Abstract
Fossilized lipids preserved in sedimentary rocks offer singular insights into the Earth’s palaeobiology. These ‘biomarkers’ encode information pertaining to the oxygenation of the atmosphere and oceans, transitions in ocean plankton, the greening of continents, mass extinctions and climate change. Historically, biomarker interpretations relied on inventories of lipids present in extant microorganisms and counterparts in natural environments. However, progress has been impeded because only a small fraction of the Earth’s microorganisms can be cultured, many environmentally significant microorganisms from the past no longer exist and there are gaping holes in knowledge concerning lipid biosynthesis. The revolution in genomics and bioinformatics has provided new tools to expand our understanding of lipid biomarkers, their biosynthetic pathways and distributions in nature. In this Review, we explore how preserved organic molecules provide a unique perspective on the history of the Earth’s microbial life. We discuss how advances in molecular biology have helped elucidate biomarker origins and afforded more robust interpretations of fossil lipids and how the rock record provides vital calibration points for molecular clocks. Such studies are open to further exploitation with the expansion of sequenced microbial genomes in accessible databases.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Berner, E. K. & Berner, R. A. Global Environment: Water, Air, and Geochemical Cycles (Princeton Univ. Press, 2012).
Cavosie, A. J., Valley, J. W. & Wilde, S. A. The oldest terrestrial mineral record: a review of 4400 to 4000 Ma detrital zircons from Jack Hills, Western Australia. Dev. Precambrian Geol. 15, 91–111 (2007).
Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).
McNaughton, N. J., Compston, W. & Barley, M. E. Constraints on the age of the Warrawoona Group, eastern Pilbara Block, Western Australia. Precambrian Res. 60, 69–98 (1993).
Sugitani, K., Mimura, K., Nagaoka, T., Lepot, K. & Takeuchi, M. Microfossil assemblage from the 3400 Ma strelley pool formation in the Pilbara Craton, Western Australia: results form a new locality. Precambrian Res. 226, 59–74 (2013).
Sugitani, K. et al. Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils. Geobiology 13, 507–521 (2015).
Alleon, J. et al. Chemical nature of the 3.4 Ga Strelley Pool microfossils. Geochem. Perspect. Lett. 7, 37–42 (2018).
Allwood, A. C. et al. Controls on development and diversity of Early Archean stromatolites. Proc. Natl Acad. Sci. USA 106, 9548–9555 (2009).
Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. & Burch, I. W. Stromatolite reef from the Early Archaean era of Australia. Nature 441, 714–718 (2006). This paper details connections between the morphology of some of the oldest stromatolites and features of their coastal marine setting. It is key to illustrating how complex microbial communities must have existed on the Earth at least 3.45 billion years ago.
Hofmann, H., Grey, K., Hickman, A. & Thorpe, R. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull. 111, 1256–1262 (1999).
Des Marais, D. J. Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. Rev. Mineral. Geochem. 43, 555–578 (2001).
Buick, R. et al. Record of emergent continental crust ∼3.5 billion years ago in the Pilbara Craton of Australia. Nature 375, 574–577 (1995).
Ueno, Y., Ono, S., Rumble, D. & Maruyama, S. Quadruple sulfur isotope analysis of ca. 3.5 Ga dresser formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675–5691 (2008).
Bontognali, T. R. R. et al. Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc. Natl Acad. Sci. USA 109, 15146–15151 (2012).
Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? Precambrian Res. 96, 63–82 (1999).
Morgan, G. J. Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959–1965. J. Hist. Biol. 31, 155–178 (1998).
Zuckerkandl, E. & Pauling, L. Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366 (1965). This classic paper informs us how the sequences of present-day macromolecules encode a history of their origin and evolution.
Zuckerkandl, E. & Pauling, L. in Evolving Genes and Proteins 97–166 (Elsevier, 1965).
Peterson, K. J., Summons, R. E. & Donoghue, P. C. J. Molecular palaeobiology. Palaeontology 50, 775–809 (2007).
Gaucher, E. A. Ancestral sequence reconstruction as a tool to understand natural history and guide synthetic biology: realizing and extending the vision of Zuckerkandl and Pauling. Liberles [83] 31, 20–33 (2007).
