Abstract
Several promising strategies based on combining or cycling different antibiotics have been proposed to increase efficacy and counteract resistance evolution, but we still lack a deep understanding of the physiological responses and genetic mechanisms that underlie antibiotic interactions and the clinical applicability of these strategies. In antibiotic-exposed bacteria, the combined effects of physiological stress responses and emerging resistance mutations (occurring at different time scales) generate complex and often unpredictable dynamics. In this Review, we present our current understanding of bacterial cell physiology and genetics of responses to antibiotics. We emphasize recently discovered mechanisms of synergistic and antagonistic drug interactions, hysteresis in temporal interactions between antibiotics that arise from microbial physiology and interactions between antibiotics and resistance mutations that can cause collateral sensitivity or cross-resistance. We discuss possible connections between the different phenomena and indicate relevant research directions. A better and more unified understanding of drug and genetic interactions is likely to advance antibiotic therapy.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Walsh, C. Antibiotics: Actions, Origins, Resistance (ASM, 2003).
Baquero, F. & Levin, B. R. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat. Rev. Microbiol. 19, 123–132 (2021).
Kohanski, M. A., Dwyer, D. J. & Collins, J. J. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8, 423–435 (2010).
Lopatkin, A. J. et al. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science 371, eaba0862 (2021).
Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102 (2010). With clever experiments and derived mathematical relations, this hallmark paper describes how cellular growth and regulation of drug target abundance jointly determine the effects of ribosome-targeting antibiotics on gene expression.
Palmer, A. C. & Kishony, R. Opposing effects of target overexpression reveal drug mechanisms. Nat. Commun. 5, 4296 (2014).
Bloemberg, G. V. et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N. Engl. J. Med. 373, 1986–1988 (2015).
Gullberg, E. et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 7, e1002158 (2011).
Tueffers, L. et al. Pseudomonas aeruginosa populations in the cystic fibrosis lung lose susceptibility to newly applied β-lactams within 3 days. J. Antimicrob. Chemother. 74, 2916–2925 (2019).
Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016).
Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351, aad3292 (2016).
Band, V. I. et al. Antibiotic combinations that exploit heteroresistance to multiple drugs effectively control infection. Nat. Microbiol. 4, 1627–1635 (2019).
Tyers, M. & Wright, G. D. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 17, 141 (2019).
Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a response surface perspective. Pharmacol. Rev. 47, 331–385 (1995). This paper provides a thorough discussion of additivity models.
Loewe, S. Die quantitativen probleme der pharmakologie [German]. Ergeb. Physiol. 27, 47–187 (1928).
Bliss, C. I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26, 585–615 (1939).
Tan, C. et al. The inoculum effect and band-pass bacterial response to periodic antibiotic treatment. Mol. Syst. Biol. 8, 617 (2012).
Rezzoagli, C., Archetti, M., Mignot, I., Baumgartner, M. & Kümmerli, R. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS Biol. 18, e3000805 (2020).
Tekin, E., Savage, V. M. & Yeh, P. J. Measuring higher-order drug interactions: a review of recent approaches. Curr. Opin. Syst. Biol. 4, 16–23 (2017).
Brochado, A. R. et al. Species-specific activity of antibacterial drug combinations. Nature 559, 259–263 (2018). This work presents a systematic analysis of pairwise interactions between 79 antibacterial compounds in 3 pathogenic bacteria that showcases species-level differences in synergy.
Harvey, R. J. Interaction of two inhibitors which act on different enzymes of a metabolic pathway. J. Theor. Biol. 74, 411–437 (1978).
Hitchings, G. H. Folate antagonists as antibacterial and antiprotozoal agents. Ann. NY Acad. Sci. 186, 444–451 (1971).
Minato, Y. et al. Mutual potentiation drives synergy between trimethoprim and sulfamethoxazole. Nat. Commun. 9, 1003 (2018).
Nichols, R. J. et al. Phenotypic landscape of a bacterial cell. Cell 144, 143–156 (2011).
