Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics

Abstract

Clostridioides difficile is a Gram-positive anaerobe that can cause a spectrum of disorders that range in severity from mild diarrhoea to fulminant colitis and/or death. The bacterium produces up to three toxins, which are considered the major virulence factors in C. difficile infection. These toxins promote inflammation, tissue damage and diarrhoea. In this Review, we highlight recent biochemical and structural advances in our understanding of the mechanisms that govern host–toxin interactions. Understanding how C. difficile toxins affect the host forms a foundation for developing novel strategies for treatment and prevention of C. difficile infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of TcdA and TcdB.
Fig. 2: Intoxication mechanism of TcdA and TcdB.
Fig. 3: Progression of colon intoxication by the Clostridioides difficile toxins.
Fig. 4: Structure of the Clostridioides difficile transferase toxin.
Fig. 5: Intoxication mechanism of Clostridioides difficile transferase toxin.
Fig. 6: Biological therapeutic binding locations on TcdA and TcdB.

Similar content being viewed by others

References

  1. Smits, W. K., Lyras, D., Lacy, D. B., Wilcox, M. H. & Kuijper, E. J. Clostridium difficile infection. Nat. Rev. Dis. Prim. 2, 1–20 (2016).

    Google Scholar 

  2. Guh, A. Y. et al. Trends in U.S. burden of Clostridioides difficile infection and outcomes. N. Engl. J. Med. 382, 1320–1330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. CDC. Antibiotic Resistance Threats in the United States (CDC, 2019).

  4. Shen, A. Clostridioides difficile spore formation and germination: new insights and opportunities for intervention. Annu. Rev. Microbiol. 74, 545–566 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Orrell, K. E. & Melnyk, R. A. Large clostridial toxins: mechanisms and roles in disease. Microbiol. Mol. Biol. Rev. 85, 1–30 (2021).