Kacar, B., Hanson-Smith, V., Adam, Z. R. & Boekelheide, N. Constraining the timing of the Great Oxidation Event within the Rubisco phylogenetic tree. Geobiology 15, 628–640 (2017).
Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866–870 (2005).
McKenna, E. J. & Kallio, R. E. Microbial metabolism of the isoprenoid alkane pristane. Proc. Natl Acad. Sci. USA 68, 1552 (1971).
Waples, D. W., Haug, P. & Welte, D. H. Occurrence of a regular C25 isoprenoid hydrocarbon in Tertiary sediments representing a lagoonal-type, saline environment. Geochim. Cosmochim. Acta 38, 381–387 (1974).
Knoll, A. H., Summons, R. E., Waldbauer, J. R. & Zumberge, J. in The Evolution of Primary Producers in the Sea (eds Falkwoski, P. & Knoll, A.H.) 133–163 (Elsevier, 2007).
Brocks, J. J. The transition from a cyanobacterial to algal world and the emergence of animals. Emerg. Top. Life Sci. 2, 181–190 (2018).
Sinninghe Damsté, J. S. & Köster, J. A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event. Earth Planet. Sci. Lett. 158, 165–173 (1998).
Kuypers, M. M. M. et al. Massive expansion of marine archaea during a mid-cretaceous oceanic anoxic event. Science 293, 92–95 (2001).
Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U. & Sarnthein, M. Molecular stratigraphy: a new tool for climatic assessment. Nature 320, 129–133 (1986). This study is the first detailing how fossilized organic molecules can serve as SST proxies.
Schouten, S. et al. Extremely high sea-surface temperatures at low latitudes during the Middle Cretaceous as revealed by archaeal membrane lipids. Geology 31, 1069–1072 (2003).
Bobrovskiy, I., Hope, J. M., Krasnova, A., Ivantsov, A. & Brocks, J. J. Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis. Nat. Ecol. Evol. 2, 437 (2018).
Evitt, W. R. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II. Proc. Natl Acad. Sci. USA 49, 298 (1963).
Treibs, A. Chlorophyll- und Häminderivate in organischen Mineralstoffen [German]. Angew. Chem. 49, 682–686 (1936).
Hills, I. R. & Whitehead, E. V. Triterpanes in optically active petroleum distillates. Nature 209, 977–979 (1966).
Blumer, M. Pigments of a fossil echinoderm. Nature 188, 1100–1101 (1960).
Ourisson, G., Albrecht, P. & Rohmer, M. The hopanoids. Palaeochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51, 709–729 (1979). This review details how a particular group of bacterial membrane lipids gave rise to a ubiquitous and abundant class of chemical fossils.
Rohmer, M. & Ourisson, G. Dérivés du bactériohopane: variations structurales et répartition [French]. Tetrahedron Lett. 17, 3637–3640 (1976).
Yon, D. A., Maxwell, J. R. & Ryback, G. 2,6,10-Trimethyl-7-(3-methylbutyl)-dodecane, a novel sedimentary biological marker compound. Tetrahedron Lett. 23, 2143–2146 (1982).
Barrick, R. C., Hedges, J. I. & Peterson, M. L. Hydrocarbon geochemistry of the Puget Sound region — I. Sedimentary acyclic hydrocarbons. Geochim. Cosmochim. Acta 44, 1349–1362 (1980).
Requejo, A. G. & Quinn, J. G. Geochemistry of C25 and C30 biogenic alkenes in sediments of the Narragansett Bay estuary. Geochim. Cosmochim. Acta 47, 1075–1090 (1983).
Dunlop, R. W. & Jefferies, P. R. Hydrocarbons of the hypersaline basins of Shark Bay, Western Australia. Org. Geochem. 8, 313–320 (1985).
Volkman, J. K., Barrett, S. M. & Dunstan, G. A. C25 and C30 highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms.Org. Geochem. 21, 407–414 (1994).
Sinninghe Damste, J. S. et al. The rise of the rhizosolenid diatoms. Science 304, 584–587 (2004).