Yonath, A. Antibiotics targeting ribosomes: resistance, selectivity, synergism and cellular regulation. Annu. Rev. Biochem. 74, 649–679 (2005).
Belousoff, M. J. et al. Crystal structure of the synergistic antibiotic pair, lankamycin and lankacidin, in complex with the large ribosomal subunit. Proc. Natl Acad. Sci. USA 108, 2717–2722 (2011).
Kavčič, B., Tkačik, G. & Bollenbach, T. Mechanisms of drug interactions between translation-inhibiting antibiotics. Nat. Commun. 11, 4013 (2020). By combining experiments and mathematical modelling, this paper significantly advances the mechanistic understanding of drug interactions between ribosome-targeting antibiotics.
Chait, R., Craney, A. & Kishony, R. Antibiotic interactions that select against resistance. Nature 446, 668–671 (2007).
Yeh, P., Tschumi, A. I. & Kishony, R. Functional classification of drugs by properties of their pairwise interactions. Nat. Genet. 38, 489–494 (2006).
Kavcˇicˇ, B., Tkacˇik, G. & Bollenbach, T. Minimal biophysical model of combined antibiotic action. PLoS Comput. Biol. 17, e1008529 (2021).
Jawetz, E., Gunnison, J. B. & Speck, R. S. Antibiotic synergism and antagonism. N. Engl. J. Med. 245, 966–968 (1951).
Moellering, R. C. & Weinberg, A. N. Studies on antibiotic synergism against enterococci. II. Effect of various antibiotics on the uptake of 14C-labeled streptomycin by enterococci. J. Clin. Invest. 50, 2580–2584 (1971).
Plotz, P. H. & Davis, B. D. Synergism between streptomycin and penicillin: a proposed mechanism. Science 135, 1067–1068 (1962).
Lewis, K. The science of antibiotic discovery. Cell 181, 29–45 (2020).
Klobucar, K. & Brown, E. D. New potentiators of ineffective antibiotics: targeting the Gram-negative outer membrane to overcome intrinsic resistance. Curr. Opin. Chem. Biol. 66, 102099 (2021).
Cokol, M. et al. Systematic exploration of synergistic drug pairs. Mol. Syst. Biol. 7, 544 (2011).
Liu, A. et al. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob. Agents Chemother. 54, 1393–1403 (2010).
Chevereau, G. & Bollenbach, T. Systematic discovery of drug interaction mechanisms. Mol. Syst. Biol. 11, 807 (2015).
Falconer, S. B., Czarny, T. L. & Brown, E. D. Antibiotics as probes of biological complexity. Nat. Chem. Biol. 7, 415–423 (2011).
Lehár, J. et al. Chemical combination effects predict connectivity in biological systems. Mol. Syst. Biol. 3, 80 (2007).
Maier, L. et al. Unravelling the collateral damage of antibiotics on gut bacteria. Nature 599, 120–124 (2021).
Eng, R. H., Padberg, F. T., Smith, S. M., Tan, E. N. & Cherubin, C. E. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob. Agents Chemother. 35, 1824–1828 (1991).
Tuomanen, E., Cozens, R., Tosch, W., Zak, O. & Tomasz, A. The rate of killing of Escherichia coli by β-lactam antibiotics is strictly proportional to the rate of bacterial growth. J. Gen. Microbiol. 132, 1297–1304 (1986).
Ocampo, P. S. et al. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob. Agents Chemother. 58, 4573–4582 (2014).
Bollenbach, T., Quan, S., Chait, R. & Kishony, R. Nonoptimal microbial response to antibiotics underlies suppressive drug interactions. Cell 139, 707–718 (2009).
Xavier, J. B. & Sander, C. Principle of system balance for drug interactions. N. Engl. J. Med. 362, 1339–1340 (2010).
Batra, A. et al. High potency of sequential therapy with only β-lactam antibiotics. eLife 10, e68876 (2021).
Roemhild, R. et al. Cellular hysteresis as a principle to maximize the efficacy of antibiotic therapy. Proc. Natl Acad. Sci. USA 115, 9767–9772 (2018). This paper demonstrates that negative hysteresis can significantly delay the evolution of resistance in sequential treatments with three bactericidal antibiotics.