    Article  Google Scholar 

  6. Gerding, D. N., Johnson, S., Rupnik, M. & Aktories, K. Clostridium difficile binary toxin CDT. Gut Microbes 5, 15–27 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dupuy, B. et al. Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors. Mol. Microbiol. 60, 1044–1057 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Moncrief, J. S., Barroso, L. A. & Wilkins, T. D. Positive regulation of Clostridium difficile toxins. Infect. Immun. 65, 1105–1108 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dupuy, B. & Matamouros, S. Regulation of toxin and bacteriocin synthesis in Clostridium species by a new subgroup of RNA polymerase sigma-factors. Res. Microbiol. 157, 201–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Mani, N. et al. Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J. Bacteriol. 184, 5971–5978 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ransom, E. M., Kaus, G. M., Tran, P. M., Ellermeier, C. D. & Weiss, D. S. Multiple factors contribute to bimodal toxin gene expression in Clostridioides (Clostridium) difficile. Mol. Microbiol. 110, 533–549 (2018). By fusing a red fluorescent protein gene to the tcdA promoter, this study shows that toxin production is regulated by a TcdR-dependent bistable switch.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matamouros, S., England, P. & Dupuy, B. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol. Microbiol. 64, 1274–1288 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Govind, R. & Dupuy, B. Secretion of Clostridium difficile toxins A and B requires the holin-like protein TcdE. PLoS Pathog. 8, e1002727 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan, K. S., Wee, B. Y. & Song, K. P. Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile. J. Med. Microbiol. 50, 613–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Govind, R., Fitzwater, L. & Nichols, R. Observations on the role of TcdE isoforms in Clostridium difficile toxin secretion. J. Bacteriol. 197, 2600–2609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mehner-Breitfeld, D. et al. Evidence for an adaptation of a phage-derived holin/endolysin system to toxin transport in Clostridioides difficile. Front. Microbiol. 9, 2446 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pruitt, R. N., Chambers, M. G., Ng, K. S., Ohi, M. D. & Lacy, D. B. Structural organization of the functional domains of Clostridium difficile toxins A and B. Proc. Natl Acad. Sci. USA 107, 13467–13472 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chumbler, N. M. et al. Crystal structure of Clostridium difficile toxin A. Nat. Microbiol. 1, 15002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, P. et al. Structure of the full-length Clostridium difficile toxin B. Nat. Struct. Mol. Biol. 26, 712–719 (2019). Structures are determined at endosomal pH and in the presence of neutralizing nanobodies and are supported by biophysical studies that document the conformational flexibility of the CROP domain relative to the rest of the toxin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Teneberg, S. et al. Molecular mimicry in the recognition of glycosphingolipids by Gal alpha 3 Gal beta 4 GlcNAc beta-binding Clostridium difficile toxin A, human natural anti alpha-galactosyl IgG and the monoclonal antibody Gal-13: characterization of a binding-active human. Glycobiology 6, 599–609 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Clark, G. F., Krivan, H. C., Wilkins, T. D. & Smith, D. F. Toxin A from Clostridium difficile binds to rabbit erythrocyte glycolipids with terminal Gal alpha 1–3 Gal beta 1-4GlcNAc sequences. Arch. Biochem. Biophys. 257, 217–229 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Krivan, H. C., Clark, G. F., Smith, D. F. & Wilkins, T. D. Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Gal alpha 1–3 Gal beta 1-4GlcNAc. Infect. Immun. 53, 573–581 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tucker, K. D. & Wilkins, T. D. Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X, and Y. Infect. Immun. 59, 73–78 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hartley-Tassell, L. E. et al. Lectin activity of the TcdA and TcdB toxins of Clostridium difficile. Infect. Immun. https://doi.org/10.1128/IAI.00676-18 (2019). This glycan array study indicates that both TcdA and TcdB are able to bind a much broader array of glycan structures than appreciated from prior studies.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pothoulakis, C. et al. Rabbit sucrase-isomaltase contains a functional intestinal receptor for Clostridium difficile toxin A. J. Clin. Invest. 98, 641–649 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Na, X., Kim, H., Moyer, M. P., Pothoulakis, C. & LaMont, J. T. gp96 is a human colonocyte plasma membrane binding protein for Clostridium difficile toxin A. Infect. Immun. 76, 2862–2871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tao, L. et al. Sulfated glycosaminoglycans and low-density lipoprotein receptor contribute to Clostridium difficile toxin A entry into cells. Nat. Microbiol. 4, 1760–1769 (2019). A CRISPR–Cas9 screen using a truncated TcdA lacking the CROPS is used to identify host factors that contribute to TcdA binding and entry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schöttelndreier, D., Langejürgen, A., Lindner, R. & Genth, H. Low density lipoprotein receptor-related protein-1 (LRP1) is involved in the tptake of Clostridioides difficile toxin A and serves as an internalizing receptor. Front. Cell. Infect. Microbiol. 10, 565465 (2020). This study suggests a role for LRP1 in the cellular uptake of TcdA but not TcdB.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. LaFrance, M. E. et al. Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity. Proc. Natl Acad. Sci. USA 112, 7073–7078 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tao, L. et al. Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature 538, 350–355 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan, P. et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 25, 157–168 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, P. et al. Structural basis for CSPG4 as a receptor for TcdB and a therapeutic target in Clostridioides difficile infection. Nat. Commun. 12, 3748 (2021). In addition to describing a structure of the TcdB–CSPG4 complex, this study reveals how bezlotoxumab blocks CSPG4 binding by an allosteric mechanism and demonstrates the efficacy of a CSPG4-mimicking decoy in preventing toxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holcombe, R. F. et al. Expression of Wnt ligands and Frizzled receptors in colonic mucosa and in colon carcinoma. J. Clin. Pathol. Mol. Pathol. 55, 220–226 (2002).