Rowland, S. J. et al. Factors influencing the distributions of polyunsaturated terpenoids in the diatom, Rhizosolenia setigera. Phytochemistry 58, 717–728 (2001).
Blumer, M., Guillard, R. R. L. & Chase, T. Hydrocarbons of marine phytoplankton. Mar. Biol. 8, 183–189 (1971).
Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1335 (1967).
Rohmer, M., Bouvier-Nave, P. & Ourisson, G. Distribution of hopanoid triterpanes in prokaryotes. J. Gen. Microbiol. 130, 1137–1150 (1984).
Volkman, J. K. et al. Microalgal biomarkers: a review of recent research developments. Org. Geochem. 29, 1163–1179 (1998). This paper reviews the laborious but essential work of surveying biomarkers across living organisms. The distribution of biomarkers in modern algae provides a solid foundation on which molecular fossils have historically been interpreted.
Sturt, H. F., Summons, R. E., Smith, K., Elvert, M. & Hinrichs, K.-U. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry — new biomarkers for biogeochemistry and microbial ecology. Rapid Commun. Mass. Spectrom. 18, 617–628 (2004).
White, D. C. & Ringelberg, D. B. in Techniques in Microbial Ecology. (eds Burlage, R. S. et al.) 255–272 (Oxford Univ. Press, 1998).
Vestal, J. R. & White, D. C. Lipid analysis in microbial ecology. Bioscience 39, 535–541 (1989).
Lipp, J. S. & Hinrichs, K.-U. Structural diversity and fate of intact polar lipids in marine sediments. Geochim. Cosmochim. Acta 73, 6816–6833 (2009).
Rossel, P. E. et al. Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Org. Geochem. 39, 992–999 (2008).
Taylor, J. & Parkes, R. J. The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J. Gen. Microbiol. 129, 3303–3309 (1983).
Brocks, J. J. & Pearson, A. Building the biomarker tree of life. Rev. Mineral. Geochem. 59, 233–258 (2005).
Volkman, J. K. Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org. Geochem. 36, 139–159 (2005).
Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54, 19–61 (2013).
Peters, K. E., Walters, C. C. & Moldowan, J. M. The Biomarker Guide 2nd edn (Cambridge Univ. Press, 2005).
Pearson, A. 12.11 Lipidomics for geochemistry. Treatise Geochem. 12, 291–336 (2014).
Newman, D. K., Neubauer, C., Ricci, J. N., Wu, C.-H. & Pearson, A. Cellular and molecular biological approaches to interpreting ancient biomarkers. Annu. Rev. Earth Planet. Sci. 44, 493–522 (2016). This paper details our changing understanding on the role of 2-methylhopanoids in bacteria, and how this change impacts our interpretation of the related molecular fossil. It provides a case study on the importance of knowing what a biomarker biologically does in a microbe, not just its presence or absence.
Ochs, D., Kaletta, C., Entian, K. D., Beck-Sickinger, A. & Poralla, K. Cloning, expression, and sequencing of squalene-hopene cyclase, a key enzyme in triterpenoid metabolism. J. Bacteriol. 174, 298–302 (1992).
Schmerk, C. L. et al. Elucidation of the Burkholderia cenocepacia hopanoid biosynthesis pathway uncovers functions for conserved proteins in hopanoid-producing bacteria. Environ. Microbiol. 17, 735–750 (2015).
Welander, P. V. et al. Identification and characterization of Rhodopseudomonas palustris TIE-1 hopanoid biosynthesis mutants. Geobiology 10, 163–177 (2012).
Pearson, A., Flood Page, S. R., Jorgenson, T. L., Fischer, W. W. & Higgins, M. B. Novel hopanoid cyclases from the environment. Environ. Microbiol. 9, 2175–2188 (2007). This paper is the first example of using a biomarker biosynthesis gene, the squalene–hopene cyclase gene necessary for hopanoid production, to demonstrate the potential diversity of biomarker producers in environmental metagenomic data sets.
Villanueva, L., Rijpstra, W. I. C., Schouten, S. & Damsté, J. S. S. Genetic biomarkers of the sterol–biosynthetic pathway in microalgae. Environ. Microbiol. Rep. 6, 35–44 (2014).
Villanueva, L., Schouten, S. & Sinninghe Damsté, J. S. Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota. Environ. Microbiol. 17, 3527–3539 (2015).
Banta, A. B., Wei, J. H. & Welander, P. V. A distinct pathway for tetrahymanol synthesis in bacteria. Proc. Natl Acad. Sci. USA 112, 13478–13483 (2015).
Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).
Eglinton, G. & Calvin, M. Chemical fossils. Sci. Am. 216, 32–43 (1967).
Jensen, S. V. L. Bacterial carotenoids. Acta Chem. Scand. 19, 1025–30 (1965).
Jensen, S. V. L. Bacterial carotenoids XXII. Acta Chem. Scand. 21, 2578–80 (1967).
Summons, R. E. & Powell, T. G. Chlorobiaceae in Paleozoic seas revealed by biological markers, isotopes and geology. Nature 319, 763–765 (1986).
Abella, C., Montesinos, E. & Guerrero, R. in Shallow Lakes Contributions to Their Limnology 173–181 (Springer, 1980).
French, K. L., Rocher, D., Zumberge, J. E. & Summons, R. E. Assessing the distribution of sedimentary C40 carotenoids through time. Geobiology 13, 139–151 (2015).
Sinninghe Damsté, J. S. & Koopmans, M. P. The fate of carotenoids in sediments: an overview. Pure Appl. Chem. 69, 2067–2074 (1997).
Frigaard, N.-U., Maresca, J. A., Yunker, C. E., Jones, A. D. & Bryant, D. A. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J. Bacteriol. 186, 5210–5220 (2004).
Maresca, J., Graham, J. & Bryant, D. The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria. Photosynthesis Res. 97, 121–140 (2008).
Maresca, J. A., Romberger, S. P. & Bryant, D. A. Isorenieratene biosynthesis in green sulfur bacteria requires the cooperative actions of two carotenoid cyclases. J. Bacteriol. 190, 6384–6391 (2008).
Vogl, K. & Bryant, D. A. Biosynthesis of the biomarker okenone: χ-ring formation. Geobiology 10, 205–215 (2012).
Krügel, H., Krubasik, P., Weber, K., Saluz, H. P. & Sandmann, G. Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. Biochim. Biophys. Acta 1439, 57–64 (1999).
Krubasik, P. & Sandmann, G. A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids. Mol. Gen. Genet. 263, 423–432 (2000).
Graham, J. E., Lecomte, J. T. J. & Bryant, D. A. Synechoxanthin, an aromatic C40 xanthophyll that is a major carotenoid in the cyanobacterium Synechococcus sp. PCC 7002. J. Nat. Products 71, 1647–1650 (2008).
Graham, J. E. & Bryant, D. A. The biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 190, 7966–7974 (2008).
Koopmans, M. P., Schouten, S., Kohnen, M. E. L. & Damsté, J. S. S. Restricted utility of aryl isoprenoids as indicators for photic zone anoxia. Geochim. Cosmochim. Acta 60, 4873–4876 (1996).
Brocks, J. J. & Schaeffer, P. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek formation. Geochim. Cosmochim. Acta 72, 1396–1414 (2008).
Yamaguchi, M. On carotenoids of a sponge “Reniera japonica”. Bull. Chem. Soc. Jpn. 30, 111–114 (1957).
Yamaguchi, M. Renieratene, a new carotenoid containing benzene rings, isolated from a sea sponge. Bull. Chem. Soc. Jpn. 31, 739–742 (1958).
Hentschel, U., Piel, J., Degnan, S. M. & Taylor, M. W. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10, 641–654 (2012).
French, K. L., Birdwell, J. E. & Berg, V. Biomarker similarities between the saline lacustrine eocene green river and the paleoproterozoic Barney Creek formations. Geochim. Cosmochim. Acta 274, 228–245 (2020).
Cui, X. et al. Niche expansion for phototrophic sulfur bacteria at the Proterozoic–Phanerozoic transition. Proc. Natl Acad. Sci. USA 117, 17599–17606 (2020).
Koopmans, M. P., De Leeuw, J. W. & Sinninghe Damsté, J. S. Novel cyclised and aromatised diagenetic products of β-carotene in the Green River Shale. Org. Geochem. 26, 451–466 (1997).
Behrens, A., Schaeffer, P., Bernasconi, S. & Albrecht, P. Mono- and bicyclic squalene derivatives as potential proxies for anaerobic photosynthesis in lacustrine sulfur-rich sediments. Geochim. Cosmochim. Acta 64, 3327–3336 (2000).
Schaeffer, P., Adam, P., Wehrung, P. & Albrecht, P. Novel aromatic carotenoid derivatives from sulfur photosynthetic bacteria in sediments. Tetrahedron Lett. 38, 8413–8416 (1997).
Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578 (2017). This study highlights how specific chemical modifications in lipid structures, in this case methylation of sterol molecules, can be informative and can be used to track the emergence of specific microbial groups in the geologic record.
Javaux, E. J. & Knoll, A. H. Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. J. Paleontol. 91, 199–229 (2017).
Knoll, A. H. The early evolution of eukaryotes: a geological perspective. Science 256, 622–627 (1992).
Wei, J. H., Yin, X. & Welander, P. V. Sterol synthesis in diverse bacteria. Front. Microbiol. 7, 990 (2016).
Hoshino, Y. & Gaucher, E. A. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proc. Natl Acad. Sci. USA 118, e2101276118 (2021). This recent study uses a phylogenetic approach to assess the evolutionary history of sterol biosynthesis and the potential impact of bacterial sterol biosynthesis on the rise of eukaryotes.
Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B Biol. Sci. 361, 903–915 (2006).
Luo, G. et al. Rapid oxidation of Earth’s atmosphere 2.33 billion years ago. Sci. Adv. 2, e1600134 (2016).
Gold, D. A., Caron, A., Fournier, G. P. & Summons, R. E. Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature 543, 420–423 (2017).
Barker, H. A. Studies upon the methane-producing bacteria. Arch. für Mikrobiologie 7, 420–438 (1936).
Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977). This classic study shows how ribosomal RNA sequences reveal that all life follows one of three lines of descent from a common ancestor.
Spang, A., Caceres, E. F. & Ettema, T. J. G. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357, eaaf3883 (2017).
Blank, C. E. Not so old archaea — the antiquity of biogeochemical processes in the archaeal domain of life. Geobiology 7, 495–514 (2009).
Salvador-Castell, M., Tourte, M. & Oger, P. M. In search for the membrane regulators of archaea. Int. J. Mol. Sci. 20, 4434 (2019).
Koga, Y. & Morii, H. Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci. Biotechnol. Biochem. 69, 2019–2034 (2005).
Moldowan, J. M. & Seifert, W. K. Head-to-head linked isoprenoid hydrocarbons in petroleum. Science 204, 169–171 (1979).
Baumann, L. M. F. et al. Intact polar lipid and core lipid inventory of the hydrothermal vent methanogens Methanocaldococcus villosus and Methanothermococcus okinawensis. Org. Geochem. 126, 33–42 (2018).
Summons, R. E., Powell, T. G. & Boreham, C. J. Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, northern Australia: III. Composition of extractable hydrocarbons. Geochim. Cosmochim. Acta 52, 1747–1763 (1988).
Tierney, J. E. in Treatise on Geochemistry Vol. 12 (eds Holland, H.D. & Turekian, K.K.) 379–393 (Elsevier, 2014).
Weijers, J. W. H., Schouten, S., van den Donker, J. C., Hopmans, E. C. & Sinninghe Damsté, J. S. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim. Cosmochim. Acta 71, 703–713 (2007).
Schouten, S., Forster, A., Panoto, F. E. & Sinninghe Damsté, J. S. Towards calibration of the TEX86 palaeothermometer for tropical sea surface temperatures in ancient greenhouse worlds. Org. Geochem. 38, 1537–1546 (2007).
Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002). This study establishes the basis for the TEX86 palaeotemperature proxy as a SST based on the distribution of archaeal GDGT membrane lipids in marine sediments.
Schouten, S., Hopmans, E. C. & Damsté, J. S. S. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry. Org. Geochem. 35, 567–571 (2004).
Tierney, J. E. GDGT thermometry: lipid tools for reconstructing paleotemperatures. Paleontol. Soc. Pap. 18, 115–132 (2012).
Zhang, Y. G., Pagani, M. & Wang, Z. Ring Index: a new strategy to evaluate the integrity of TEX86 paleothermometry. Paleoceanography 31, 220–232 (2016).
Kim, J.-H., Schouten, S., Hopmans, E. C., Donner, B. & Sinninghe Damsté, J. S. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochim. Cosmochim. Acta 72, 1154–1173 (2008).
Kim, J.-H. et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta 74, 4639–4654 (2010).
Trommer, G. et al. Distribution of Crenarchaeota tetraether membrane lipids in surface sediments from the Red Sea. Org. Geochem. 40, 724–731 (2009).
Tierney, J. E. & Tingley, M. P. A Bayesian, spatially-varying calibration model for the TEX86 proxy. Geochim. Cosmochim. Acta 127, 83–106 (2014).
Tierney, J. E. & Tingley, M. P. A TEX86 surface sediment database and extended Bayesian calibration. Sci. Data 2, 150029 (2015).
Zhou, A. et al. Energy flux controls tetraether lipid cyclization in Sulfolobus acidocaldarius. Environ. Microbiol. 22, 343–353 (2020).
Qin, W. et al. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota. Proc. Natl Acad. Sci. USA 112, 10979–10984 (2015).
Hurley, S. J. et al. Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy. Proc. Natl Acad. Sci. USA 113, 7762–7767 (2016).
DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).
Lincoln, S. A. et al. Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean. Proc. Natl Acad. Sci. USA 111, 9858–9863 (2014).
Zeng, Z. et al. GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean. Proc. Natl Acad. Sci. USA 116, 22505–22511 (2019).
Besseling, M. A. et al. The absence of intact polar lipid-derived GDGTs in marine waters dominated by Marine Group II: implications for lipid biosynthesis in archaea. Sci. Rep. 10, 1–10 (2020).
Pearson, A. Resolving a piece of the archaeal lipid puzzle. Proc. Natl Acad. Sci. USA 116, 22423–22425 (2019).
Gold, D. A., O’Reilly, S. S., Luo, G., Briggs, D. E. G. & Summons, R. E. Prospects for sterane preservation in sponge fossils from museum collections and the utility of sponge biomarkers for molecular clocks. Bull. Peabody Mus. Nat. History 57, 181–189 (2016).
French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).
Lee, A. K. et al. C-4 sterol demethylation enzymes distinguish bacterial and eukaryotic sterol synthesis. Proc. Natl Acad. Sci. USA 115, 5884–5889 (2018).
Pollier, J. et al. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis. Nat. Microbiol. 4, 226–233 (2019).
Cronin, J. R., Pizzarello, S., Epstein, S. & Krishnamurthy, R. V. Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta 57, 4745–4752 (1993).
Summons, R. E., Albrecht, P., McDonald, G. & Moldowan, J. M. Molecular biosignatures. Strateg. Life Detection 25, 133–159 (2008).
Davila, A. F. & McKay, C. P. Chance and necessity in biochemistry: implications for the search for extraterrestrial biomarkers in Earth-like environments. Astrobiology 14, 534–540 (2014).
Summons, R. E. et al. Preservation of martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11, 157–181 (2011).
McKay, C. P. What is life — and how do we search for it in other worlds? PLoS Biol. 2, e302 (2004).
Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth/‘s early ocean and atmosphere. Nature 506, 307–315 (2014).
Martin, A. P., Condon, D. J., Prave, A. R. & Lepland, A. A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi–Jatuli Event). Earth Sci. Rev. 127, 242–261 (2013).
Welander, P. V., Coleman, M., Sessions, A. L., Summons, R. E. & Newman, D. K. Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proc. Natl Acad. Sci. USA 107, 8537–8542 (2010).
Zundel, M. & Rohmer, M. Prokaryotic triterpenoids. 3. The biosynthesis of 2β-methylhopanoids and 3β-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus ssp. pasteurianus. Eur. J. Biochem. 150, 35–39 (1985).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).
Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).
Schmerk, C. L., Bernards, M. A. & Valvano, M. A. Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia. J. Bacteriol. 193, 6712–6723 (2011).
Ricci, J. N., Morton, R., Kulkarni, G., Summers, M. L. & Newman, D. K. Hopanoids play a role in stress tolerance and nutrient storage in the cyanobacterium Nostoc punctiforme. Geobiology 15, 173–183 (2017).
Garby, T. J. et al. Lack of methylated hopanoids renders the cyanobacterium Nostoc punctiforme sensitive to osmotic and pH stress. Appl. Environ. Microbiol. 83, e00777–00717 (2017).
Bradley, A. S. et al. Hopanoid-free Methylobacterium extorquens DM4 overproduces carotenoids and has widespread growth impairment. PLoS ONE 12, e0173323 (2017).
Bergsten, J. A review of long-branch attraction. Cladistics 21, 163–193 (2005).
Chen, K., Durand, D. & Farach-Colton, M. NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7, 429–447 (2000).
Wu, Y.-C., Rasmussen, M. D., Bansal, M. S. & Kellis, M. TreeFix: statistically informed gene tree error correction using species trees. Syst. Biol. 62, 110–120 (2013).
Magnabosco, C., Moore, K. R., Wolfe, J. M. & Fournier, G. P. Dating phototrophic microbial lineages with reticulate gene histories. Geobiology 16, 179–189 (2018).
Brasier, M. D. et al. Questioning the evidence for Earth’s oldest fossils. Nature 416, 76–81 (2002).
Knoll, A. H., Bergmann, K. D. & Strauss, J. V. Life: the first two billion years. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150493 (2016).
Acknowledgements
This work was supported by a grant from the Simons Collaboration on the Origin of Life through an award (290361FY18) to R.E.S. and by National Science Foundation awards (1752564) to P.V.W and (2044871) to D.A.G.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Microbiology thanks V. Parro García, J. Peckmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Warrawoona Group
-
A geological unit in Western Australia that includes the remains of microorganisms as old as 3.46 billion years.
- Pilbara Craton
-
An ancient fragment of continental crust in Western Australia that includes rocks as old as 3.6 billion years.
- Stromatolites
-
Layered sedimentary structures that form when a microbial community traps and binds sediment grains.
- Hopanoids
-
A class of molecules comprising six C5 isoprene units folded into a pentacyclic ring system.
- Accessory pigment
-
A coloured molecule that absorbs light and works in concert with the primary pigment, typically chlorophyll a.
- Sedimentary diagenesis
-
The processes by which sedimentary rocks and their components became modified over time during burial.
- Carbonaceous chondrites
-
Carbon-rich meteorites composed of small mineral grains and representing some of the post-primitive material in the solar system.
Rights and permissions
About this article
Cite this article
Summons, R.E., Welander, P.V. & Gold, D.A. Lipid biomarkers: molecular tools for illuminating the history of microbial life. Nat Rev Microbiol 20, 174–185 (2022). https://doi.org/10.1038/s41579-021-00636-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41579-021-00636-2
This article is cited by
-
Strong linkage between benthic oxygen uptake and bacterial tetraether lipids in deep-sea trench regions
Nature Communications (2024)
-
The eukaryome of modern microbialites reveals distinct colonization across aquatic ecosystems
npj Biofilms and Microbiomes (2024)
-
Common origin of sterol biosynthesis points to a feeding strategy shift in Neoproterozoic animals
Nature Communications (2023)
-
Mercury isotope evidence for marine photic zone euxinia across the end-Permian mass extinction
Communications Earth & Environment (2023)
-
Glaciers as microbial habitats: current knowledge and implication
Journal of Microbiology (2022)