VanBogelen, R. A. & Neidhardt, F. C. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl Acad. Sci. USA 87, 5589–5593 (1990). This classic paper demonstrates that ribosome-targeting antibiotics cause changes to the proteome that are identical to those after temperature shock.
Mitosch, K., Rieckh, G. & Bollenbach, T. Temporal order and precision of complex stress responses in individual bacteria. Mol. Syst. Biol. 15, e8470 (2019).
Gellert, M., Mizuuchi, K., O’Dea, M. H., Itoh, T. & Tomizawa, J.-I. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc. Natl Acad. Sci. USA 74, 4772–4776 (1977).
Storz, G. & Hengge, R. Bacterial Stress Responses (ASM, 2010). This book provides an excellent overview of bacterial stress-response systems.
Dörr, T., Lewis, K. & Vulić, M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet. 5, e1000760 (2009).
Theodore, A., Lewis, K. & Vulić, M. Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway. Genetics 195, 1265–1276 (2013).
Epshtein, V. et al. UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 505, 372–377 (2014).
Miller, C. et al. SOS response induction by β-lactams and bacterial defense against antibiotic lethality. Science 305, 1629–1631 (2004).
Miller, C., Ingmer, H., Thomsen, L. E., Skarstad, K. & Cohen, S. N. DpiA binding to the replication origin of Escherichia coli plasmids and chromosomes destabilizes plasmid inheritance and induces the bacterial SOS response. J. Bacteriol. 185, 6025–6031 (2003).
Bi, E. & Lutkenhaus, J. Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J. Bacteriol. 175, 1118–1125 (1993).
Jeannot, K., Sobel, M. L., Garch, F. E., Poole, K. & Plésiat, P. Induction of the MexXY efflux pump in Pseudomonas aeruginosa is dependent on drug–ribosome interaction. J. Bacteriol. 187, 5341–5346 (2005).
Lobritz, M. A. et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl Acad. Sci. USA 112, 8173–8180 (2015).
Lee, A. J. et al. Robust, linear correlations between growth rates and β-lactam-mediated lysis rates. Proc. Natl Acad. Sci. USA 115, 4069–4074 (2018).
Kudrin, P. et al. Subinhibitory concentrations of bacteriostatic antibiotics induce relA-dependent and relA-independent tolerance to β-lactams. Antimicrob. Agents Chemother. 61, e02173-16 (2017).
Johnson, P. J. T. & Levin, B. R. Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genet. 9, e1003123 (2013).
Harpaz, D., Marks, R. S., Kushmaro, A. & Eltzov, E. Environmental pollutants induce noninherited antibiotic resistance to polymyxin B in Escherichia coli. Future Microbiol. 15, 1631–1643 (2020).
Masi, M., Pinet, E. & Pagès, J.-M. Complex response of the CpxAR two-component system to β-Lactams on antibiotic resistance and envelope homeostasis in Enterobacteriaceae. Antimicrob. Agents Chemother. 64, e00291-20 (2020).
Mitosch, K., Rieckh, G. & Bollenbach, T. Noisy response to antibiotic stress predicts subsequent single-cell survival in an acidic environment. Cell Syst. 4, 393–403.e5 (2017).
Hong, Y., Zeng, J., Wang, X., Drlica, K. & Zhao, X. Post-stress bacterial cell death mediated by reactive oxygen species. Proc. Natl Acad. Sci. USA 116, 10064–10071 (2019).
Ni, M. et al. Pre-disposition and epigenetics govern variation in bacterial survival upon stress. PLoS Genet. 8, e1003148 (2012).
MacKenzie, F. M. & Gould, I. M. The post-antibiotic effect. J. Antimicrob. Chemother. 32, 519–537 (1993).
Srimani, J. K., Huang, S., Lopatkin, A. J. & You, L. Drug detoxification dynamics explain the postantibiotic effect. Mol. Syst. Biol. 13, 948 (2017).
Mateus, A., Matsson, P. & Artursson, P. Rapid measurement of intracellular unbound drug concentrations. Mol. Pharm. 10, 2467–2478 (2013).
Bergmiller, T. et al. Biased partitioning of the multidrug efflux pump AcrAB–TolC underlies long-lived phenotypic heterogeneity. Science 356, 311–315 (2017).
Mathis, R. & Ackermann, M. Asymmetric cellular memory in bacteria exposed to antibiotics. BMC Evol. Biol. 17, 73 (2017).
Govers, S. K., Mortier, J., Adam, A. & Aertsen, A. Protein aggregates encode epigenetic memory of stressful encounters in individual Escherichia coli cells. PLoS Biol. 16, e2003853 (2018). This paper shows that protein aggregates confer a transient cellular memory of sublethal stress that is epigenetically inherited and provides cross-stress protection.
Lambert, G. & Kussell, E. Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet. 10, e1004556 (2014). This work presents a groundbreaking experimental analysis of memory in bacterial utilization of lactose.
Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. & van Oudenaarden, A. Multistability in the lactose utilization network of Escherichia coli. Nature 427, 737–740 (2004).
Williams, K., Savageau, M. A. & Blumenthal, R. M. A bistable hysteretic switch in an activator–repressor regulated restriction–modification system. Nucleic Acids Res. 41, 6045–6057 (2013).
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).
Durão, P., Balbontín, R. & Gordo, I. Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol. 26, 677–691 (2018).
Levin-Reisman, I., Brauner, A., Ronin, I. & Balaban, N. Q. Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proc. Natl Acad. Sci. USA 116, 14734–14739 (2019).
Porse, A., Jahn, L. J., Ellabaan, M. M. H. & Sommer, M. O. A. Dominant resistance and negative epistasis can limit the co-selection of de novo resistance mutations and antibiotic resistance genes. Nat. Commun. 11, 1199 (2020).
Barbosa, C., Römhild, R., Rosenstiel, P. & Schulenburg, H. Evolutionary stability of collateral sensitivity to antibiotics in the model pathogen Pseudomonas aeruginosa. eLife 8, e51481 (2019).
De Angelis, G., Del Giacomo, P., Posteraro, B., Sanguinetti, M. & Tumbarello, M. Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in Enterobacteriaceae. Int. J. Mol. Sci. 21, 5090 (2020).
Serio, A. W., Keepers, T., Andrews, L. & Krause, K. M. Aminoglycoside revival: review of a historically important class of antimicrobials undergoing rejuvenation. EcoSal Plus https://doi.org/10.1128/ecosalplus.ESP-0002-2018 (2018).
Fyfe, C., Grossman, T. H., Kerstein, K. & Sutcliffe, J. Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb. Perspect. Med. 6, a025395 (2016).
Prajapati, J. D., Kleinekathöfer, U. & Winterhalter, M. How to enter a bacterium: bacterial porins and the permeation of antibiotics. Chem. Rev. 121, 5158–5192 (2021).
Du, D. et al. Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol. 16, 523–539 (2018).
Goossens, S. N., Sampson, S. L. & Rie, A. V. Mechanisms of drug-induced tolerance in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 34, e00141-20 (2020).
Roemhild, R., Linkevicius, M. & Andersson, D. I. Molecular mechanisms of collateral sensitivity to the antibiotic nitrofurantoin. PLoS Biol. 18, e3000612 (2020). This work characterizes several molecular mechanisms that explain collateral sensitivity to a clinically relevant antibiotic.
Apjok, G. et al. Limited evolutionary conservation of the phenotypic effects of antibiotic resistance mutations. Mol. Biol. Evol. 36, 1601–1611 (2019).
Lázár, V. et al. Bacterial evolution of antibiotic hypersensitivity. Mol. Syst. Biol. 9, 700 (2013).
Bryant, D. W. & McCalla, D. R. Nitrofuran induced mutagenesis and error prone repair in Escherichia coli. Chem. Biol. Interact. 31, 151–166 (1980).
Mizusawa, S. & Gottesman, S. Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein. Proc. Natl Acad. Sci. USA 80, 358–362 (1983).
Chong, Y., Shimoda, S. & Shimono, N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol. 61, 185–188 (2018).
Rosenkilde, C. E. H. et al. Collateral sensitivity constrains resistance evolution of the CTX-M-15 β-lactamase. Nat. Commun. 10, 618 (2019).
Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).
Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).
Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).
Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).
Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).
Hillenmeyer, M. E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).
Brochado, A. R. & Typas, A. High-throughput approaches to understanding gene function and mapping network architecture in bacteria. Curr. Opin. Microbiol. 16, 199–206 (2013).
Cacace, E., Kritikos, G. & Typas, A. Chemical genetics in drug discovery. Curr. Opin. Syst. Biol. 4, 35–42 (2017).
Podnecky, N. L. et al. Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli. Nat. Commun. 9, 3673 (2018).
Imamovic, L. & Sommer, M. O. A. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl Med. 5, 204ra132 (2013).
Hernando-Amado, S., Sanz-García, F. & Martínez, J. L. Rapid and robust evolution of collateral sensitivity in Pseudomonas aeruginosa antibiotic-resistant mutants. Sci. Adv. 6, eaba5493 (2020).
Fass, R. J. Comparative in vitro activities of β-lactam–tobramycin combinations against Pseudomonas aeruginosa and multidrug-resistant Gram-negative enteric bacilli. Antimicrob. Agents Chemother. 21, 1003–1006 (1982).
Fatsis-Kavalopoulos, N., Roemhild, R., Tang, P.-C., Kreuger, J. & Andersson, D. I. CombiANT: antibiotic interaction testing made easy. PLoS Biol. 18, e3000856 (2020).
Deris, J. B. et al. The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science 342, 1237435 (2013).
Greulich, P., Scott, M., Evans, M. R. & Allen, R. J. Growth-dependent bacterial susceptibility to ribosome-targeting antibiotics. Mol. Syst. Biol. 11, 796 (2015).
Pinheiro, F., Warsi, O., Andersson, D. I. & Lässig, M. Metabolic fitness landscapes predict the evolution of antibiotic resistance. Nat. Ecol. Evol. 5, 677–687 (2021).
Wistrand-Yuen, E. et al. Evolution of high-level resistance during low-level antibiotic exposure. Nat. Commun. 9, 1599 (2018).
Knöppel, A., Näsvall, J. & Andersson, D. I. Evolution of antibiotic resistance without antibiotic exposure. Antimicrob. Agents Chemother. 61, e01495-17 (2017).
Drlica, K. & Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 61, 377–392 (1997).
Shaw, K. J. et al. Comparison of the changes in global gene expression of Escherichia coli induced by four bactericidal agents. J. Mol. Microbiol. Biotechnol. 5, 105–122 (2003).
Lewin, C. S. & Amyes, S. G. B. The role of the SOS response in bacteria exposed to zidovudine or trimethoprim. J. Med. Microbiol. 34, 329–332 (1991).
Baharoglu, Z., Krin, E. & Mazel, D. RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae. PLoS Genet. 9, e1003421 (2013).
Boshoff, H. I. M. et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem. 279, 40174–40184 (2004).
Blázquez, J. et al. PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa. Mol. Microbiol. 62, 84–99 (2006).
Mesak, L. R., Miao, V. & Davies, J. Effects of subinhibitory concentrations of antibiotics on SOS and DNA repair gene expression in Staphylococcus aureus. Antimicrob. Agents Chemother. 52, 3394–3397 (2008).
Baharoglu, Z. & Mazel, D. Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics: a route towards multiresistance. Antimicrob. Agents Chemother. 55, 2438–2441 (2011).
Wood, L. F., Leech, A. J. & Ohman, D. E. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ22 (AlgT) and the AlgW and Prc proteases. Mol. Microbiol. 62, 412–426 (2006).
Audrain, B. et al. Induction of the Cpx envelope stress pathway contributes to Escherichia coli tolerance to antimicrobial peptides. Appl. Environ. Microbiol. 79, 7770–7779 (2013).
Delhaye, A., Collet, J.-F. & Laloux, G. Fine-tuning of the Cpx envelope stress response is required for cell wall homeostasis in Escherichia coli. mBio 7, e00047-16 (2016).
Jing, W., Liu, J., Wu, S., Li, X. & Liu, Y. Role of cpxA mutations in the resistance to aminoglycosides and β-lactams in Salmonella enterica serovar Typhimurium. Front. Microbiol. 12, 106 (2021).
Kaldalu, N., Mei, R. & Lewis, K. Killing by ampicillin and ofloxacin induces overlapping changes in Escherichia coli transcription profile. Antimicrob. Agents Chemother. 48, 890–896 (2004).
Laubacher, M. E. & Ades, S. E. The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J. Bacteriol. 190, 2065–2074 (2008).
Lee, S. et al. Targeting a bacterial stress response to enhance antibiotic action. Proc. Natl Acad. Sci. USA 106, 14570–14575 (2009).
Fernández, L. et al. Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR–ParS. Antimicrob. Agents Chemother. 54, 3372–3382 (2010).
Dörr, T. et al. A cell wall damage response mediated by a sensor kinase/response regulator pair enables β-lactam tolerance. Proc. Natl Acad. Sci. USA 113, 404–409 (2016).
Cao, M., Wang, T., Ye, R. & Helmann, J. D. Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σW and σM regulons. Mol. Microbiol. 45, 1267–1276 (2002).
Thackray, P. D. & Moir, A. SigM, an extracytoplasmic function σ factor of Bacillus subtilis, is activated in response to cell wall antibiotics, ethanol, heat, acid, and superoxide stress. J. Bacteriol. 185, 3491–3498 (2003).
Mascher, T., Zimmer, S. L., Smith, T.-A. & Helmann, J. D. Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob. Agents Chemother. 48, 2888–2896 (2004).
Dubrac, S., Bisicchia, P., Devine, K. M. & Msadek, T. A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol. Microbiol. 70, 1307–1322 (2008).
Staron´, A., Finkeisen, D. E. & Mascher, T. Peptide antibiotic sensing and detoxification modules of Bacillus subtilis. Antimicrob. Agents Chemother. 55, 515–525 (2011).
Kallipolitis, B. H., Ingmer, H., Gahan, C. G., Hill, C. & Søgaard-Andersen, L. CesRK, a two-component signal transduction system in Listeria monocytogenes, responds to the presence of cell wall-acting antibiotics and affects β-lactam resistance. Antimicrob. Agents Chemother. 47, 3421–3429 (2003).
Suntharalingam, P., Senadheera, M. D., Mair, R. W., Lévesque, C. M. & Cvitkovitch, D. G. The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans. J. Bacteriol. 191, 2973–2984 (2009).
Yin, S., Daum, R. S. & Boyle-Vavra, S. VraSR two-component regulatory system and its role in induction of pbp2 and vraSR expression by cell wall antimicrobials in Staphylococcus aureus. Antimicrob. Agents Chemother. 50, 336–343 (2006).
Balibar, C. J. et al. cwrA, a gene that specifically responds to cell wall damage in Staphylococcus aureus. Microbiol. Read. Engl. 156, 1372–1383 (2010).
Campbell, J. et al. An antibiotic that inhibits a late step in wall teichoic acid biosynthesis induces the cell wall stress stimulon in Staphylococcus aureus. Antimicrob. Agents Chemother. 56, 1810–1820 (2012).
Dukan, S. et al. Protein oxidation in response to increased transcriptional or translational errors. Proc. Natl Acad. Sci. USA 97, 5746–5749 (2000).
Lin, J. T., Connelly, M. B., Amolo, C., Otani, S. & Yaver, D. S. Global transcriptional response of Bacillus subtilis to treatment with subinhibitory concentrations of antibiotics that inhibit protein synthesis. Antimicrob. Agents Chemother. 49, 1915–1926 (2005).
Wu, X. et al. Dynamic proteome response of Pseudomonas aeruginosa to tobramycin antibiotic treatment. Mol. Cell. Proteom. 14, 2126–2137 (2015).
Tran, T. D.-H. et al. Decrease in penicillin susceptibility due to heat shock protein ClpL in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 55, 2714–2728 (2011).
Reiß, S. et al. Global analysis of the Staphylococcus aureus response to mupirocin. Antimicrob. Agents Chemother. 56, 787–804 (2012).
Mathieu, A. et al. Discovery and function of a general core hormetic stress response in E. coli induced by sublethal concentrations of antibiotics. Cell Rep. 17, 46–57 (2016).
Gutierrez, A. et al. β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat. Commun. 4, 1610 (2013). This paper demonstrates that cell wall-targeting drugs induce error-prone replication of DNA as part of the antibiotic-induced general stress response.
Jacoby, G. A. AmpC β-lactamases. Clin. Microbiol. Rev. 22, 161–182 (2009).
Li, L. et al. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics. Proc. Natl Acad. Sci. USA 113, 1648–1653 (2016).
Muller, C., Plésiat, P. & Jeannot, K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 55, 1211–1221 (2011).
Beck, C. F., Mutzel, R., Barbé, J. & Müller, W. A multifunctional gene (tetR) controls Tn10-encoded tetracycline resistance. J. Bacteriol. 150, 633–642 (1982).
Kehrenberg, C. & Schwarz, S. fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol. Antimicrob. Agents Chemother. 48, 615–618 (2004).
George, A. M. & Hall, R. M. Efflux of chloramphenicol by the CmlA1 protein. FEMS Microbiol. Lett. 209, 209–213 (2002).
Terán, W. et al. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrob. Agents Chemother. 47, 3067–3072 (2003).
Brogden, K. A., Guthmiller, J. M. & Taylor, C. E. Human polymicrobial infections. Lancet 365, 253–255 (2005).
Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).
Vos de, M. G. J., Zagorski, M., McNally, A. & Bollenbach, T. Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections. Proc. Natl Acad. Sci. USA 114, 10666–10671 (2017).
Aranda-Díaz, A. et al. Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance. eLife 9, e51493 (2020).
Hoffman, L. R. et al. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 103, 19890–19895 (2006).
Radlinski, L. et al. Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLoS Biol. 15, e2003981 (2017).
Nicoloff, H. & Andersson, D. I. Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or -degrading enzymes. J. Antimicrob. Chemother. 71, 100–110 (2016).
Sorg, R. A. et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLoS Biol. 14, e2000631 (2016).
Maddocks, J. L. & May, J. R. ‘Indirect pathogenicity’ of penicillinase-producing Enterobacteria in chronic bronchial infections. Lancet 293, 793–795 (1969).
Adamowicz, E. M. & Harcombe, W. R. Weakest-link dynamics predict apparent antibiotic interactions in a model cross-feeding community. Antimicrob. Agents Chemother. 64, e00465-20 (2020).
Adamowicz, E. M., Flynn, J., Hunter, R. C. & Harcombe, W. R. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 12, 2723–2735 (2018).
Guggenbichler, J. P., Allerberger, F., Dierich, M. P., Schmitzberger, R. & Semenitz, E. Spaced administration of antibiotic combinations to eliminate Pseudomonas from sputum in cystic fibrosis. Lancet 2, 749–750 (1988). This small clinical study suggests that staggered application of β-lactam and aminoglycoside improves treatment of chronic lung infections compared with combination treatment.
Imamovic, L. et al. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell 172, 121–134.e14 (2018). This paper shows that phenotypic changes in a bacterial lung infection mirror those predicted from collateral sensitivity in evolution experiments.
Medical Research Council. Streptomycin treatment of pulmonary tuberculosis. Br. Med. J. 2, 769–782 (1948).
Kerantzas, C. A. & Jacobs, W. R. Origins of combination therapy for tuberculosis: lessons for future antimicrobial development and application. mBio 8, e01586-16 (2017).
Richman, D. D. HIV chemotherapy. Nature 410, 995–1001 (2001).
Martin, J. K. et al. A dual-mechanism antibiotic kills Gram-negative bacteria and avoids drug resistance. Cell 181, 1518–1532.e14 (2020).
Tamma, P. D., Cosgrove, S. E. & Maragakis, L. L. Combination therapy for treatment of infections with Gram-negative bacteria. Clin. Microbiol. Rev. 25, 450–470 (2012).
Tängdén, T. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Ups. J. Med. Sci. 119, 149–153 (2014).
Ersoy, S. C. et al. Correcting a fundamental flaw in the paradigm for antimicrobial susceptibility testing. EBioMedicine 20, 173–181 (2017).
Levin, B. R. & Rozen, D. E. Non-inherited antibiotic resistance. Nat. Rev. Microbiol. 4, 556–562 (2006).
Allen, R. C., Pfrunder-Cardozo, K. R. & Hall, A. R. Collateral sensitivity interactions between antibiotics depend on local abiotic conditions. mSystems 6, e0105521 (2021).
Larkins-Ford, J. et al. Systematic measurement of combination-drug landscapes to predict in vivo treatment outcomes for tuberculosis. Cell Syst. 12, 1046–1063.e7 (2021).
Acknowledgements
The authors thank B. Kavčič and H. Schulenburg for constructive feedback on the manuscript.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
R.R. and D.I.A. are involved in patent application SE 2050304-1 relating to the CombiANT method. T.B. declares no competing interests.
Peer review
Peer review information
Nature Reviews Microbiology thanks J. Arjan G.M. de Visser and Athanasios Typas for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Tolerance
-
The capacity of a cell population to endure stressful exposure to, for example, drugs.
- Loewe additivity
-
A null model of drug interaction that assumes that antibiotics cannot interact with themselves so that inhibitory doses are additive and form straight lines of equal inhibition on the response surface.
- Bliss independence
-
A null model of drug interaction that assumes that antibiotics have independent modes of action so that their individual effects can be multiplied.
- Cross-feeding
-
Increased tolerance of a bacterial strain to a drug that is caused by proximity to other strains.
- Collective resistance
-
Interaction between bacterial strains whereby molecules produced by one strain are consumed by the other.
- Cellular hysteresis
-
The long-lasting physiological effect of pretreatment on the tolerance of a cell population to a later treatment.
- Cellular memory
-
A biological process that maintains information of the past.
- SOS response
-
The bacterial response to DNA damage that involves RecA and LexA, and involves growth arrest and DNA repair.
- Persister
-
A cell that survives an inhibitory dose of antibiotic due to phenotypic heterogeneity.
- Pleiotropy
-
The production by a single gene or mutation of multiple effects.
- Epistasis
-
The combined effect of two genetic entities is quantitatively different from that expected by additive interaction of the individual genetic effects.
- Collateral sensitivity
-
Decreased tolerance to a drug that is caused by a mutation or gene conferring resistance to a different drug.
- Chemical genomics
-
The study of effects of drugs and other chemicals on genome-wide genetic variation.
- Clinical testing
-
A prospective or retrospective research study that tests how well a medical approach works in people by comparison with an included control group.
- Pharmacodynamics
-
The study of the molecular action of a drug on the target organism, including binding, dose–response relations and interactions with other molecules.
- Pharmacokinetics
-
The study of the processes in the human body that govern resorption, distribution, metabolization and excretion of a drug.
Rights and permissions
About this article
Cite this article
Roemhild, R., Bollenbach, T. & Andersson, D.I. The physiology and genetics of bacterial responses to antibiotic combinations. Nat Rev Microbiol 20, 478–490 (2022). https://doi.org/10.1038/s41579-022-00700-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41579-022-00700-5
This article is cited by
-
Translating eco-evolutionary biology into therapy to tackle antibiotic resistance
Nature Reviews Microbiology (2023)
-
Anti-tuberculosis treatment strategies and drug development: challenges and priorities
Nature Reviews Microbiology (2022)