    Article  CAS  Google Scholar 

  34. Chen, P. et al. Structural basis for recognition of frizzled proteins by Clostridium difficile toxin B. Science 360, 664–669 (2018). The crystal structure of the FZD2 cysteine-rich domain bound to the TcdB delivery domain reveals the presence of palmitoleic acid within the binding interface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mileto, S. J. et al. Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Proc. Natl Acad. Sci. USA 117, 8064–8073 (2020). This study shows that epidemic ribotype 027 strains promote stem cell dysfunction in a manner that is independent of FZD1/2/7 binding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. López-Ureña, D. et al. Toxin B variants from Clostridium difficile strains VPI 10463 and NAP1/027 share similar substrate profile and cellular intoxication kinetics but use different host cell entry factors. Toxins 11, 348 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  37. Shen, E. et al. Subtyping analysis reveals new variants and accelerated evolution of Clostridioides difficile toxin B. Commun. Biol. 3, 347 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chung, S.-Y. et al. The conserved Cys-2232 in Clostridioides difficile toxin B modulates receptor binding. Front. Microbiol. 9, 2314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pan, Z. et al. Functional analyses of epidemic Clostridioides difficile toxin B variants reveal their divergence in utilizing receptors and inducing pathology. PLOS Pathog. 17, e1009197 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng, Z. et al. Designed ankyrin repeat protein (DARPin) neutralizers of TcdB from Clostridium difficile ribotype 027. mSphere https://doi.org/10.1128/mSphere.00596-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Iida, J. et al. A role of chondroitin sulfate glycosaminoglycan binding site in α4β1 integrin-mediated melanoma cell adhesion. J. Biol. Chem. 273, 5955–5962 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Papatheodorou, P., Zamboglou, C., Genisyuerek, S., Guttenberg, G. & Aktories, K. Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis. PLoS ONE 5, e10673 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Chandrasekaran, R., Kenworthy, A. K. & Lacy, D. B. Clostridium difficile toxin A undergoes clathrin-independent, PACSIN2-dependent endocytosis. PLoS Pathog. 12, e1006070 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Genisyuerek, S. et al. Structural determinants for membrane insertion, pore formation and translocation of Clostridium difficile toxin B. Mol. Microbiol. 79, 1643–1654 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Z. et al. Translocation domain mutations affecting cellular toxicity identify the Clostridium difficile toxin B pore. Proc. Natl Acad. Sci. USA 111, 3721–3726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Orrell, K. E. et al. Direct detection of membrane-inserting fragments defines the translocation pores of a family of pathogenic toxins. J. Mol. Biol. 430, 3190–3199 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Barth, H. et al. Low pH-induced formation of ion channels by Clostridium difficile toxin B in target cells. J. Biol. Chem. 276, 10670–10676 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Giesemann, T. et al. Cholesterol-dependent pore formation of Clostridium difficile toxin A. J. Biol. Chem. 281, 10808–10815 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Orrell, K. E., Mansfield, M. J., Doxey, A. C. & Melnyk, R. A. The C. difficile toxin B membrane translocation machinery is an evolutionarily conserved protein delivery apparatus. Nat. Commun. 11, 1–11 (2020). A genomics analysis uncovers 1,104 homologues of the LCT translocase region and demonstrates that a distant homologue from Serratia marcescens acts as a pH-dependent translocase.

    Article  CAS  Google Scholar 

  50. Pfeifer, G. et al. Cellular uptake of Clostridium difficile toxin B. Translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells. J. Biol. Chem. 278, 44535–44541 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Steinemann, M., Schlosser, A., Jank, T. & Aktories, K. The chaperonin TRiC/CCT is essential for the action of bacterial glycosylating protein toxins like Clostridium difficile toxins A and B. Proc. Natl Acad. Sci. USA 115, 9580–9585 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pruitt, R. N. et al. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A. J. Biol. Chem. 284, 21934–21940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shen, A. et al. Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Nat. Struct. Mol. Biol. 18, 364–371 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Egerer, M., Giesemann, T., Jank, T., Satchell, K. J. & Aktories, K. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity. J. Biol. Chem. 282, 25314–25321 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Reineke, J. et al. Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446, 415–419 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Rupnik, M. et al. Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells. Microbiology 151, 199–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Kreimeyer, I. et al. Autoproteolytic cleavage mediates cytotoxicity of Clostridium difficile toxin A. Naunyn Schmiedebergs Arch. Pharmacol. 383, 253–262 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, Y., Hamza, T., Gao, S. & Feng, H. Masking autoprocessing of Clostridium difficile toxin A by the C-terminus combined repetitive oligo peptides. Biochem. Biophys. Res. Commun. 459, 259–263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gerhard, R. The combined repetitive oligopeptides of Clostridium difficile toxin A counteract premature cleavage of the glucosyl-transferase domain by stabilizing protein conformation. Toxins 6, 2162–2176 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Just, I. et al. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500–503 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Just, I. et al. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 270, 13932–13936 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Genth, H., Aktories, K. & Just, I. Monoglucosylation of RhoA at threonine 37 blocks cytosol-membrane cycling. J. Biol. Chem. 274, 29050–29056 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Geissler, B., Ahrens, S. & Satchell, K. J. F. Plasma membrane association of three classes of bacterial toxins is mediated by a basic-hydrophobic motif. Cell. Microbiol. 14, 286–298 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Chaves-Olarte, E., Weidmann, M., Eichel-Streiber, C. & Thelestam, M. Toxins A and B from Clostridium difficile differ with respect to enzymatic potencies, cellular substrate specificities, and surface binding to cultured cells. J. Clin. Invest. 100, 1734–1741 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mehlig, M. et al. Variant toxin B and a functional toxin A produced by Clostridium difficile C34. FEMS Microbiol. Lett. 198, 171–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Quesada-Gómez, C. et al. Analysis of TcdB proteins within the hypervirulent clade 2 reveals an impact of RhoA glucosylation on Clostridium difficile proinflammatory activities. Infect. Immun. 84, 856–865 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Müller, S., Von Eichel-Streiber, C. & Moos, M. Impact of amino acids 22-27 of Rho-subfamily GTPases on glucosylation by the large clostridial cytotoxins TcsL-1522, TcdB-1470 and TcdB-8864. Eur. J. Biochem. 266, 1073–1080 (1999).

    Article  PubMed  Google Scholar 

  68. Genth, H. et al. Haemorrhagic toxin and lethal toxin from Clostridium sordellii strain vpi9048: molecular characterization and comparative analysis of substrate specificity of the large clostridial glucosylating toxins. Cell. Microbiol. 16, 1706–1721 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Chandrasekaran, R. & Lacy, D. B. The role of toxins in Clostridium difficile infection. FEMS Microbiol. Rev. 41, 723–750 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hecht, G., Pothoulakis, C., LaMont, J. T. & Madara, J. L. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J. Clin. Invest. 82, 1516–1524 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hecht, G., Koutsouris, A., Pothoulakis, C., LaMont, J. T. & Madara, J. L. Clostridium difficile toxin B disrupts the barrier function of T84 monolayers. Gastroenterology 102, 416–423 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Moore, R., Pothoulakis, C., LaMont, J. T., Carlson, S. & Madara, J. L. C. difficile toxin A increases intestinal permeability and induces Cl-secretion. Am. J. Physiol. Gastrointest. Liver Physiol. https://doi.org/10.1152/ajpgi.1990.259.2.G165 (1990).

    Article  Google Scholar 

  74. Riegler, M. et al. Clostridium difficile toxin B is more potent than toxin A in damaging human colonic epithelium in vitro. J. Clin. Invest. 95, 2004–2011 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Welsh, C. F. et al. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat. Cell Biol. 3, 950–957 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Fiorentini, C. et al. Clostridium difficile toxin B induces apoptosis in intestinal cultured cells. Infect. Immun. 66, 2660–2665 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Qa’Dan, M. et al. Clostridium difficile toxin B activates dual caspase-dependent and caspase-independent apoptosis in intoxicated cells. Cell Microbiol. 4, 425–434 (2002).

    Article  PubMed  Google Scholar 

  78. Brito, G. A. et al. Clostridium difficile toxin A induces intestinal epithelial cell apoptosis and damage: role of Gln and Ala-Gln in toxin A effects. Dig. Dis. Sci. 50, 1271–1278 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Chumbler, N. M., Farrow, M. A., Lapierre, L. A., Franklin, J. L. & Lacy, D. B. Clostridium difficile toxins TcdA and TcdB cause colonic tissue damage by distinct mechanisms. Infect. Immun. 84, 2871–2877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Saavedra, P. H. V. et al. Apoptosis of intestinal epithelial cells restricts Clostridium difficile infection in a model of pseudomembranous colitis. Nat. Commun. 9, 4846 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Farrow, M. A. et al. Clostridium difficile toxin B-induced necrosis is mediated by the host epithelial cell NADPH oxidase complex. Proc. Natl Acad. Sci. USA 110, 18674–18679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chumbler, N. M. et al. Clostridium difficile toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism. PLoS Pathog. 8, e1003072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wohlan, K. et al. Pyknotic cell death induced by Clostridium difficile TcdB: chromatin condensation and nuclear blister are induced independently of the glucosyltransferase activity. Cell Microbiol. 16, 1678–1692 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Farrow, M. A. et al. Small molecule inhibitor screen reveals calcium channel signaling as a mechanistic mediator of Clostridium difficile TcdB-induced necrosis. ACS Chem. Biol. 15, 1212–1221 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang, Z., Zhang, Y., Huang, T. & Feng, H. Glucosyltransferase activity of Clostridium difficile toxin B is essential for disease pathogenesis. Gut Microbes 6, 221–224 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bilverstone, T. W. et al. The glucosyltransferase activity of C. difficile toxin B is required for disease pathogenesis. PLoS Pathog. 16, e1008852 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, Y. et al. Cysteine protease-mediated autocleavage of Clostridium difficile toxins regulates their proinflammatory activity. CMGH 5, 611–625 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Lyras, D. et al. Toxin B is essential for virulence of Clostridium difficile. Nature 458, 1176–1179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kuehne, S. A. et al. The role of toxin A and toxin B in Clostridium difficile infection. Nature 467, 711–713 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Carter, G. P. et al. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. mBio 6, e00551–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Popoff, M. R., Rubin, E. J., Gill, D. M. & Boquet, P. Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect. Immun. 56, 2299–2306 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bacci, S., Mølbak, K., Kjeldsen, M. K. & Olsen, K. E. P. Binary toxin and death after Clostridium difficile infection. Emerg. Infect. Dis. 17, 976–982 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Barbut, F. et al. Clinical features of Clostridium difficile-associated diarrhoea due to binary toxin (actin-specific ADP-ribosyltransferase)-producing strains. J. Med. Microbiol. 54, 181–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Stewart, D. B., Berg, A. & Hegarty, J. Predicting recurrence of C. difficile colitis using bacterial virulence factors: binary toxin is the key. J. Gastrointest. Surg. 17, 118–125 (2013).

    Article  PubMed  Google Scholar 

  96. Metcalf, D. S. & Weese, J. S. Binary toxin locus analysis in Clostridium difficile. J. Med. Microbiol. 60, 1137–1145 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Carter, G. P. et al. Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator. J. Bacteriol. 189, 7290–7301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lyon, S. A., Hutton, M. L., Rood, J. I., Cheung, J. K. & Lyras, D. CdtR regulates TcdA and TcdB production in Clostridium difficile. PLoS Pathog. 12, e1005758 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Bilverstone, T. W., Minton, N. P. & Kuehne, S. A. Phosphorylation and functionality of CdtR in Clostridium difficile. Anaerobe 58, 103–109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Perelle, S., Gibert, M., Bourlioux, P., Corthier, G. & Popoff, M. R. Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect. Immun. 65, 1402–1407 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sundriyal, A., Roberts, A. K., Shone, C. C. & Acharya, K. R. Structural basis for substrate recognition in the enzymatic component of ADP-ribosyltransferase toxin CDTa from Clostridium difficile. J. Biol. Chem. 284, 28713–28719 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sheedlo, M. J., Anderson, D. M., Thomas, A. K. & Lacy, D. B. Structural elucidation of the Clostridioides difficile transferase toxin reveals a single-site binding mode for the enzyme. Proc. Natl Acad. Sci. USA 117, 6139–6144 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Anderson, D. M., Sheedlo, M. J., Jensen, J. L. & Lacy, D. B. Structural insights into the transition of Clostridioides difficile binary toxin from prepore to pore. Nat. Microbiol. 5, 102–107 (2020). This cryo-electron microscopy structural analysis of CDTb leads to the identification of a glycan-binding domain and documents four discreet structural conformations that represent the transition from prepore to pore.

    Article  CAS  PubMed  Google Scholar 

  104. Xu, X. et al. Structure of the cell-binding component of the Clostridium difficile binary toxin reveals a di-heptamer macromolecular assembly. Proc. Natl Acad. Sci. USA 117, 1049–1058 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Papatheodorou, P. et al. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc. Natl Acad. Sci. USA 108, 16422–16427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Barth, H., Aktories, K., Popoff, M. R. & Stiles, B. G. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol. Mol. Biol. Rev. 68, 373–402 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kaiser, E. et al. Membrane translocation of binary actin-ADP-ribosylating toxins from Clostridium difficile and Clostridium perfringens is facilitated by cyclophilin A and Hsp90. Infect. Immun. 79, 3913–3921 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Aktories, K., Schwan, C., Papatheodorou, P. & Lang, A. E. Bidirectional attack on the actin cytoskeleton. Bacterial protein toxins causing polymerization or depolymerization of actin. Toxicon 60, 572–581 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Wegner, A. & Aktories, K. ADP-ribosylated actin caps the barbed ends of actin filaments. J. Biol. Chem. 263, 13739–13742 (1988).

    Article  CAS  PubMed  Google Scholar 

  110. Schwan, C. et al. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog. 5, e1000626 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Nölke, T. et al. Septins guide microtubule protrusions induced by actin-depolymerizing toxins like Clostridium difficile transferase (CDT). Proc. Natl Acad. Sci. USA 113, 7870–7875 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Schwan, C. et al. Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence. Proc. Natl Acad. Sci. USA 111, 2313–2318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cowardin, C. A. et al. The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nat. Microbiol. 1, 16108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Simpson, M. et al. Clostridioides difficile binary toxin is recognized by the toll-like receptor 2/6 heterodimer to induce a nuclear factor-κB response. J. Infect. Dis. https://doi.org/10.1093/infdis/jiaa620 (2020).

    Article  PubMed Central  Google Scholar 

  115. McDonald, L. C. et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66, e1–e48 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stevens, V. W. et al. Comparative effectiveness of vancomycin and metronidazole for the prevention of recurrence and death in patients with Clostridium difficile infection. JAMA Intern. Med. 177, 546–553 (2017).

    Article  PubMed  Google Scholar 

  117. Wilcox, M. H., McGovern, B. H. & Hecht, G. A. The efficacy and safety of fecal microbiota transplant for recurrent Clostridium difficile infection: current understanding and gap analysis. Open Forum Infect. Dis. 7, ofaa114 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Wilcox, M. H. et al. Bezlotoxumab for prevention of recurrent Clostridium difficile. Infect. N. Engl. J. Med. 376, 305–317 (2017).

    Article  CAS  Google Scholar 

  119. Hernandez, L. D. et al. Epitopes and mechanism of action of the Clostridium difficile toxin A-neutralizing antibody actoxumab. J. Mol. Biol. 429, 1030–1044 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Unger, M. et al. Selection of nanobodies that block the enzymatic and cytotoxic activities of the binary Clostridium difficile toxin CDT. Sci. Rep. 17, 1–10 (2017).

    Google Scholar 

  121. Babcock, G. J. et al. Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Infect. Immun. 74, 6339–6347 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hernandez, L. D. et al. Broad coverage of genetically diverse strains of Clostridium difficile by actoxumab and bezlotoxumab predicted by in vitro neutralization and epitope modeling. Antimicrob. Agents Chemother. 59, 1052–1060 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Hussack, G. et al. Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J. Biol. Chem. 286, 8961–8976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Murase, T. et al. Structural basis for antibody recognition in the receptor-binding domains of toxins A and B from Clostridium difficile. J. Biol. Chem. 289, 2331–2343 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Kroh, H. K. et al. Use of a neutralizing antibody helps identify structural features critical for binding of Clostridium difficile toxin TcdA to the host cell surface. J. Biol. Chem. 292, 14401–14412 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Orth, P. et al. Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography. J. Biol. Chem. 289, 18008–18021 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kroh, H. K. et al. A neutralizing antibody that blocks delivery of the enzymatic cargo of Clostridium difficile toxin TcdB into host cells. J. Biol. Chem. 293, 941–952 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Chen, K. et al. A probiotic yeast-based immunotherapy against Clostridioides difficile infection. Sci. Transl. Med. 12, eaax4905 (2020). Saccharomyces boulardii engineered to secrete a single tetraspecific antibody to TcdA and TcdB is effective against primary and recurrent CDI in both prophylactic and therapeutic models of disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gupta, P. et al. Functional defects in Clostridium difficile TcdB toxin uptake identify CSPG4 receptor-binding determinants. J. Biol. Chem. 292, 17290–17301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Manse, J. S. & Baldwin, M. R. Binding and entry of Clostridium difficile toxin B is mediated by multiple domains. FEBS Lett. 589, 3945–3951 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Yang, Z. et al. A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant Clostridium difficile infection in mice. J. Infect. Dis. 210, 964–972 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Simeon, R. et al. Selection and characterization of ultrahigh potency designed ankyrin repeat protein inhibitors of C. difficile toxin B. PLoS Biol. https://doi.org/10.1371/journal.pbio.3000311 (2019). Phage panning and functional screening are used to identify a panel of dimeric DARPins with picomolar TcdB-neutralization potency, and binding sites are elucidated with cryo-electron microscopy.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Giesemann, T., Guttenberg, G. & Aktories, K. Human alpha-defensins inhibit Clostridium difficile toxin B. Gastroenterology 134, 2049–2058 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Korbmacher, M. et al. Human α-defensin-5 wfficiently neutralizes Clostridioides difficile toxins TcdA, TcdB, and CDT. Front. Pharmacol. 11, 1204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fischer, S. et al. Human peptide α-defensin-1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT. FASEB J. 34, 6244–6261 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Kudryashova, E. et al. Human defensins facilitate local unfolding of thermodynamically unstable regions of bacterial protein toxins. Immunity 41, 709–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Larabee, J. L., Bland, S. J., Hunt, J. J. & Ballard, J. D. Intrinsic toxin-derived peptides destabilize and inactivate Clostridium difficile TcdB. mBio https://doi.org/10.1128/mBio.00503-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hansen, S., Nile, A. H., Mehta, S. C., Fuhrmann, J. & Hannoush, R. N. Lead optimization yields high affinity Frizzled 7-targeting peptides that modulate Clostridium difficile toxin B pathogenicity in epithelial cells. J. Med. Chem. 62, 7739–7750 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Jank, T., Ziegler, M. O., Schulz, G. E. & Aktories, K. Inhibition of the glucosyltransferase activity of clostridial Rho/Ras-glucosylating toxins by castanospermine. FEBS Lett. 582, 2277–2282 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Stroke, I. L. et al. Treatment of Clostridium difficile infection with a small-molecule inhibitor of toxin UDP-glucose hydrolysis activity. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00107-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tam, J. et al. Small molecule inhibitors of Clostridium difficile toxin B-induced cellular damage. Chem. Biol. 22, 175–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Bhattacharyya, S., Kerzmann, A. & Feig, A. L. Fluorescent analogs of UDP-glucose and their use in characterizing substrate binding by toxin A from Clostridium difficile. Eur. J. Biochem. 269, 3425–3432 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Ivarsson, M. E. et al. Small-molecule allosteric triggers of Clostridium difficile toxin B auto-proteolysis as a therapeutic strategy. Cell Chem. Biol. 26, 17–26.e13 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Bender, K. O. et al. A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci. Transl. Med. 7, 306ra148 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Slater, L. H. et al. Identification of novel host-targeted compounds that protect from anthrax lethal toxin-induced cell death. ACS Chem. Biol. 8, 812–822 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tam, J. et al. Host-targeted niclosamide inhibits C. difficile virulence and prevents disease in mice without disrupting the gut microbiota. Nat. Commun. 9, 5233 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Garland, M. et al. The clinical drug ebselen attenuates inflammation and promotes microbiome recovery in mice after antibiotic treatment for CDI. Cell Rep. Med. 1, 100005 (2020). Ebselen treatment reduces recurrence rates and decreases colitis in a hamster model of relapsing CDI.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Tam, J. et al. Intestinal bile acids directly modulate the structure and function of C. difficile TcdB toxin. Proc. Natl Acad. Sci. USA 117, 6792–6800 (2020). This study suggests that, in addition to modulating spore germination and bacterial viability, intestinal bile acids may modulate virulence by directly binding and inactivating TcdB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Abbas, A. & Zackular, J. P. Microbe–microbe interactions during Clostridioides difficile infection. Curr. Opin. Microbiol. 53, 19–25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nagao-Kitamoto, H. et al. Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nat. Med. 26, 608–617 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38, 779–786 (2006).

    Article  PubMed  CAS  Google Scholar 

  152. Knight, D. R., Elliott, B., Chang, B. J., Perkins, T. T. & Riley, T. V. Diversity and evolution in the genome of Clostridium difficile. Clin. Microbiol. Rev. 28, 721–741 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Trzilova, D. & Tamayo, R. Site-specific recombination – how simple DNA inversions produce complex phenotypic heterogeneity in bacterial populations. Trends Genet. 37, 59–72 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Knight, D. R. et al. Major genetic discontinuity and novel toxigenic species in Clostridioides difficile taxonomy. eLife 10, e64325 (2021). An analysis of 12,000 C. difficile genomes indicates that the three cryptic clades CI–CIII are distinct genomospecies that predated clades C1–C5 by millions of years.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rupnik, M. & Janezic, S. An update on Clostridium difficile toxinotyping. J. Clin. Microbiol. 54, 13–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Mansfield, M. J. et al. Phylogenomics of 8,839 Clostridioides difficile genomes reveals recombination-driven evolution and diversification of toxin A and B. PLoS Pathog. 16, e1009181 (2020). The tcdA and tcdB genes clustered into 7 (A1–A7) and 12 (B1–B12) distinct subtypes and this forms the basis for a new toxin-based subtyping that can be accessed through an open online database (DiffBase).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Griffiths, D. et al. Multilocus sequence typing of Clostridium difficile. J. Clin. Microbiol. 48, 770–778 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Muñoz, M., Ríos-Chaparro, D. I., Patarroyo, M. A. & Ramírez, J. D. Determining Clostridium difficile intra-taxa diversity by mining multilocus sequence typing databases. BMC Microbiol. 17, 62 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Dingle, K. E. et al. Clinical Clostridium difficile: clonality and pathogenicity locus diversity. PLoS ONE 6, e19993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dingle, K. E. et al. Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol. Evol. 6, 36–52 (2014).

    Article  PubMed  Google Scholar 

  161. Didelot, X. et al. Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol. 13, R118 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Lanis, J. M., Barua, S. & Ballard, J. D. Variations in TcdB activity and the hypervirulence of emerging strains of Clostridium difficile. PLoS Pathog. 6, e1001061 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Janezic, S. et al. Comparative genomics of Clostridioides difficile toxinotypes identifies module-based toxin gene evolution. Microb. Genomics 6, e000449 (2020).

    Article  CAS  Google Scholar 

  164. Marozsan, A. J. et al. Protection against Clostridium difficile infection with broadly neutralizing antitoxin monoclonal antibodies. J. Infect. Dis. 206, 706–713 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chen, R. et al. Whole genome sequences of three Clade 3 Clostridium difficile strains carrying binary toxin genes in China. Sci. Rep. 7, 43555 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Stabler, R. A. et al. Macro and micro diversity of Clostridium difficile isolates from diverse sources and geographical locations. PLoS ONE 7, e31559 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhou, Y. et al. Phenotypic and genotypic analysis of Clostridium difficile isolates: a single-center study. J. Clin. Microbiol. 52, 4260–4266 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. He, M. et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 45, 109–113 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Shaw, H. A. et al. The recent emergence of a highly related virulent Clostridium difficile clade with unique characteristics. Clin. Microbiol. Infect. 26, 492–498 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Imwattana, K. et al. Clostridium difficile ribotype 017–characterization, evolution and epidemiology of the dominant strain in. Asia. Emerg. Microbes Infect. 8, 796–807 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Elliott, B., Dingle, K. E., Didelot, X., Crook, D. W. & Riley, T. V. The complexity and diversity of the pathogenicity locus in Clostridium difficile clade 5. Genome Biol. Evol. 6, 3159–3170 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Sheedlo, H. Kroh, C. Peritore-Galve and J. Jensen for providing critical feedback. The authors are grateful to M. Sheedlo for guidance on making structural figures. Work in the Lacy laboratory is supported by NIH AI095755 and VA BX002943 grants with additional grant fellowship support to S.L.K. from NIH F32GM139303.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to D. Borden Lacy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks Klaus Aktories, Rongsheng Jin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

DiffBase: https://diffbase.uwaterloo.ca/

Glossary

Pseudomembranous colitis

Inflammation of the colon characterized by raised yellow-white plaques of discarded epithelial and immune cells.

Toxic megacolon

A life-threatening condition characterized by non-obstructive, inflammatory dilation, expansion and distension of the colon.

Sequence types

Unique combinations of alleles grouped together on the basis of multilocus sequence typing.

Pyroptosis

A lytic and pro-inflammatory form of caspase 1-dependent programmed cell death.

Pyknosis

Irreversible chromatin condensation and nuclear dissolution during necrosis or apoptosis.

Two-component signal transduction system

A signal transduction pathway comprising a sensor that phosphorylates a response regulator in response to an environmental stimulus to elicit an effector function.

Designed ankyrin repeat proteins

(DARPins). Small protein scaffolds engineered to bind an antigen with high specificity and affinity, similar to monoclonal antibodies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordus, S.L., Thomas, A.K. & Lacy, D.B. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat Rev Microbiol 20, 285–298 (2022). https://doi.org/10.1038/s41579-021-00660-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-021-00660-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing