, P. F. Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ. Microbiol. 7, 1307–1317 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Baani, M. & Liesack, W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc. Natl Acad. Sci. USA 105, 10203–10208 (2008). This work is the first culture-based demonstration of atmospheric CH4 oxidation and provides genetic proof of the activity of two kinetically distinct CH4 monooxygenases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pratscher, J., Dumont, M. G. & Conrad, R. Assimilation of acetate by the putative atmospheric methane oxidizers belonging to the USCα clade. Environ. Microbiol. 13, 2692–2701 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Cai, Y., Zheng, Y., Bodelier, P. L. E., Conrad, R. & Jia, Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 7, 11728 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tveit, A. T. et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc. Natl Acad. Sci. USA 116, 8515–8524 (2019). This work presents the first observation of bacterial growth on air alone, later shown to be mediated through the co-oxidation of atmospheric CH4, CO and H2, in a dominant clade of methanotrophs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tveit, A. T. et al. Simultaneous oxidation of atmospheric methane, carbon monoxide and hydrogen for bacterial growth. Microorganisms 9, 153 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. King, G. M. Uptake of carbon monoxide and hydrogen at environmentally relevant concentrations by mycobacteria. Appl. Environ. Microbiol. 69, 7266–7272 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berney, M. & Cook, G. M. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS ONE 5, e8614 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Greening, C., Villas-Bôas, S. G., Robson, J. R., Berney, M. & Cook, G. M. The growth and survival of Mycobacterium smegmatis is enhanced by co-metabolism of atmospheric H2. PLoS ONE 9, e103034 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cunliffe, M. Physiological and metabolic effects of carbon monoxide oxidation in the model marine bacterioplankton Ruegeria pomeroyi DSS-3. Appl. Environ. Microbiol. 79, 738–740 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Christie-Oleza, J. A., Fernandez, B., Nogales, B., Bosch, R. & Armengaud, J. Proteomic insights into the lifestyle of an environmentally relevant marine bacterium. ISME J. 6, 124 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Liot, Q. & Constant, P. Breathing air to save energy — new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis. Microbiologyopen 5, 47–59 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, D. et al. Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum. PLoS ONE 4, e4207 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Islam, Z. F. et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 13, 1801–1813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. King, C. E. & King, G. M. Thermomicrobium carboxidum sp. nov., and Thermorudis peleae gen. nov., sp. nov., carbon monoxide-oxidizing bacteria isolated from geothermally heated biofilms. Int. J. Syst. Evol. Microbiol. 64, 2586–2592 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Morita, R. Y. Is H2 the universal energy source for long-term survival? Microb. Ecol. 38, 307–320 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Greening, C., Islam, Z. F. & Bay, S. K. Hydrogen is a major lifeline for aerobic bacteria. Trends Microbiol. 30, 330–337 (2021).

    Article  PubMed  CAS  Google Scholar 

  39. Cordero, P. R. F. et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 13, 2868–2881 (2019). This work presents genetic evidence that atmospheric CO oxidation primarily sustains survival of bacteria, contrary to previous growth-centric studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ji, M. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403 (2017). This work is the first report of an ecosystem that is primarily driven by atmospheric energy sources.

    Article  CAS  PubMed  Google Scholar 

  41. Islam, Z. F. et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 14, 2649–2658 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leung, P. M. et al. A nitrite-oxidising bacterium constitutively oxidises atmospheric H2. Preprint at bioRxiv https://doi.org/10.1101/2021.08.20.457082v1 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Koch, H. et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345, 1052–1054 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256 (2021). This culture-independent study shows that trace gas oxidizers are dominant, not rare, members of global soil communities.

    Article  CAS  PubMed  Google Scholar 

  45. Xu, Y. et al. Genome-resolved metagenomics reveals how soil bacterial communities respond to elevated H2 availability. Soil. Biol. Biochem. 163, 108464 (2021).

    Article  CAS  Google Scholar 

  46. Diamond, S. et al. Mediterranean grassland soil C–N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms. Nat. Microbiol. 4, 1356–1367 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giguere, A. et al. Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils. ISME J. 15, 363–376 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ray, A. E. et al. Soil microbiomes with the genetic capacity for atmospheric chemosynthesis are widespread across the poles and are associated with moisture, carbon, and nitrogen limitation. Front. Microbiol. 11, 1936 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jordaan, K. et al. Hydrogen-oxidising bacteria are abundant in desert soils and strongly stimulated by hydration. mSystems 5, e01131–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bay, S. K. et al. Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. ISME J. 15, 3339–3356 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ortiz, M. et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc. Natl Acad. Sci. USA 118, e2025322118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martineau, C. et al. Atmospheric methane oxidizers are present and active in Canadian high Arctic soils. FEMS Microbiol. Ecol. 89, 257–269 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Conrad, R. & Seiler, W. Photooxidative production and microbial consumption of carbon monoxide in seawater. FEMS Microbiol. Lett. 9, 61–64 (1980).

    Article  CAS  Google Scholar 

  54. Tolli, J. D. & Taylor, C. D. Biological CO oxidation in the Sargasso sea and in vineyard sound, Massachusetts. Limnol. Oceanogr. 50, 1205–1212 (2005).

    Article  CAS  Google Scholar 

  55. Barz, M. et al. Distribution analysis of hydrogenases in surface waters of marine and freshwater environments. PLoS ONE 5, e13846 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kessler, A. J. et al. Bacterial fermentation and respiration processes are uncoupled in permeable sediments. Nat. Microbiol. 4, 1014–1023 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Martinez-Perez, C. et al. Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf. Nat. Commun. 13, 117 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lappan, R. J. et al. Molecular hydrogen is an overlooked energy source for oceanic bacteria. Preprint at bioRxiv https://doi.org/10.1101/2022.01.29.478295v1 (2022).

    Article  Google Scholar 

  59. Kanno, M., Constant, P., Tamaki, H. & Kamagata, Y. Detection and isolation of plant-associated bacteria scavenging atmospheric molecular hydrogen. Environ. Microbiol. 18, 2495–2506 (2015).

    Article  CAS  Google Scholar 

  60. Benoit, S. L., Maier, R. J., Gary Sawers, R. & Greening, C. Molecular hydrogen metabolism: a widespread trait of pathogenic bacteria and protists. Microbiol. Mol. Biol. Rev. 84, e00092-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chiri, E. et al. Termite gas emissions select for hydrogenotrophic microbial communities in termite mounds. Proc. Natl Acad. Sci. USA 118, e2102625118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jeffrey, L. C. et al. Bark-dwelling methanotrophic bacteria decrease methane emissions from trees. Nat. Commun. 12, 2127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Greening, C. et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Greening, C. et al. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc. Natl Acad. Sci. USA 112, 10497–10502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mohammadi, S., Pol, A., van Alen, T. A., Jetten, M. S. M. & Op den Camp, H. J. M. Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 11, 945–958 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Carere, C. R. et al. Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J. 11, 2599–2610 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Schmitz, R. A. et al. The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H2 with a high-affinity, membrane-associated [NiFe] hydrogenase. ISME J. 14, 1223–1232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. King, G. M. Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith. Proc. Natl Acad. Sci. USA 112, 4465–4470 (2015). This work is the first report of atmospheric trace gas oxidation by members of the archaea, including at astrobiologically relevant water potentials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McDuff, S., King, G. M., Neupane, S. & Myers, M. R. Isolation and characterization of extremely halophilic CO-oxidizing Euryarchaeota from hypersaline cinders, sediments and soils and description of a novel CO oxidizer, Haloferax namakaokahaiae Mke2. 3T, sp. nov. FEMS Microbiol. Ecol. 92, fiw028 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Myers, M. R. & King, G. M. Perchlorate-coupled carbon monoxide (CO) oxidation: evidence for a plausible microbe-mediated reaction in Martian brines. Front. Microbiol. 8, 2571 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Holmes, A. J. et al. Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl. Environ. Microbiol. 65, 3312–3318 (1999). This work presents culture-based detection of the dominant clades mediating atmospheric CH4 oxidation in soils.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bull, I. D., Parekh, N. R., Hall, G. H., Ineson, P. & Evershed, R. P. Detection and classification of atmospheric methane oxidizing bacteria in soil. Nature 405, 175–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Knief, C., Lipski, A. & Dunfield, P. F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69, 6703–6714 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Edwards, C. R. et al. Draft genome sequence of uncultured upland soil cluster Gammaproteobacteria gives molecular insights into high-affinity methanotrophy. Genome Announc. 5, e00047–17 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Benstead, J., King, G. M. & Williams, H. G. Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils. Appl. Environ. Microbiol. 64, 1091–1098 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kravchenko, I. K., Kizilova, A. K., Bykova, S. A., Men’ko, E. V. & Gal’chenko, V. F. Molecular analysis of high-affinity methane-oxidizing enrichment cultures isolated from a forest biocenosis and agrocenoses. Microbiology 79, 106–114 (2010).

    Article  CAS  Google Scholar 

  77. Roslev, P., Iversen, N. & Henriksen, K. A. J. Oxidation and assimilation of atmospheric methane by soil methane oxidizers. Appl. Environ. Microbiol. 63, 874–880 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Meredith, L. K. et al. Consumption of atmospheric hydrogen during the life cycle of soil-dwelling actinobacteria. Environ. Microbiol. Rep. 6, 226–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Maiga, M. et al. In vitro and in vivo studies of a rapid and selective breath test for tuberculosis based upon mycobacterial CO dehydrogenase. MBio 5, e00990–14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dunfield, P. F. et al. Isolation of a Methylocystis strain containing a novel pmoA-like gene. FEMS Microbiol. Ecol. 41, 17–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Khadka, R. et al. Evolutionary history of copper membrane monooxygenases. Front. Microbiol. 9, 2493 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Myers, M. R. & King, G. M. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. Int. J. Syst. Evol. Microbiol. 66, 5328–5335 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Cordero, P. R. F. et al. Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. J. Biol. Chem. 294, 18980–18991 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Berney, M., Greening, C., Hards, K., Collins, D. & Cook, G. M. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis. Environ. Microbiol. 16, 318–330 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Berney, M., Greening, C., Conrad, R., Jacobs, W. R. & Cook, G. M. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc. Natl Acad. Sci. USA 111, 11479–11484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Constant, P., Chowdhury, S. P., Hesse, L., Pratscher, J. & Conrad, R. Genome data mining and soil survey for the novel Group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H2-oxidizing bacteria. Appl. Environ. Microbiol. 77, 6027–6035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Conrad, R. & Seiler, W. Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil. Appl. Environ. Microbiol. 40, 437–445 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gadkari, D., Schricker, K., Acker, G., Kroppenstedt, R. M. & Meyer, O. Streptomyces thermoautotrophicus sp. nov., a thermophilic CO-and H2-oxidizing obligate chemolithoautotroph. Appl. Environ. Microbiol. 56, 3727–3734 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Conrad, R., Meyer, O. & Seiler, W. Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil. Appl. Environ. Microbiol. 42, 211–215 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Patrauchan, M. A. et al. Proteomic analysis of survival of Rhodococcus jostii RHA1 during carbon starvation. Appl. Environ. Microbiol. 78, 6714–6725 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Muthusamy, S. et al. Comparative proteomics reveals signature metabolisms of exponentially growing and stationary phase marine bacteria. Environ. Microbiol. 19, 2301–2319 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Islam, Z. F., Cordero, P. R. F. & Greening, C. Putative iron–sulfur proteins are required for hydrogen consumption and enhance survival of mycobacteria. Front. Microbiol. 10, 2749 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Conrad, R. Soil microorganisms oxidizing atmospheric trace gases (CH4, CO, H2, NO). Indian. J. Microbiol. 39, 193–203 (1999).

    Google Scholar 

  94. DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl Acad. Sci. USA 107, 12941–12945 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. King, C. E. & King, G. M. Description of Thermogemmatispora carboxidivorans sp. nov., a carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacter. Int. J. Syst. Evol. Microbiol. 64, 1244–1251 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Dunfield, P. F. & Conrad, R. Starvation alters the apparent half-saturation constant for methane in the type II methanotroph Methylocystis strain LR1. Appl. Environ. Microbiol. 66, 4136–4138 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cordero, P. R. Cellular and Molecular Basis of Atmospheric Hydrogen and Carbon Monoxide Oxidation in Mycobacteria. PhD Thesis, Monash Univ. (2020).

  98. Schwartz, E., Fritsch, J. & Friedrich, B. H2-Metabolizing Prokaryotes (Springer, 2013).

  99. Kolb, S., Knief, C., Dunfield, P. F. & Conrad, R. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ. Microbiol. 7, 1150–1161 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Pratscher, J., Vollmers, J., Wiegand, S., Dumont, M. G. & Kaster, A.-K. Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ. Microbiol. 20, 1016–1029 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hakobyan, A., Zhu, J., Glatter, T., Paczia, N. & Liesack, W. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. Metab. Eng. 61, 181–196 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Carini, P. Hazardous gases sustain microbes underfoot. Nat. Microbiol. 6, 145–146 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Rohde, M., Mayer, F. & Meyer, O. Immunocytochemical localization of carbon monoxide oxidase in Pseudomonas carboxydovorans. The enzyme is attached to the inner aspect of the cytoplasmic membrane. J. Biol. Chem. 259, 14788–14792 (1984).

    Article  CAS  PubMed  Google Scholar 

  104. Santiago, B., Schübel, U., Egelseer, C. & Meyer, O. Sequence analysis, characterization and CO-specific transcription of the cox gene cluster on the megaplasmid pHCG3 of Oligotropha carboxidovorans. Gene 236, 115–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Meyer, O. & Schlegel, H. G. Oxidation of carbon monoxide in cell extracts of Pseudomonas carboxydovorans. J. Bacteriol. 137, 811–817 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim, Y. M. & Hegeman, G. D. Electron transport system of an aerobic carbon monoxide-oxidizing bacterium. J. Bacteriol. 148, 991–994 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cord-Ruwisch, R., Seitz, H.-J. & Conrad, R. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149, 350–357 (1988).

    Article  CAS  Google Scholar 

  108. Jacobitz, S. & Meyer, O. Reduced pyridine nucleotides in Pseudomonas carboxydovorans are formed by reverse electron transfer linked to proton motive force. Arch. Microbiol. 145, 372–377 (1986).

    Article  CAS  Google Scholar 

  109. Shomura, Y. et al. Structural basis of the redox switches in the NAD+-reducing soluble [NiFe]-hydrogenase. Science 357, 928–932 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Li, H. et al. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4. Proc. Natl Acad. Sci. USA 113, 5862–5867 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, V. C.-C. et al. Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem. Rev. 117, 8574–8621 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Volbeda, A. et al. Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas. Nature 373, 580–587 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Ogata, H., Nishikawa, K. & Lubitz, W. Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Nature 520, 571 (2015).

    Article  PubMed  CAS  Google Scholar 

  114. Shafaat, H. S., Rüdiger, O., Ogata, H. & Lubitz, W. [NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions. Biochim. Biophys. Acta 1827, 986–1002 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Schäfer, C. et al. Structure of an actinobacterial-type [NiFe]-hydrogenase reveals insight into O2-tolerant H2 oxidation. Structure 24, 285–292 (2016).

    Article  PubMed  CAS  Google Scholar 

  116. Leroux, F. et al. Experimental approaches to kinetics of gas diffusion in hydrogenase. Proc. Natl Acad. Sci. USA 105, 11188–11193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kalms, J. et al. Tracking the route of molecular oxygen in O2-tolerant membrane-bound [NiFe] hydrogenase. Proc. Natl Acad. Sci. USA 115, E2229–E2237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Siegbahn, P. E. M. & Liao, R.-Z. The energetics of hydrogen molecule oxidation in NiFe-hydrogenase. ACS Catal. 10, 5603–5613 (2020).

    Article  CAS  Google Scholar 

  119. Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–148 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Shomura, Y., Yoon, K.-S., Nishihara, H. & Higuchi, Y. Structural basis for a [4Fe–3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature 479, 253–256 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Fritsch, J. et al. The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron–sulphur centre. Nature 479, 249–52 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Dementin, S. et al. Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant. J. Am. Chem. Soc. 131, 10156–10164 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Liebgott, P.-P. et al. Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nat. Chem. Biol. 6, 63–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, P. & Blumberger, J. Mechanistic insight into the blocking of CO diffusion in [NiFe]-hydrogenase mutants through multiscale simulation. Proc. Natl Acad. Sci. USA 109, 6399–6404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Schäfer, C., Friedrich, B. & Lenz, O. Novel, oxygen-insensitive group 5 [NiFe]-hydrogenase in Ralstonia eutropha. Appl. Environ. Microbiol. 79, 5137–45 (2013). This work presents biochemical characterization of Hhy hydrogenases, which reveals unusual oxygen insensitivity and environmental resilience.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Dobbek, H., Gremer, L., Kiefersauer, R., Huber, R. & Meyer, O. Catalysis at a dinuclear [CuSMo(O)OH] cluster in a CO dehydrogenase resolved at 1.1-Å resolution. Proc. Natl Acad. Sci. USA 99, 15971–15976 (2002). This work presents the high-resolution structure of the enzyme responsible for atmospheric CO oxidation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Meyer, O. Chemical and spectral properties of carbon monoxide: methylene blue oxidoreductase. The molybdenum-containing iron-sulfur flavoprotein from Pseudomonas carboxydovorans. J. Biol. Chem. 257, 1333–1341 (1982).

    Article  CAS  PubMed  Google Scholar 

  128. Dobbek, H., Gremer, L., Meyer, O. & Huber, R. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron–sulfur flavoprotein containing S-selanylcysteine. Proc. Natl Acad. Sci. USA 96, 8884–8889 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Resch, M., Dobbek, H. & Meyer, O. Structural and functional reconstruction in situ of the [CuSMoO2] active site of carbon monoxide dehydrogenase from the carbon monoxide oxidizing eubacterium Oligotropha carboxidovorans. JBIC J. Biol. Inorg. Chem. 10, 518–528 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Fuhrmann, S. et al. Complete nucleotide sequence of the circular megaplasmid pHCG3 of Oligotropha carboxidovorans: function in the chemolithoautotrophic utilization of CO, H2 and CO2. Gene 322, 67–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Kalimuthu, P. et al. The oxidation–reduction and electrocatalytic properties of CO dehydrogenase from Oligotropha carboxidovorans. Biochim. Biophys. Acta 1861, 148118 (2020).

    Article  CAS  Google Scholar 

  132. Meyer, O. & Schlegel, H.-G. Carbon monoxide: methylene blue oxidoreductase from Pseudomonas carboxydovorans. J. Bacteriol. 141, 74–80 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hofmann, M., Kassube, J. K. & Graf, T. The mechanism of Mo-/Cu-dependent CO dehydrogenase. JBIC J. Biol. Inorg. Chem. 10, 490–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Xu, K. & Hirao, H. Revisiting the catalytic mechanism of Mo–Cu carbon monoxide dehydrogenase using QM/MM and DFT calculations. Phys. Chem. Chem. Phys. 20, 18938–18948 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Balasubramanian, R. et al. Oxidation of methane by a biological dicopper centre. Nature 465, 115–119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lieberman, R. L. & Rosenzweig, A. C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434, 177–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Smith, S. M. et al. Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M. Biochemistry 50, 10231–10240 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Sirajuddin, S. et al. Effects of zinc on particulate methane monooxygenase activity and structure. J. Biol. Chem. 289, 21782–21794 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Chan, S. I. & Yu, S. S.-F. Controlled oxidation of hydrocarbons by the membrane-bound methane monooxygenase: the case for a tricopper cluster. Acc. Chem. Res. 41, 969–979 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Da Silva, J. C. S., Pennifold, R. C. R., Harvey, J. N. & Rocha, W. R. A radical rebound mechanism for the methane oxidation reaction promoted by the dicopper center of a pMMO enzyme: a computational perspective. Dalt. Trans. 45, 2492–2504 (2016).

    Article  CAS  Google Scholar 

  141. Chang, W.-H. et al. Copper centers in the cryo-EM structure of particulate methane monooxygenase reveal the catalytic machinery of methane oxidation. J. Am. Chem. Soc. 143, 9922–9932 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Ross, M. O. et al. Particulate methane monooxygenase contains only mononuclear copper centers. Science 364, 566–570 (2019). This work presents the resolution of the active site of pMMO, with relevance to substrates and mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jodts, R. J. et al. Coordination of the copper centers in particulate methane monooxygenase: comparison between methanotrophs and characterization of the CuC site by EPR and ENDOR spectroscopies. J. Am. Chem. Soc. 143, 15358–15368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liew, E. F., Tong, D., Coleman, N. V. & Holmes, A. J. Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity. Microbiology 160, 1267–1277 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Nguyen, H. H. et al. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 269, 14995–15005 (1994).

    Article  CAS  PubMed  Google Scholar 

  146. Shiemke, A. K., Cook, S. A., Miley, T. & Singleton, P. Detergent solubilization of membrane-bound methane monooxygenase requires plastoquinol analogs as electron donors. Arch. Biochem. Biophys. 321, 421–428 (1995).

    Article  CAS  PubMed  Google Scholar 

  147. Cook, S. A. & Shiemke, A. K. Evidence that a type-2 NADH:quinone oxidoreductase mediates electron transfer to particulate methane monooxygenase in Methylococcus capsulatus. Arch. Biochem. Biophys. 398, 32–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Peng, W., Qu, X., Shaik, S. & Wang, B. Deciphering the oxygen activation mechanism at the CuC site of particulate methane monooxygenase. Nat. Catal. 4, 266–273 (2021).

    Article  CAS  Google Scholar 

  149. Sirajuddin, S. & Rosenzweig, A. C. Enzymatic oxidation of methane. Biochemistry 54, 2283–2294 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Khdhiri, M. et al. Soil carbon content and relative abundance of high affinity H2-oxidizing bacteria predict atmospheric H2 soil uptake activity better than soil microbial community composition. Soil. Biol. Biochem. 85, 1–9 (2015).

    Article  CAS  Google Scholar 

  151. Khdhiri, M., Piché-Choquette, S., Tremblay, J., Tringe, S. G. & Constant, P. Meta-omics survey of [NiFe]-hydrogenase genes fails to capture drastic variations in H2-oxidation activity measured in three soils exposed to H2. Soil. Biol. Biochem. 125, 239–243 (2018).

    Article  CAS  Google Scholar 

  152. Blagodatskaya, E. & Kuzyakov, Y. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil. Biol. Biochem. 67, 192–211 (2013).

    Article  CAS  Google Scholar 

  153. Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl Acad. Sci. USA 107, 5881–5886 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Grostern, A. & Alvarez-Cohen, L. RuBisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ. Microbiol. 15, 3040–3053 (2013).

    CAS  PubMed  Google Scholar 

  157. Häring, V. & Conrad, R. Demonstration of two different H2-oxidizing activities in soil using an H2 consumption and a tritium exchange assay. Biol. Fertil. Soils 17, 125–128 (1994).

    Article  Google Scholar 

  158. Osborne, C. A., Peoples, M. B. & Janssen, P. H. Detection of a reproducible, single-member shift in soil bacterial communities exposed to low levels of hydrogen. Appl. Environ. Microbiol. 76, 1471–1479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang, Y., He, X. & Dong, Z. Effect of hydrogen on soil bacterial community structure in two soils as determined by terminal restriction fragment length polymorphism. Plant. Soil. 320, 295–305 (2009).

    Article  CAS  Google Scholar 

  160. Khdhiri, M., Piché-Choquette, S., Tremblay, J., Tringe, S. G. & Constant, P. The tale of a neglected energy source: elevated hydrogen exposure affects both microbial diversity and function in soil. Appl. Environ. Microbiol. 83, e00275-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Conrad, R. & Seiler, W. Utilization of traces of carbon monoxide by aerobic oligotrophic microorganisms in ocean, lake and soil. Arch. Microbiol. 132, 41–46 (1982).

    Article  CAS  Google Scholar 

  162. Schmidt, U. & Conrad, R. Hydrogen, carbon monoxide, and methane dynamics in Lake Constance. Limnol. Oceanogr. 38, 1214–1226 (1993).

    Article  CAS  Google Scholar 

  163. Mou, X., Sun, S., Edwards, R. A., Hodson, R. E. & Moran, M. A. Bacterial carbon processing by generalist species in the coastal ocean. Nature 451, 708–711 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Royo-Llonch, M. et al. Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nat. Microbiol. 6, 1561–1574 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Cunliffe, M. Correlating carbon monoxide oxidation with cox genes in the abundant marine Roseobacter clade. ISME J. 5, 685 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Swinnerton, J. W., Linnenbom, V. J. & Lamontagne, R. A. The ocean: a natural source of carbon monoxide. Science 167, 984–986 (1970).

    Article  CAS  PubMed  Google Scholar 

  167. Xie, H., Bélanger, S., Demers, S., Vincent, W. F. & Papakyriakou, T. N. Photobiogeochemical cycling of carbon monoxide in the southeastern Beaufort Sea in spring and autumn. Limnol. Oceanogr. 54, 234–249 (2009).

    Article  CAS  Google Scholar 

  168. Weber, C. F. & King, G. M. Physiological, ecological, and phylogenetic characterization of Stappia, a marine CO-oxidizing bacterial genus. Appl. Environ. Microbiol. 73, 1266–76 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Conrad, R., Seiler, W., Bunse, G. & Giehl, H. Carbon monoxide in seawater (Atlantic Ocean). J. Geophys. Res. Ocean. 87, 8839–8852 (1982).

    Article  CAS  Google Scholar 

  170. Conte, L., Szopa, S., Séférian, R. & Bopp, L. The oceanic cycle of carbon monoxide and its emissions to the atmosphere. Biogeosciences 16, 881–902 (2019).

    Article  CAS  Google Scholar 

  171. Conrad, R. & Seiler, W. Methane and hydrogen in seawater (Atlantic Ocean). Deep. Sea Res. A Oceanogr. Res. Pap. 35, 1903–1917 (1988).

    Article  CAS  Google Scholar 

  172. Anantharaman, K., Breier, J. A., Sheik, C. S. & Dick, G. J. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc. Natl Acad. Sci. USA 110, 330–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Lynch, R. C., Darcy, J. L., Kane, N. C., Nemergut, D. R. & Schmidt, S. K. Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria. Front. Microbiol. 5, 698 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Zhao, R., Wang, H., Cheng, X., Yun, Y. & Qiu, X. Upland soil cluster γ dominates the methanotroph communities in the karst Heshang Cave. FEMS Microbiol. Ecol. 94, fiy192 (2018).

    Article  CAS  Google Scholar 

  175. King, G. M. Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Appl. Environ. Microbiol. 69, 4067–4075 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Dunfield, K. E. & King, G. M. Molecular analysis of carbon monoxide-oxidizing bacteria associated with recent Hawaiian volcanic deposits. Appl. Environ. Microbiol. 70, 4242–4248 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. King, G. M. & Weber, C. F. Interactions between bacterial carbon monoxide and hydrogen consumption and plant development on recent volcanic deposits. ISME J. 2, 195–203 (2008). This work is an extensive consideration of the potential role of trace gas oxidizers in primary succession.

    Article  CAS  PubMed  Google Scholar 

  178. Pierrehumbert, R. & Gaidos, E. Hydrogen greenhouse planets beyond the habitable zone. Astrophys. J. Lett. 734, L13 (2011).

    Article  CAS  Google Scholar 

  179. Seager, S., Huang, J., Petkowski, J. J. & Pajusalu, M. Laboratory studies on the viability of life in H2-dominated exoplanet atmospheres. Nat. Astron. 4, 802–806 (2020).

    Article  Google Scholar 

  180. Martin, W. F. Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation. FEBS Lett. 586, 485–493 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Cowan, D. A., Ferrari, B. C. & McKay, C. P. Out of thin air? Astrobiology and atmospheric chemotrophy. Astrobiology 22, 225–232 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Kolb, S., Horn, M. A., Murrell, J. C. & Knief, C. The impact of microorganisms on consumption of atmospheric trace gases. Front. Microbiol. 8, 1856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kiene, R. P. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Appl. Environ. Microbiol. 56, 3292–3297 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mohamed, M. F., Kang, D. & Aneja, V. P. Volatile organic compounds in some urban locations in United States. Chemosphere 47, 863–882 (2002).

    Article  CAS  PubMed  Google Scholar 

  185. Cleveland, C. C. & Yavitt, J. B. Consumption of atmospheric isoprene in soil. Geophys. Res. Lett. 24, 2379–2382 (1997).

    Article  CAS  Google Scholar 

  186. Gray, C. M., Helmig, D. & Fierer, N. Bacteria and fungi associated with isoprene consumption in soil. Elem. Sci. Anthr. 3, (2015).

  187. Alvarez, L. A., Exton, D. A., Timmis, K. N., Suggett, D. J. & McGenity, T. J. Characterization of marine isoprene-degrading communities. Environ. Microbiol. 11, 3280–3291 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Carrión, O. et al. Gene probing reveals the widespread distribution, diversity and abundance of isoprene-degrading bacteria in the environment. Microbiome 6, 1–11 (2018).

    Article  Google Scholar 

  189. McGenity, T. J., Crombie, A. T. & Murrell, J. C. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth. ISME J. 12, 931–941 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. van Hylckama Vlieg, J. E. T., Leemhuis, H., Spelberg, J. H. L. & Janssen, D. B. Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. strain AD45. J. Bacteriol. 182, 1956–1963 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  191. El Khawand, M. et al. Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing. Environ. Microbiol. 18, 2743–2753 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Commane, R. et al. Seasonal fluxes of carbonyl sulfide in a midlatitude forest. Proc. Natl Acad. Sci. USA 112, 14162–14167 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kato, H., Saito, M., Nagahata, Y. & Katayama, Y. Degradation of ambient carbonyl sulfide by Mycobacterium spp. in soil. Microbiology 154, 249–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Nadalig, T., Greule, M., Bringel, F., Keppler, F. & Vuilleumier, S. Probing the diversity of chloromethane-degrading bacteria by comparative genomics and isotopic fractionation. Front. Microbiol. 5, 523 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Greening, C. & Maier, R. J. Atmospheric H2 fuels plant–microbe interactions. Environ. Microbiol. 18, 2289–2291 (2016).

    Article  PubMed  Google Scholar 

  196. Olson, J. W. & Maier, R. J. Molecular hydrogen as an energy source for Helicobacter pylori. Science 298, 1788–90 (2002). This work is the first report of the importance of reduced trace gases in pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  197. Maier, L. et al. Microbiota-derived hydrogen fuels Salmonella Typhimurium invasion of the gut ecosystem. Cell Host Microbe 14, 641–651 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Shiloh, M. U., Manzanillo, P. & Cox, J. S. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe 3, 323–330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Park, S. W. et al. Growth of mycobacteria on carbon monoxide and methanol. J. Bacteriol. 185, 142–147 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work described in this Review was supported by research grants from the Australian Research Council (DE170100310, DP180101762, DP200103074) and National Health & Medical Research Council (APP1178715). The authors were supported by National Health & Medical Research Council Emerging Leader Fellowships (APP1178715 to C.G.; APP1197376 to R.G.). The authors thank G. Berggren, D. Fox and K. Bayly for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Chris Greening or Rhys Grinter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Philippe Constant, Steffen Kolb and Huub Op den Camp for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Aerobic respiration

A process in which cells generate ATP through the oxidation of organic or inorganic compounds with oxygen (O2) as the terminal electron acceptor.

Primary production

The creation of new organic matter by fixing inorganic carbon (typically carbon dioxide (CO2)) using solar energy (photosynthesis) or chemical energy (chemosynthesis).

Trace gases

Gases that are in low concentrations in the atmosphere or other environments; in the atmosphere, this includes all gases other than nitrogen (N2), oxygen (O2) and argon.

Anthropogenic emissions

Gases produced and released into the atmosphere due to human activities, for example combusting fossil fuels and rearing ruminant livestock.

High-affinity enzymes

Enzymes capable of oxidizing low concentrations of substrates; enzymes with a high affinity for hydrogen (H2) or carbon monoxide (CO) (Km app < 150 nM), typically support long-term survival.

Carbon fixation

A biochemical process by which inorganic carbon (typically carbon dioxide (CO2)) is converted into organic compounds by chemosynthetic or photosynthetic organisms.

Biogeochemical cycling

A process by which chemical elements and compounds are cycled globally through a combination of biotic and abiotic processes, including those driven by anthropogenic activities.

Methane monooxygenases

Enzymes that use oxygen (O2) to convert methane (CH4) into methanol; subdivided into two unrelated families, the copper-dependent membrane-bound (particulate) methane monooxygenases (pMMOs) and iron-dependent soluble methane monooxygenases (sMMOs).

Hydrogenotrophs

Bacteria and archaea that grow chemolithoautotrophically by using hydrogen (H2) and carbon dioxide (CO2) as their sole energy, electron and carbon sources.

Carboxydotrophs

Bacteria that can grow chemolithoautotrophically by using carbon monoxide (CO) as the sole energy, electron and carbon source.

Methanotrophs

Bacteria and archaea that grow using methane (CH4) as their sole source of energy, electrons and, often, carbon.

Mixotrophic

Describes organisms that simultaneously use multiple nutritional strategies (for example, oxidation of both organic and inorganic energy sources) for growth or survival.

Organoheterotrophic

Organisms that grow by using organic compounds (for example, sugars) as their energy and carbon sources.

Metalloenzymes

Enzymes containing metal cofactors, which are directly bound to the protein.

Overpotential

The additional energy required over the energy that is thermodynamically predicted for a redox reaction to occur; this can depend on the activation energy of the reaction.

Electron donors

Molecules that donate electrons to another molecule during a redox reaction, for example NADH during organotrophic growth or hydrogen (H2) during lithotrophic growth.

Hydrogenase

A metalloenzyme that reversibly cleaves hydrogen (H2) into electrons and protons; they belong to three different classes, [NiFe]-hydrogenases, [FeFe]-hydrogenases and [Fe]-hydrogenases, which are variably distributed among bacteria, archaea and unicellular eukaryotes.

Carbon monoxide dehydrogenase

An enzyme that catalyses the reversible oxidation of carbon monoxide (CO) with water to carbon dioxide (CO2), two electrons and two protons; two unrelated enzymes families mediate this process, a molybdenum–copper enzyme found in aerobes and a nickel–iron enzyme found in anaerobes.

K m app

The apparent Michaelis constant of a reaction (that is, the concentration of a given substrate that catalyses the associated reaction at half the maximum rate), as observed in whole cells or environmental samples rather than purified enzymes.

Oxygen-insensitive hydrogenase

[NiFe]-hydrogenase that is not inhibited by oxygen (O2) and, hence, can function in oxic environments, including ambient conditions.

Oxygen-sensitive hydrogenase

[NiFe]-hydrogenase that is rapidly inhibited by oxygen (O2) and, hence, can only function in anoxic environments.

Dormant

A state in which an organism temporarily stops growth, replication and movement, resulting in reduced energy expenditure and increased long-term survival.

Maintenance

Energy-requiring processes required by a microorganism to maintain viability, for example macromolecular repair, cell wall maintenance, membrane potential conservation and extracellular sensing.

Copiotrophic

Relates to environments in which resources such as organic carbon are abundant, for example due to high primary production; also used to describe microorganisms adapted to such environments.

Catabolite repression

A system of genetic regulation in which bacteria repress other metabolic genes in the presence of their preferred carbon and energy source.

Response regulators

In two-component systems, DNA-binding proteins that receive signals from upstream sensory histidine kinases and, in turn, regulate transcription of a subset of genes.

Histidine kinases

In two-component systems, transmembrane enzymes that sense external signals (for example, oxygen (O2) for DosT) and activate downstream cytosolic response regulators (for example, DosR) through phosphorylation reactions.

Fermentative

Carrying out the partial oxidation of organic carbon, yielding ATP via substrate-level phosphorylation and end products (for example, hydrogen (H2), acetate, ethanol) that are excreted.

Cell-specific rates

The speeds at which a reaction occurs within single cells; in the case of trace gas oxidation, this can be estimated by dividing the rate at which a given sample consumes a trace gas by the number of microbial cells present that can consume it.

Lithoautotrophs

Bacteria and archaea that grow by using inorganic compounds (for example, hydrogen (H2) or carbon monoxide (CO)) to generate ATP and fix carbon dioxide (CO2) into biomass.

Carbon use efficiency

The proportion of organic carbon consumed by microorganisms used to generate biomass; this reflects the balance between anabolic and catabolic processes.

Anabolism

The biosynthesis of more complex compounds from simple chemical building blocks, typically in an ATP-dependent process.

Catabolism

The biological breakdown of compounds to yield energy to support cellular processes, typically resulting in the synthesis of ATP.

Reverse electron flow

A process in which an electron donor (for example, quinol) with a higher redox potential transfers electrons to an acceptor with lower potential (for example, NAD+) by consuming the proton-motive force to balance the energy deficit; this process is required for reductant generation and carbon fixation for many bacteria grown on high-potential energy sources, for example nitrite.

Respirometry

A general term for techniques that measure and interpret respiration rates in organisms, for example the measurement of microbial oxygen (O2) consumption using an O2 electrode.

Menaquinone

A lipid-soluble molecule produced by most bacteria and archaea that relays electrons from electron donors (for example, hydrogen (H2) via hydrogenases) to electron acceptors (for example, oxygen (O2) via cytochrome oxidases) in respiratory chains.

Membrane potential

The difference in electric potential between the interior and the exterior of a biological cell.

Electron acceptor

A molecule that receives electrons from another molecule during a redox reaction, for example oxygen (O2) during aerobic respiration or NO3 during anaerobic respiration.

Cytochrome bcc-aa 3 oxidase complex

A proton-translocating respiratory supercomplex, consisting of a cytochrome bcc-type quinone–cytochrome c oxidoreductase and a cytochrome aa3 oxidase, found in Actinobacteria.

Cytochrome bd oxidase

A terminal respiratory oxidase synthesized by many bacteria; compared with the cytochrome aa3 oxidase, it does not translocate protons resulting in lower energy yield but has a higher affinity for oxygen (O2) and resistance to respiratory chain inhibitors (including cyanide (CN), carbon monoxide (CO), nitric oxide (NO)).

Threshold

The lowest concentration of a substrate that can be used by an enzyme.

Proton-motive force

A proton gradient formed by electron transport chains that promotes proton flow and ATP synthesis by the F1Fo-ATP synthase; this is formed from a combination of concentration gradient (that is, pH difference) and an electrical gradient (that is, membrane potential).

Metabolic water

Water produced by cells during metabolic processes, largely from the reduction of oxygen (O2) during aerobic respiration.

Protomers

The smallest structural units of an oligomeric protein.

Oxygen-tolerant hydrogenases

[NiFe]-hydrogenases that are inhibited by oxygen (O2), but can readily reductively remove the bound O2 species and reactivate, and hence can function in micro-oxic environments.

Low-affinity enzymes

Enzymes capable of oxidizing high concentrations of a substrate; enzymes with a low affinity for hydrogen (H2), carbon monoxide (CO) or methane (CH4) (Km app > 500 nM), typically support lithoautotrophic growth.

Rare biosphere

A large number of microbial taxa that are present in very low numbers (<0.05% relative abundance) in most environments.

Metagenomic

Relating to DNA extracted and sequenced from a mixed community rather than a single population.

Metagenome-assembled genomes

Genomes of single taxa derived from the assembly and binning of one or more binned metagenomes.

Richness

The number of different taxa (species) present in a given ecosystem.

Turnover

In ecology, the number of different taxa (species) that are replaced in an ecosystem over different spatial or temporal scales.

Chemosynthetic

The fixation of carbon dioxide (CO2) into biomass using energy derived from chemical sources (for example, hydrogen (H2), carbon monoxide (CO)) by microorganisms.

RuBisCO

(Ribulose 1,5-bisphosphate carboxylase/oxygenase). An abundant enzyme that catalyses carbon dioxide (CO2) fixation through the Calvin–Benson cycle in chemosynthetic and photosynthetic organisms.

Biphasic kinetics

Biogeochemical processes in which two distinct kinetic activities simultaneously occur (for example, high-affinity and low-affinity trace gas oxidation in soils); typically mediated by different organisms and enzymes.

Oligotrophic

Relates to environments in which resources such as organic carbon are scarce, for example due to low primary production; also used to describe microorganisms adapted to such environments.

Photoautotrophs

Organisms that grow using light energy and electron donors (for example, water) to fix carbon dioxide (CO2) into biomass, including Cyanobacteria, algae and plants.

Primary succession

The colonization of a newly formed environment, for example formed from lava flow or glacial retreat, for the first time.

Exoplanets

Planets found outside the solar system.

Planetary protection

A guiding principle in the design of an interplanetary mission, aiming to prevent biological contamination of both the target celestial body and the Earth.

Abiogenesis

The emergence of biological life from chemical building blocks, estimated to have occurred ~3.5 billion years ago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greening, C., Grinter, R. Microbial oxidation of atmospheric trace gases. Nat Rev Microbiol 20, 513–528 (2022). https://doi.org/10.1038/s41579-022-00724-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00724-x

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology