Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Carbohydrate-active enzymes (CAZymes) in the gut microbiome

Abstract

The 1013–1014 microorganisms present in the human gut (collectively known as the human gut microbiota) dedicate substantial percentages of their genomes to the degradation and uptake of carbohydrates, indicating the importance of this class of molecules. Carbohydrates function not only as a carbon source for these bacteria but also as a means of attachment to the host, and a barrier to infection of the host. In this Review, we focus on the diversity of carbohydrate-active enzymes (CAZymes), how gut microorganisms use them for carbohydrate degradation, the different chemical mechanisms of these CAZymes and the roles that these microorganisms and their CAZymes have in human health and disease. We also highlight examples of how enzymes from this treasure trove have been used in manipulation of the microbiota for improved health and treatment of disease, in remodelling the glycans on biopharmaceuticals and in the potential production of universal O-type donor blood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the CAZyme classes and associated modules.
Fig. 2: Mechanism of α-mannan digestion by B. thetaiotaomicron.
Fig. 3: Host glycan degradation by Bacteroidetes.
Fig. 4: Glucuronidation of small molecules and reactivation by bacterial GUSs.
Fig. 5: Applications of enzymes from the gut microbiome.

Similar content being viewed by others

References

  1. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martens, E. C., Kelly, A. G., Tauzin, A. S. & Brumer, H. The devil lies in the details: how variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes. J. Mol. Biol. 426, 3851–3865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Johnson, K. V. A. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Proctor, L. What’s next for the human microbiome? Nature 569, 623–625 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11, 497–504 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Riley, L. W., Raphael, E. & Faerstein, E. Obesity in the United States — dysbiosis from exposure to low-dose antibiotics? Front. Public. Heal. 1, 69 (2013).

    Google Scholar 

  9. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Price, K., Lewis, J., Wyatt, G. & Fenwick, G. Flatulence — causes, relation to diet and remedies. Nahrung 32, 609–626 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Lombard, V., Ramulu, H. G., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Zechel, D. L. & Withers, S. G. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc. Chem. Res. 33, 11–18 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Jongkees, S. A. K. & Withers, S. G. Unusual enzymatic glycoside cleavage mechanisms. Acc. Chem. Res. 47, 226–235 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Armendáriz-Ruiz, M., Rodríguez-González, J. A., Camacho-Ruíz, R. M. & Mateos-Díaz, J. C. in Lipases and Phospholipases: Methods and Protocols (ed. Sandoval, G.) 39–68 (Humana Press, 2018).

  15. Agostoni, M., Hangasky, J. A. & Marletta, M. A. Physiological and molecular understanding of bacterial polysaccharide monooxygenases. Microbiol. Mol. Biol. Rev. 81, e00015–e00017 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vaaje-Kolstad, G. et al. Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme. J. Mol. Biol. 416, 239–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Boraston, A. B., Bolam, D. N., Gilbert, H. J. & Davies, G. J. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382, 769–781 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davies, G. J., Gloster, T. M. & Henrissat, B. Recent structural insights into the expanding world of carbohydrate-active enzymes. Curr. Opin. Struct. Biol. 15, 637–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Koshland, D. E. Stereochemistry and the mechanism of enzymatic reactions. Biol. Rev. 28, 416–436 (1953).

    Article  CAS  Google Scholar 

  21. Berlemont, R. & Martiny, A. C. Glycoside hydrolases across environmental microbial communities. PLoS Comput. Biol. 12, e1005300 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Danby, P. M. & Withers, S. G. Advances in enzymatic glycoside synthesis. ACS Chem. Biol. 11, 1784–1794 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Nishimoto, M. & Kitaoka, M. Practical preparation of lacto-N-biose I, a candidate for the Bifidus factor in human milk. Biosci. Biotechnol. Biochem. 71, 2101–2104 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Q. P. Y. P. et al. Bacterial glycosidases for the production of universal red blood cells. Nat. Biotechnol. 25, 454–464 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Rahfeld, P. et al. An enzymatic pathway in the human gut microbiome that converts A to universal O type blood. Nat. Microbiol. 4, 1475–1485 (2019). This paper highlights how functional metagenomics can be applied for discovery of enzymes with therapeutic potential from within the gut microbiome.

    Article  CAS  PubMed  Google Scholar 

  26. Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2017).

    Article  CAS  Google Scholar 

  27. Sonnenburg, E. D. & Sonnenburg, J. L. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 17, 383–390 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freter, R., Brickner, H., Botney, M., Cleven, D. & Aranki, A. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect. Immun. 39, 676–685 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tap, J. et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ. Microbiol. 17, 4954–4964 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Makki, K., Deehan, E. C., Walter, J. & Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell 175, 962–972.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–805 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. De Filippis, F., Pellegrini, N., Laghi, L., Gobbetti, M. & Ercolini, D. Unusual sub-genus associations of faecal Prevotella and Bacteroides with specific dietary patterns. Microbiome 4, 57 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zaramela, L. S. et al. Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates. Nat. Microbiol. 4, 2082–2089 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Leeming, E. R., Johnson, A. J., Spector, T. D. & Le Roy, C. I. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients 11, 2862 (2019).

    Article  PubMed Central  Google Scholar 

  39. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hehemann, J.-H., Kelly, A. G., Pudlo, N. A., Martens, E. C. & Boraston, A. B. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc. Natl Acad. Sci. USA 109, 19786–19791 (2012). This paper provides key insights into how new capabilities for carbohydrate degradation can be obtained by gut bacteria via horizontal gene transfer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pluvinage, B. et al. Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat. Commun. 9, 1043 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Cerqueira, F. M., Photenhauer, A. L., Pollet, R. M., Brown, H. A. & Koropatkin, N. M. Starch digestion by gut bacteria: crowdsourcing for carbs. Trends Microbiol. 28, 95–108 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Anderson, K. L. & Salyers, A. A. Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes. J. Bacteriol. 171, 3192–3198 (1989). This seminal work describes the first characterization of Sus from B. thetaiotaomicron.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Anderson, K. L. & Salyers, A. A. Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron. J. Bacteriol. 171, 3199–3204 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown, H. A. & Koropatkin, N. M. Host glycan utilization within the Bacteroidetes Sus-like paradigm. Glycobiology 31, 697–706 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Cartmell, A. et al. A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nat. Microbiol. 3, 1314–1326 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sobala, L. F. et al. An epoxide intermediate in glycosidase catalysis. ACS Cent. Sci. 6, 760–770 (2020). This study provides key experimental evidence for a substrate-assisted mechanism proceeding through a 1,2-epoxide intermediate by GH99 family members, one of the most recently elucidated glycoside hydrolase mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Valguarnera, E., Scott, N. E., Azimzadeh, P. & Feldman, M. F. Surface exposure and packing of lipoproteins into outer membrane vesicles are coupled processes in Bacteroides. mSphere 3, e00559-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Briggs, J. A., Grondin, J. M. & Brumer, H. Communal living: glycan utilization by the human gut microbiota. Environ. Microbiol. 23, 15–35 (2021).

    Article  PubMed  Google Scholar 

  55. Ndeh, D. et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544, 65–70 (2017). This tour de force offers insights into the coordination of carbohydrate degradation by gut bacteria, identifies several new CAZy families and revises the structure of RG-II (one of the most complex dietary glycans known).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tamura, K. et al. Molecular mechanism by which prominent human gut bacteroidetes utilize mixed-linkage β-glucans, major health-promoting cereal polysaccharides. Cell Rep. 21, 417–430 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lapébie, P., Lombard, V., Drula, E., Terrapon, N. & Henrissat, B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat. Commun. 10, 2043 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Laine, R. A. Invited commentary: A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10 structures for a reducing hexasaccharide: the isomer barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4, 759–767 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Terrapon, N. et al. PULDB: the expanded database of polysaccharide utilization loci. Nucleic Acids Res. 46, D677–D683 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Despres, J. et al. Xylan degradation by the human gut Bacteroides xylanisolvens XB1AT involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics 17, 326 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Corfield, A. P. The interaction of the gut microbiota with the mucus barrier in health and disease in human. Microorganisms 6, 78 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  64. Martens, E. C., Neumann, M. & Desai, M. S. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat. Rev. Microbiol. 16, 457–470 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Ficko-Blean, E. & Boraston, A. B. Insights into the recognition of the human glycome by microbial carbohydrate-binding modules. Curr. Opin. Struct. Biol. 22, 570–577 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Sonnenburg, J. L., Angenent, L. T. & Gordon, J. I. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat. Immunol. 5, 569–573 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Briliūtė, J. et al. Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat. Microbiol. 4, 1571–1581 (2019). This paper provides insights into how B. thetaiotaomicron utilizes extensive enzymatic machinery to carry out the degradation of structural variants of complex N-glycans.

    Article  PubMed  CAS  Google Scholar 

  69. Rahfeld, P. et al. Prospecting for microbial α-N-acetylgalactosaminidases yields a new class of GH31 O-glycanase. J. Biol. Chem. 294, 16400–16415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pudlo, N. A. et al. Symbiotic human gut bacteria with variable metabolic priorities for host mucosal glycans. MBio 6, e01282–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Derrien, M., Belzer, C. & de Vos, W. M. Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 106, 171–181 (2017).

    Article  PubMed  Google Scholar 

  73. Hooper, L. V., Xu, J., Falk, P. G., Midtvedt, T. & Gordon, J. I. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl Acad. Sci. USA 96, 9833–9838 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bry, L., Falk, P. G., Midtvedt, T. & Gordon, J. A model of host–microbial interactions in an open mammalian ecosystem. Science 273, 1380–1383 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Benjdia, A. & Berteau, O. Sulfatases and radical SAM enzymes: emerging themes in glycosaminoglycan metabolism and the human microbiota. Biochem. Soc. Trans. 44, 109–115 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Varki, A. Nothing in glycobiology makes sense, except in the light of evolution. Cell 126, 841–845 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Luis, A. S. et al. A single sulfatase is required to access colonic mucin by a gut bacterium. Nature 598, 332–337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Crouch, L. I. et al. Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown. Nat. Commun. 11, 4017 (2020). This work first identifies surface-localized endolytic glycoside hydrolases acting on O-glycans in Bacteroides (as had been observed in other PULs but not against O-glycans) and as such provided insights into degradation of mucosal glycans by gut bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Noach, I. et al. Recognition of protein-linked glycans as a determinant of peptidase activity. Proc. Natl Acad. Sci. USA 114, E679–E688 (2017). This insightful work first illustrated the molecular basis of glycoprotease activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shon, D. J. et al. An enzymatic toolkit for selective proteolysis, detection, and visualization of mucin-domain glycoproteins. Proc. Natl Acad. Sci. USA 117, 21299–21307 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Haurat, M. F. et al. The glycoprotease CpaA secreted by medically relevant Acinetobacter species targets multiple O-linked host glycoproteins. mBio 11, e02033–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Malaker, S. A. et al. The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proc. Natl Acad. Sci. USA 116, 7278–7287 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pluvinage, B. et al. Architecturally complex O-glycopeptidases are customized for mucin recognition and hydrolysis. Proc. Natl Acad. Sci. USA 118, e2019220118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hughes, G. W. et al. The MUC5B mucin polymer is dominated by repeating structural motifs and its topology is regulated by calcium and pH. Sci. Rep. 9, 17350 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Renzi, F. et al. Glycan-foraging systems reveal the adaptation of Capnocytophaga canimorsus to the dog mouth. mBio 6, e02507–e02514 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Fairbanks, A. J. The ENGases: versatile biocatalysts for the production of homogeneous N-linked glycopeptides and glycoproteins. Chem. Soc. Rev. 46, 5128–5146 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Knapp, S. et al. NAG-Thiazoline, an N-acetyl-β-hexosaminidase inhibitor that implicates acetamido participation. J. Am. Chem. Soc. 118, 6804–6805 (1996).

    Article  CAS  Google Scholar 

  89. Vocadlo, D. J. & Withers, S. G. Detailed comparative analysis of the catalytic mechanisms of β-N-acetylglucosaminidases from families 3 and 20 of glycoside hydrolases. Biochemistry 44, 12809–12818 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Trastoy, B. et al. Structural basis of mammalian high-mannose N-glycan processing by human gut Bacteroides. Nat. Commun. 11, 899 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nihira, T. et al. Discovery of β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase involved in the metabolism of N-glycans. J. Biol. Chem. 288, 27366–27374 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Higgins, M. A. et al. N-Glycan degradation pathways in gut- and soil-dwelling Actinobacteria share common core genes. ACS Chem. Biol. 16, 701–711 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Cordeiro, R. L. et al. N-Glycan utilization by Bifidobacterium gut symbionts involves a specialist β-mannosidase. J. Mol. Biol. 431, 732–747 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Cartmell, A. et al. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans. Proc. Natl Acad. Sci. USA 114, 7037–7042 (2017). This work illustrates how B. thetaiotaomicron tackles the degradation of host glycosaminoglycans with highly variable sulfation patterns, specifically heparin and heparan sulfate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lombard, V. et al. A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem. J. 432, 437–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Nakamichi, Y., Mikami, B., Murata, K. & Hashimoto, W. Crystal structure of a bacterial unsaturated glucuronyl hydrolase with specificity for heparin. J. Biol. Chem. 289, 4787–4797 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Raghavan, V., Lowe, E. C., Townsend, G. E., Bolam, D. N. & Groisman, E. A. Tuning transcription of nutrient utilization genes to catabolic rate promotes growth in a gut bacterium. Mol. Microbiol. 93, 1010–1025 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Ndeh, D. et al. Metabolism of multiple glycosaminoglycans by Bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus. Nat. Commun. 11, 646 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pellock, S. J. & Redinbo, M. R. Glucuronides in the gut: sugar-driven symbioses between microbe and host. J. Biol. Chem. 292, 8569–8576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bolleddula, J. & Chowdhury, S. K. Carbon–carbon bond cleavage and formation reactions in drug metabolism and the role of metabolic enzymes. Drug Metab. Rev. 47, 534–557 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kong, R. et al. Old drug new use — amoxapine and its metabolites as potent bacterial β-glucuronidase inhibitors for alleviating cancer drug toxicity. Clin. Cancer Res. 20, 3521–3530 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pollet, R. M. et al. An atlas of β-glucuronidases in the human intestinal microbiome. Structure 25, 967–977.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ervin, S. M. et al. Targeting regorafenib-induced toxicity through inhibition of gut microbial β-glucuronidases. ACS Chem. Biol. 14, 2737–2744 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Creekmore, B. C. et al. Mouse gut microbiome-encoded β-glucuronidases identified using metagenome analysis guided by protein structure. mSystems 4, e00452-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Pellock, S. J. et al. Gut microbial β-glucuronidase inhibition via catalytic cycle interception. ACS Cent. Sci. 4, 868–879 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013). This paper provides an excellent illustration of how pathogens exploit antibiotic-induced dysbiosis and intercept sugars left available by disrupted cross-feeding relationships for infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ganesh, B. P., Klopfleisch, R., Loh, G. & Blaut, M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella typhimurium-infected gnotobiotic mice. PLoS ONE 8, e74963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Collins, J. et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 553, 291–294 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Collins, J., Danhof, H. & Britton, R. A. The role of trehalose in the global spread of epidemic Clostridium difficile. Gut Microbes 10, 204–209 (2019).

    Article  PubMed  Google Scholar 

  112. Hobbs, J. K., Pluvinage, B. & Boraston, A. B. Glycan-metabolizing enzymes in microbe–host interactions: the Streptococcus pneumoniae paradigm. FEBS Lett. 592, 3865–3897 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Vahey, M. D. & Fletcher, D. A. Influenza A virus surface proteins are organized to help penetrate host mucus. eLife 8, e43764 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Etzold, S. & Juge, N. Structural insights into bacterial recognition of intestinal mucins. Curr. Opin. Struct. Biol. 28, 23–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Järvå, M. A. et al. Trefoil factors share a lectin activity that defines their role in mucus. Nat. Commun. 11, 2265 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Reeves, E. P. et al. Helicobacter pylori lipopolysaccharide interacts with TFF1 in a pH-dependent manner. Gastroenterology 135, 2043–2054.e2 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Ficko-Blean, E., Stubbs, K. A., Nemirovsky, O., Vocadlo, D. J. & Boraston, A. B. Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB. Proc. Natl Acad. Sci. USA 105, 6560–6565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Varki, A. Biological roles of glycans. Glycobiology 27, 3–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Bardoel, B. W. et al. Identification of an immunomodulating metalloprotease of Pseudomonas aeruginosa (IMPa). Cell. Microbiol. 14, 902–913 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Szabady, R. L., Lokuta, M. A., Walters, K. B., Huttenlocher, A. & Welch, R. A. Modulation of neutrophil function by a secreted mucinase of Escherichia coli O157H7. PLoS Pathog. 5, e1000320 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Allhorn, M., Olin, A. I., Nimmerjahn, F. & Collin, M. Human IgG/FcγR interactions are modulated by streptococcal IgG glycan hydrolysis. PLoS ONE 3, e1413 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Collin, M. et al. EndoS and SpeB from Streptococcus pyogenes inhibit immunoglobulin-mediated opsonophagocytosis. Infect. Immun. 70, 6646–6651 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cao, Y., Rocha, E. R. & Smith, C. J. Efficient utilization of complex N-linked glycans is a selective advantage for Bacteroides fragilis in extraintestinal infections. Proc. Natl Acad. Sci. USA 111, 12901–12906 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lindhout, T. et al. Site-specific enzymatic polysialylation of therapeutic proteins using bacterial enzymes. Proc. Natl Acad. Sci. USA 108, 7397–7402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Geissner, A. et al. 7-Fluorosialyl glycosides are hydrolysis resistant but readily assembled by sialyltransferases providing easy access to more metabolically stable glycoproteins. ACS Cent. Sci. 7, 345–354 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kightlinger, W., Warfel, K. F., DeLisa, M. P. & Jewett, M. C. Synthetic glycobiology: parts, systems, and applications. ACS Synth. Biol. 9, 1534–1562 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Napiórkowska, M., Boilevin, J., Darbre, T., Reymond, J.-L. & Locher, K. P. Structure of bacterial oligosaccharyltransferase PglB bound to a reactive LLO and an inhibitory peptide. Sci. Rep. 8, 16297 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Wacker, M. et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Feldman, M. F. et al. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl Acad. Sci. USA 102, 3016–3021 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stark, J. C. et al. On-demand biomanufacturing of protective conjugate vaccines. Sci. Adv. 7, eabe9444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Valderrama-Rincon, J. D. et al. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat. Chem. Biol. 8, 434–436 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Natarajan, A. et al. Engineering orthogonal human O-linked glycoprotein biosynthesis in bacteria. Nat. Chem. Biol. 16, 1062–1070 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Du, T. et al. A bacterial expression platform for production of therapeutic proteins containing human-like O-linked glycans. Cell Chem. Biol. 26, 203–212.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Bindels, L. B., Delzenne, N. M., Cani, P. D. & Walter, J. Opinion: Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 12, 303–310 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Delannoy-Bruno, O. et al. Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 595, 91–95 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fushinobu, S. Unique sugar metabolic pathways of Bifidobacteria. Biosci. Biotechnol. Biochem. 74, 2374–2384 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Charbonneau, M. R. et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164, 859–871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xiao, J. Z. et al. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl. Environ. Microbiol. 76, 54–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Bych, K. et al. Production of HMOs using microbial hosts — from cell engineering to large scale production. Curr. Opin. Biotechnol. 56, 130–137 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Mackenzie, L. F., Wang, Q., Warren, R. A. J. & Withers, S. G. Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J. Am. Chem. Soc. 120, 5583–5584 (1998).

    Article  CAS  Google Scholar 

  141. Schmölzer, K., Weingarten, M., Baldenius, K. & Nidetzky, B. Glycosynthase principle transformed into biocatalytic process technology: lacto-N-triose II production with engineered exo-hexosaminidase. ACS Catal. 9, 5503–5514 (2019).

    Article  CAS  Google Scholar 

  142. Schmölzer, K., Weingarten, M., Baldenius, K. & Nidetzky, B. Lacto-N-tetraose synthesis by wild-type and glycosynthase variants of the β-N-hexosaminidase from Bifidobacterium bifidum. Org. Biomol. Chem. 17, 5661–5665 (2019).

    Article  PubMed  Google Scholar 

  143. Ruzic, L., Bolivar, J. M. & Nidetzky, B. Glycosynthase reaction meets the flow: continuous synthesis of lacto-N-triose II by engineered β-hexosaminidase immobilized on solid support. Biotechnol. Bioeng. 117, 1597–1602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Noguchi, M., Tanaka, T., Gyakushi, H., Kobayashi, A. & Shoda, S. I. Efficient synthesis of sugar oxazolines from unprotected N-acetyl-2-amino sugars by using chloroformamidinium reagent in water. J. Org. Chem. 74, 2210–2212 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Sjögren, J., Lood, R. & Nägeli, A. On enzymatic remodeling of IgG glycosylation; unique tools with broad applications. Glycobiology 30, 254–267 (2020).

    Article  PubMed  CAS  Google Scholar 

  146. Li, C. et al. Site-selective chemoenzymatic modification on the core fucose of an antibody enhances its Fcγ receptor affinity and ADCC activity. J. Am. Chem. Soc. 143, 7828–7838 (2021). This recent example illustrates how modifications to the core fucose within N-glycans in the Fc domain can lead to desirable therapeutic properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fairbanks, A. J. Chemoenzymatic synthesis of glycoproteins. Curr. Opin. Chem. Biol. 53, 9–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Parsons, T. B. et al. Optimal synthetic glycosylation of a therapeutic antibody. Angew. Chem. Int. Ed. 55, 2361–2367 (2016).

    Article  CAS  Google Scholar 

  149. Liu, C.-P. et al. Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation. Proc. Natl Acad. Sci. USA 115, 720–725 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Huang, W., Giddens, J., Fan, S. Q., Toonstra, C. & Wang, L. X. Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J. Am. Chem. Soc. 134, 12308–12318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Giddens, J. P., Lomino, J. V., DiLillo, D. J., Ravetch, J. V. & Wang, L. X. Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody. Proc. Natl Acad. Sci. USA 115, 12023–12027 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tang, F. et al. Selective N-glycan editing on living cell surfaces to probe glycoconjugate function. Nat. Chem. Biol. 16, 766–775 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Lin, L. et al. Sequential glycosylation of proteins with substrate-specific N-glycosyltransferases. ACS Cent. Sci. 6, 144–154 (2020). This work brings the field closest to selective introduction of specific N-glycan structures to different sites within a protein — potentially enabling more thorough interrogation of the roles of different glycoforms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Schwarz, F. et al. A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation. Nat. Chem. Biol. 6, 264–266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Xu, Y. et al. A novel enzymatic method for synthesis of glycopeptides carrying natural eukaryotic N-glycans. Chem. Commun. 53, 9075–9077 (2017).

    Article  CAS  Google Scholar 

  156. Wardman, J. F. et al. Discovery and development of promiscuous O-glycan hydrolases for removal of intact sialyl T-antigen. ACS Chem. Biol. 16, 2004–2015 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Landsteiner, K. & Wiener, A. S. An agglutinable factor in human blood recognized by immune sera for rhesus blood. Exp. Biol. Med. 43, 223–223 (1940).

    Article  CAS  Google Scholar 

  158. Daniels, G. & Reid, M. E. Blood groups: the past 50 years. Transfusion 50, 281–289 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Selleng, K. et al. Emergency transfusion of patients with unknown blood type with blood group O rhesus D positive red blood cell concentrates: a prospective, single-centre, observational study. Lancet Haematol. 4, e218–e224 (2017).

    Article  PubMed  Google Scholar 

  160. Goldstein, J., Siviglia, G., Hurst, R., Lenny, L. & Reich, L. Group B erythrocytes enzymatically converted to group O survive normally in A, B, and O individuals. Science 215, 168–170 (1982).

    Article  CAS  PubMed  Google Scholar 

  161. Yip, V. L. Y. et al. An unusual mechanism of glycoside hydrolysis involving redox and elimination steps by a family 4 β-glycosidase from Thermotoga maritima. J. Am. Chem. Soc. 126, 8354–8355 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Rossez, Y. et al. Almost all human gastric mucin O-glycans harbor blood group A, B or H antigens and are potential binding sites for Helicobacter pylori. Glycobiology 22, 1193–1206 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Tauzin, A. S. et al. Investigating host–microbiome interactions by droplet based microfluidics. Microbiome 8, 141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Colin, P.-Y. et al. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun. 6, 10008 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Armstrong, Z. et al. High-throughput recovery and characterization of metagenome-derived glycoside hydrolase-containing clones as a resource for biocatalyst development. mSystems 4, e00082-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wolfenden, R., Lu, X. & Young, G. Spontaneous hydrolysis of glycosides. J. Am. Chem. Soc. 120, 6814–6815 (1998).

    Article  CAS  Google Scholar 

  167. McCarter, J. D. & Stephen Withers, G. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 4, 885–892 (1994).

    Article  CAS  PubMed  Google Scholar 

  168. Davies, G. et al. Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes. Glycobiology 28, 3–8 (2018).

    Article  CAS  Google Scholar 

  169. Grondin, J. M., Tamura, K., Déjean, G., Abbott, D. W. & Brumer, H. Polysaccharide utilization loci: fueling microbial communities. J. Bacteriol. 199, e00860–e00816 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Glenwright, A. J. et al. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature 541, 407–411 (2017). This paper reports the first crystal structure of SusCD complexes from B. thetaiotaomicron and provides evidence for a ‘pedal bin’ mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by funding from the Canadian Institutes of Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada (NSERC) during the writing of this Review.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Stephen G. Withers.

Ethics declarations

Competing interests

P.R. and S.G.W. are co-founders of a company to develop enzymes for conversion of blood type. The research underlying that is mentioned in this Review. J.F.W. and R.K.B. declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks David Bolam, Bernard Henrissat and Nicole Koropatkin for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CAZy database: http://www.cazy.org/

CAZypedia: https://www.cazypedia.org

Glossary

Short-chain fatty acids

Fatty acids containing up to six carbon atoms (predominantly acetate, propionate and butyrate in the human gut) that can be produced by gut microorganisms during fermentation.

Cross-feeding

A phenomenon in which microorganisms utilize metabolites and degradation products derived from other microorganisms.

Outer membrane vesicles

Vesicles with distinct protein cargo that are derived from the outer membrane of Gram-negative bacteria and are released into the environment.

E1cb mechanism

A two-step chemical reaction in which an acidic proton is abstracted by a base to form a stabilized carbanion, followed by elimination of a leaving group as the carbanion lone pair moves to form a π-bond with the adjacent atoms.

Xenobiotics

Molecules that are not produced or expected to be found within an organism (for example, drugs).

Endobiotics

Molecules that are produced or are expected to be found within an organism (for example, hormones).

Antibody-dependent cellular toxicity

An immune response in which binding of antibodies to a cell surface results in the lysis of that cell by effector cells of the immune system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wardman, J.F., Bains, R.K., Rahfeld, P. et al. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol 20, 542–556 (2022). https://doi.org/10.1038/s41579-022-00712-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00712-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing