Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antibiofilm activity of host defence peptides: complexity provides opportunities

Abstract

Host defence peptides (HDPs) are integral components of innate immunity across all living organisms. These peptides can exert direct antibacterial effects, targeting planktonic cells (referred to as antimicrobial peptides), and exhibit antibiofilm (referred to as antibiofilm peptides), antiviral, antifungal and host-directed immunomodulatory activities. In this Review, we discuss how the complex functional attributes of HDPs provide many opportunities for the development of antimicrobial therapeutics, focusing particularly on their emerging antibiofilm properties. The mechanisms of action of antibiofilm peptides are compared and contrasted with those of antimicrobial peptides. Furthermore, obstacles for the practical translation of candidate peptides into therapeutics and the potential solutions are discussed. Critically, HDPs have the value-added assets of complex functional attributes, particularly antibiofilm and anti-inflammatory activities and their synergy with conventional antibiotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diversity of biophysical and structural features of HDPs.
Fig. 2: Proposed mechanisms of action of antibacterial HDPs.
Fig. 3: The biofilm life cycle provides several entry points for the antibiofilm effects of HDPs.

Similar content being viewed by others

References

  1. Fjell, C. D., Hiss, J. A., Hancock, R. E. W. & Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11, 37–51 (2012).

    Article  CAS  Google Scholar 

  2. Nguyen, L. T., Haney, E. F. & Vogel, H. J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29, 464–472 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Magana, M. et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 20, e216–e230 (2020). This Review identifies the benefits and opportunities of using antimicrobial peptides against multidrug-resistant pathogens, warranting the development of efficient developmental pipelines for their advancement.

    Article  CAS  PubMed  Google Scholar 

  4. Hancock, R. E. W., Haney, E. F. & Gill, E. E. The immunology of host defence peptides: beyond antimicrobial activity. Nat. Rev. Immunol. 16, 321–334 (2016). This Review highlights the immunomodulatory activities of host defence peptides beyond their antimicrobial activity.

    Article  CAS  PubMed  Google Scholar 

  5. Haney, E. F., Straus, S. K. & Hancock, R. E. W. Reassessing the host defense peptide landscape. Front. Chem. 7, 43 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roope, L. S. J. et al. The challenge of antimicrobial resistance: what economics can contribute. Science 364, eaau4679 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332 (2020). This Review focuses on the scope of functions of host defence peptides and emphasizes how diverse functionality is beneficial in clinical application.

    Article  CAS  PubMed  Google Scholar 

  8. Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 17, 134–143 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hilchie, A. L., Wuerth, K. & Hancock, R. E. W. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat. Chem. Biol. 9, 761–768 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Patrzykat, A., Friedrich, C. L., Zhang, L., Mendoza, V. & Hancock, R. E. W. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob. Agents Chemother. 46, 605–614 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kozlowska, J. et al. Combined systems approaches reveal highly plastic responses to antimicrobial peptide challenge in Escherichia coli. PLoS Pathog. 10, e1004104 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Majchrzykiewicz, J. A., Kuipers, O. P. & Bijlsma, J. J. E. Generic and specific adaptive responses of Streptococcus pneumoniae to challenge with three distinct antimicrobial peptides, bacitracin, LL-37, and nisin. Antimicrob. Agents Chemother. 54, 440–451 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Mensa, B., Howell, G. L., Scott, R. & DeGrado, W. F. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob. Agents Chemother. 58, 5136–5145 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Joo, H. S., Fu, C. I. & Otto, M. Bacterial strategies of resistance to antimicrobial peptides. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bauer, M. E. & Shafer, W. M. On the in vivo significance of bacterial resistance to antimicrobial peptides. Biochim. Biophys. Acta 1848, 3101–3111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raetz, C. R. H., Reynolds, C. M., Trent, M. S. & Bishop, R. E. Lipid A modification systems in Gram-negative bacteria. Annu. Rev. Biochem. 76, 295–329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shah, N. R., Hancock, R. E. W. & Fernandez, R. C. Bordetella pertussis lipid A glucosamine modification confers resistance to cationic antimicrobial peptides and increases resistance to outer membrane perturbation. Antimicrob. Agents Chemother. 58, 4931–4934 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arroyo, L. A. et al. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob. Agents Chemother. 55, 3743–3751 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moffatt, J. H. et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 54, 4971–4977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kristian, S. A. et al. d-Alanylation of teichoic acids promotes group A Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J. Bacteriol. 187, 6719–6725 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cox, E., Michalak, A., Pagentine, S., Seaton, P. & Pokorny, A. Lysylated phospholipids stabilize models of bacterial lipid bilayers and protect against antimicrobial peptides. Biochim. Biophys. Acta 1838, 2198–2204 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mishra, N. N. & Bayer, A. S. Correlation of cell membrane lipid profiles with daptomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 57, 1082–1085 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmidtchen, A., Frick, I. M., Andersson, E., Tapper, H. & Bjorck, L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol 46, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. van der Plas, M. J. A. et al. Pseudomonas aeruginosa elastase cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses. Nat. Commun. 7, 11567 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jin, T. et al. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J. Immunol. 172, 1169–1176 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Schmidtchen, A., Frick, I. M. & Björck, L. Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial α-defensin. Mol. Microbiol. 39, 708–713 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Manning, A. J. & Kuehn, M. J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, 258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Band, V. I. & Weiss, D. S. Mechanisms of antimicrobial peptide resistance in Gram-negative bacteria. Antibiotics 4, 18–41 (2014).

    Article  PubMed Central  Google Scholar 

  29. Chakraborty, K. et al. Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human β-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell. Microbiol. 10, 2520–2537 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Taggart, C. C. et al. Inactivation of human beta-defensins 2 and 3 by elastolytic cathepsins. J. Immunol. 171, 931–937 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Lazzaro, B. P., Zasloff, M. & Rolff, J. Antimicrobial peptides: application informed by evolution. Science 368, eaau5480 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lázár, V. et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat. Microbiol. 3, 718–731 (2018). This study identifies multiple mutations that confer multidrug-resistance as well as collateral sensitivity to host defence peptides and shows that resistance development is more frequent to antibiotics than to peptides.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Spohn, R. et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat. Commun. 10, 4538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Flemming, H. C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Fernández, L., Breidenstein, E. B. M. & Hancock, R. E. W. Creeping baselines and adaptive resistance to antibiotics. Drug Resist. Updat. 14, 1–21 (2011).

    Article  PubMed  Google Scholar 

  37. Bryers, J. D. Medical Biofilms. Biotechnol. Bioeng. 100, 1–18 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malone, M. et al. The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J. Wound Care 26, 20–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Rumbaugh, K. P. & Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 18, 571–586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang, J., Dietz, M. J. & Li, B. Antimicrobial peptide LL-37 is bactericidal against Staphylococcus aureus biofilms. PLoS ONE 14, e0216676 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Overhage, J. et al. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect. Immun. 76, 4176–4182 (2008). This study was seminal to the field of biofilm-directed therapies as the first to identify the biofilm-specific effects of human cathelicidin LL-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parducho, K. R. et al. The antimicrobial peptide human beta-defensin 2 inhibits biofilm production of Pseudomonas aeruginosa without compromising metabolic activity. Front. Immunol. 11, 805 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, C. et al. Human β-defensin 3 inhibits antibiotic-resistant Staphylococcus biofilm formation. J. Surg. Res. 183, 204–213 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Loutet, S. A. & Valvano, M. A. Extreme antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. Front. Microbiol. 2, 159 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. de la Fuente-Núñez, C. et al. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob. Agents Chemother. 56, 2696–2704 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. de la Fuente-Núñez, C., Reffuveille, F., Haney, E. F., Straus, S. K. & Hancock, R. E. W. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 10, e1004152 (2014). This study was seminal to the field of biofilm-directed therapies as it identified a unique mechanism of action for a peptide with broad-spectrum activity.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pletzer, D., Coleman, S. R. & Hancock, R. E. W. Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr. Opin. Microbiol. 33, 35–40 (2016). This Review summarizes peptides with biofilm-specific activities and describes, at least partially, their mechanism of action.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hell, É., Giske, C. G., Nelson, A., Römling, U. & Marchini, G. Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett. Appl. Microbiol. 50, 211–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Pletzer, D. & Hancock, R. E. W. Antibiofilm peptides: potential as broad-spectrum agents. J. Bacteriol. 198, 2572–2578 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de la Fuente-Núñez, C. et al. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem. Biol. 22, 196–205 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mansour, S. C. et al. Bacterial abscess formation is controlled by the stringent stress response and can be targeted therapeutically. EBioMedicine 12, 219–226 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pletzer, D., Wolfmeier, H., Bains, M. & Hancock, R. E. W. Synthetic peptides to target stringent response-controlled virulence in a Pseudomonas aeruginosa murine cutaneous infection model. Front. Microbiol. 8, 1867 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Libardo, M. D. J. et al. Nuclease activity gives an edge to host-defense peptide piscidin 3 over piscidin 1, rendering it more effective against persisters and biofilms. FEBS J. 284, 3662–3683 (2017). This study identifies the host defence peptide piscidin 3 as more active than piscidin 1 in the host milieu as nuclease exposure improves its biofilm-directed effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Okuda, K. et al. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob. Agents Chemother. 57, 5572–5579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pulido, D. et al. A novel RNase 3/ECP peptide for Pseudomonas aeruginosa biofilm eradication that combines antimicrobial, lipopolysaccharide binding, and cell-agglutinating activities. Antimicrob. Agents Chemother. 60, 6313–6325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, W. et al. Antimicrobial peptide Cec4 eradicates the bacteria of clinical carbapenem-resistant Acinetobacter baumannii biofilm. Front. Microbiol. 11, 1532 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fabretti, F. et al. Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect. Immun. 74, 4164–4171 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lewenza, S. Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa. Front. Microbiol. 4, 21 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chan, C., Burrows, L. L. & Deber, C. M. Helix induction in antimicrobial peptides by alginate in biofilms. J. Biol. Chem. 279, 38749–38754 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Vuong, C. et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol. 6, 269–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Lin, L. et al. Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-resistant Gram-negative bacterial pathogens. EBioMedicine 2, 690–698 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Reffuveille, F., Fuente-Núñez, C., de la, Mansour, S. & Hancock, R. E. W. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob. Agents Chemother. 58, 5363–5371 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pletzer, D., Mansour, S. C. & Hancock, R. E. W. Synergy between conventional antibiotics and anti-biofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens. PLoS Pathog. 14, e1007084 (2018). This study demonstrates synergistic activities of peptides and antibiotics that are more effective at treating infections when used in combination.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ruden, S. et al. Synergy pattern of short cationic antimicrobial peptides against multidrug-resistant Pseudomonas aeruginosa. Front. Microbiol. 10, 2740 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Koo, H. B. & Seo, J. Antimicrobial peptides under clinical investigation. Peptide Sci. 111, e24122 (2019).

    Article  Google Scholar 

  66. Mahlapuu, M., Håkansson, J., Ringstad, L. & Björn, C. Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect. Microbiol. 6, 194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hancock, R. E. W. & Sahl, H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Meneguetti, B. T. et al. Antimicrobial peptides from fruits and their potential use as biotechnological tools — a review and outlook. Front. Microbiol. 7, 2136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pfalzgraff, A., Brandenburg, K. & Weindl, G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front. Pharmacol. 9, 281 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wu, B. et al. Human organoid biofilm model for assessing antibiofilm activity of novel agents. NPJ Biofilms Microbiomes 7, 1–13 (2021).

    Article  Google Scholar 

  71. Lebeaux, D., Chauhan, A., Rendueles, O. & Beloin, C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2, 288–356 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Choi, K. Y. G., Wu, B. C., Lee, A. H. Y., Baquir, B. & Hancock, R. E. W. Utilizing organoid and air-liquid interface models as a screening method in the development of new host defense peptides. Front. Cell Infect. Microbiol. 10, 228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Haney, E. F. et al. Identification of an IDR peptide formulation candidate that prevents peptide aggregation and retains immunomodulatory activity. Peptide Sci. 111, e24077 (2019).

    Article  Google Scholar 

  74. Bos, J. D. & Meinardi, M. M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 9, 165–169 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Bolouri, H. et al. Innate defense regulator peptide 1018 protects against perinatal brain injury. Ann Neurol. 75, 395–410 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. de Breij, A. et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. 10, eaan4044 (2018).

    Article  PubMed  Google Scholar 

  77. Huang, C. et al. Porcine beta-defensin 2 provides protection against bacterial infection by a direct bactericidal activity and alleviates inflammation via interference with the TLR4/NF-κB pathway. Front. Immunol. 10, 1673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wuerth, K., Lee, A. H. Y., Falsafi, R., Gill, E. E. & Hancock, R. E. W. Characterization of host responses during Pseudomonas aeruginosa acute lung infection in the lungs and blood and after treatment with the synthetic immunomodulatory peptide IDR-1002. Infect. Immun. 87, e00661-18 (2019).

    Article  PubMed  Google Scholar 

  79. Riquelme, S. A., Ahn, D. & Prince, A. Pseudomonas aeruginosa and Klebsiella pneumoniae adaptation to innate immune clearance mechanisms in the lung. J. Innate Immun. 10, 442–454 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rivas-Santiago, B. et al. Ability of innate defence regulator peptides IDR-1002, IDR-HH2 and IDR-1018 to protect against Mycobacterium tuberculosis infections in animal models. PLoS ONE 8, e59119 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, C., Deslouches, B., Montelaro, R. C. & Di, Y. P. Enhanced efficacy of the engineered antimicrobial peptide WLBU2 via direct airway delivery in a murine model of Pseudomonas aeruginosa pneumonia. Clin. Microbiol. Infect. 24, 547.e1–547.e8 (2018).

    Article  CAS  Google Scholar 

  82. Di, Y. P. et al. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci. Adv. 6, eaay6817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Melvin, J. A. et al. Simultaneous antibiofilm and antiviral activities of an engineered antimicrobial peptide during virus-bacterium coinfection. mSphere 1, e00083-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hoffmann, J. et al. Viral and bacterial co-infection in severe pneumonia triggers innate immune responses and specifically enhances IP-10: a translational study. Sci. Rep. 6, 38532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Boisvert, A.-A., Cheng, M. P., Sheppard, D. C. & Nguyen, D. Microbial biofilms in pulmonary and critical care diseases. Ann. Am. Thorac. Soc. 13, 1615–1623 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lebeaux, D., Ghigo, J. M. & Beloin, C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 78, 510–543 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Haisma, E. M. et al. Antimicrobial peptide P60.4Ac-containing creams and gel for eradication of methicillin-resistant Staphylococcus aureus from cultured skin and airway epithelial surfaces. Antimicrob. Agents Chemother. 60, 4063–4072 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Peek, N. F. A. W. et al. Ototopical drops containing a novel antibacterial synthetic peptide: Safety and efficacy in adults with chronic suppurative otitis media. PLoS ONE 15, e0231573 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Riool, M., de Breij, A., Drijfhout, J. W., Nibbering, P. H. & Zaat, S. A. J. Antimicrobial peptides in biomedical device manufacturing. Front. Chem. 5, 63 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yu, H. et al. Assessing the potential of four cathelicidins for the management of mouse candidiasis and Candida albicans biofilms. Biochimie 121, 268–277 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Freitas, C. G. et al. An immunomodulatory peptide confers protection in an experimental candidemia murine model. Antimicrob. Agents Chemother. 61, e02518-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Oshiro, K. G. N., Rodrigues, G., Monges, B. E. D., Cardoso, M. H. & Franco, O. L. Bioactive peptides against fungal biofilms. Front. Microbiol. 10, 2169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hao, H. et al. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 5, 288 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Stanford, K. et al. Antimicrobial resistance in members of the bacterial bovine respiratory disease complex isolated from lung tissue of cattle mortalities managed with or without the use of antimicrobials. Microorganisms 8, 288 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  95. Kraemer, S. A., Ramachandran, A. & Perron, G. G. Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 7, 180 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  96. Lim, S. J., Seo, C. K., Kim, T. H. & Myung, S. W. Occurrence and ecological hazard assessment of selected veterinary medicines in livestock wastewater treatment plants. J. Environ. Sci. Health B 48, 658–670 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Abdullahi, U. F., Igwenagu, E., Mu’azu, A., Aliyu, S. & Umar, M. I. Intrigues of biofilm: a perspective in veterinary medicine. Vet. World 9, 12–18 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Milivojevic, D. et al. Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans. Pathog. Dis. 76, fty041 (2018).

    Article  Google Scholar 

  99. Cabassi, C. S. et al. Activity of AMP2041 against human and animal multidrug resistant Pseudomonas aeruginosa clinical isolates. Ann. Clin. Microbiol. Antimicrob. 16, 17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Greco, I. et al. In vitro ADME properties of two novel antimicrobial peptoid-based compounds as potential agents against canine pyoderma. Molecules 23, 630 (2018).

    Article  PubMed Central  Google Scholar 

  101. Greco, I. et al. Characterization, mechanism of action and optimization of activity of a novel peptide-peptoid hybrid against bacterial pathogens involved in canine skin infections. Sci. Rep. 9, 3679 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Danhorn, T. & Fuqua, C. Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol. 61, 401–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Villa, F., Cappitelli, F., Cortesi, P. & Kunova, A. Fungal biofilms: targets for the development of novel strategies in plant disease management. Front. Microbiol. 8, 654 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Popp, J., Peto″, K. & Nagy, J. Pesticide productivity and food security: a review. Agron. Sustain. Dev. 33, 243–255 (2013).

    Article  Google Scholar 

  105. Holaskova, E., Galuszka, P., Frebort, I. & Oz, M. T. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol. Adv. 33, 1005–1023 (2015). This Review summarizes plant-based expression systems of host defence peptides for preventing agricultural crop loss to pests and scaling up the production of peptides for clinical applications.

    Article  CAS  PubMed  Google Scholar 

  106. Sher Khan, R. et al. Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech 9, 192 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Theuretzbacher, U. & Piddock, L. J. V. Non-traditional antibacterial therapeutic options and challenges. Cell Host Microbe 26, 61–72 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Wu, M., Maier, E., Benz, R. & Hancock, R. E. W. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38, 7235–7242 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Pieta, P., Mirza, J. & Lipkowski, J. Direct visualization of the alamethicin pore formed in a planar phospholipid matrix. Proc. Natl Acad. Sci. USA 109, 21223–21227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fernandez, D. I. et al. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys. Chem. Chem. Phys. 14, 15739–15751 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Leontiadou, H., Mark, A. E. & Marrink, S. J. Antimicrobial peptides in action. J. Am. Chem. Soc. 128, 12156–12161 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Park, C. B., Yi, K. S., Matsuzaki, K., Kim, M. S. & Kim, S. C. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl Acad. Sci. USA 97, 8245–8250 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Leveritt, J. M., Pino-Angeles, A. & Lazaridis, T. The structure of a melittin-stabilized pore. Biophys. J. 108, 2424–2426 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gidalevitz, D. et al. Interaction of antimicrobial peptide protegrin with biomembranes. Proc. Natl Acad. Sci. USA 100, 6302–6307 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schneider, T. et al. Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science 328, 1168–1172 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Andolina, G. et al. A peptidomimetic antibiotic interacts with the periplasmic domain of LptD from Pseudomonas aeruginosa. ACS Chem. Biol. 13, 666–675 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Cardon, S. et al. Peptidoglycan potentiates the membrane disrupting effect of the carboxyamidated form of DMS-DA6, a Gram-positive selective antimicrobial peptide isolated from Pachymedusa dacnicolor skin. PLoS ONE 13, e0205727 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Trimble, M. J., Mlynárcˇik, P., Kolárˇ, M. & Hancock, R. E. W. Polymyxin: alternative mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 6, a025288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zhang, R. et al. Efficacy of antimicrobial peptide DP7, designed by machine-learning method, against methicillin-resistant Staphylococcus aureus. Front. Microbiol. 10, 1175 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hilpert, K. et al. Short cationic antimicrobial peptides interact with ATP. Antimicrob. Agents Chemother. 54, 4480–4483 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Laughlin, T. F. & Ahmad, Z. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides. Int. J. Biol. Macromol. 46, 367–374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Di Somma, A. et al. The antimicrobial peptide Temporin L impairs E. coli cell division by interacting with FtsZ and the divisome complex. Biochim. Biophys. Acta 1864, 129606 (2020).

    Article  Google Scholar 

  123. Ghosh, A. et al. Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy. ChemMedChem 9, 2052–2058 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Braffman, N. R. et al. Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proc. Natl Acad. Sci. USA 116, 1273–1278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kragol, G. et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40, 3016–3026 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Seefeldt, A. C. et al. Structure of the mammalian antimicrobial peptide Bac7(1–16) bound within the exit tunnel of a bacterial ribosome. Nucleic Acids Res. 44, 2429–2438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, Y. et al. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans. J. Oral Microbiol. 10, 1442089 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Giacomucci, S., Cros, C. D. N., Perron, X., Mathieu-Denoncourt, A. & Duperthuy, M. Flagella-dependent inhibition of biofilm formation by sub-inhibitory concentration of polymyxin B in Vibrio cholerae. PLoS ONE 14, e0221431 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Brancatisano, F. L. et al. Inhibitory effect of the human liver-derived antimicrobial peptide hepcidin 20 on biofilms of polysaccharide intercellular adhesin (PIA)-positive and PIA-negative strains of Staphylococcus epidermidis. Biofouling 30, 435–446 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Hilpert, K., Volkmer-Engert, R., Walter, T. & Hancock, R. E. W. High-throughput generation of small antibacterial peptides with improved activity. Nat. Biotechnol. 23, 1008–1012 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Tucker, A. T. et al. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries. Cell 172, 618–628.e13 (2018). This study describes a Surface Localized Antimicrobial Display platform for screening unlimited numbers of host defence peptides for a variety of functions, vastly increasing the number of known active peptide sequences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee, E. Y., Lee, M. W., Fulan, B. M., Ferguson, A. L. & Wong, G. C. L. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 7, 20160153 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Etayash, H., Pletzer, D., Kumar, P., Straus, S. K. & Hancock, R. E. W. Cyclic derivative of host-defense peptide IDR-1018 improves proteolytic stability, suppresses inflammation, and enhances in vivo activity. J. Med. Chem. 63, 9228–9236 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Mourtada, R. et al. Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nat. Biotechnol. 37, 1186–1197 (2019). This study shows that stapled peptide derivatives are more effective and less toxic than naturally occurring peptides in a clinically relevant murine model of sepsis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Luther, A. et al. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 576, 452–458 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Carmona-Ribeiro, A. M. & Dias de Melo Carrasco, L. Novel formulations for antimicrobial peptides. Int. J. Mol. Sci. 15, 18040–18083 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Haney, E. F. et al. Computer-aided discovery of peptides that specifically attack bacterial biofilms. Sci. Rep. 8, 1871 (2018). This study describes a method for screening peptide libraries for antibiofilm activity and developing quantitative structure–activity relationship models for further optimization of screened peptides.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Xu, L. et al. Conversion of broad-spectrum antimicrobial peptides into species-specific antimicrobials capable of precisely targeting pathogenic bacteria. Sci. Rep. 10, 944 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lemon, D. J. et al. Construction of a genetically modified T7Select phage system to express the antimicrobial peptide 1018. J. Microbiol. 57, 532–538 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Haney, E. F., Trimble, M. J., Cheng, J. T., Vallé, Q. & Hancock, R. E. W. Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 8, 29 (2018).

    Article  PubMed Central  Google Scholar 

  141. Ceri, H. et al. The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37, 1771–1776 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Locke, L. W. et al. Evaluation of peptide-based probes toward in vivo diagnostic imaging of bacterial biofilm-associated infections. ACS Infect. Dis. 6, 2086–2098 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cieplik, F. et al. Microcosm biofilms cultured from different oral niches in periodontitis patients. J. Oral Microbiol. 11, 1551596 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Wang, Z., de la Fuente-Núñez, C., Shen, Y., Haapasalo, M. & Hancock, R. E. W. Treatment of oral multispecies biofilms by an anti-biofilm peptide. PLoS ONE 10, e0132512 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Zhang, T., Wang, Z., Hancock, R. E. W., de la Fuente-Núñez, C. & Haapasalo, M. Treatment of oral biofilms by a D-enantiomeric peptide. PLoS ONE 11, e0166997 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Huang, X. et al. Effect of long-term exposure to peptides on mono- and multispecies biofilms in dentinal tubules. J. Endod. 45, 1522–1528 (2019).

    Article  PubMed  Google Scholar 

  147. Jensen, L. K., Johansen, A. S. B. & Jensen, H. E. Porcine models of biofilm infections with focus on pathomorphology. Front. Microbiol. 8, 1961 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Khomtchouk, K. M. et al. A novel mouse model of chronic suppurative otitis media and its use in preclinical antibiotic evaluation. Sci. Adv. 6, eabc1828 (2020). This study describes a clinically relevant model of chronic suppurative otitis media (ear infection) and shows the importance of monitoring for recurrent infection when determining therapeutic efficacy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Starr, C. G. et al. Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria. Proc. Natl Acad. Sci. USA 117, 8437–8448 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Peptide research in the Hancock laboratory was recently supported by the Canadian Institutes of Health Research (CIHR) (Funding reference no. FDN-154287). M.A.A. is a Vanier and UBC Killam Doctoral Scholar and was supported by a Cystic Fibrosis Canada Studentship (#617081). R.E.W.H. holds a Canada Research Chair and is a UBC Killam Professor.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Robert E. W. Hancock.

Ethics declarations

Competing interests

E.F.H. and R.E.W.H. have filed patents related to the antibiofilm and immunomodulatory functions of synthetic HDPs. These patents have been assigned to their employer, the University of British Columbia, and licensed to ABT Innovations Inc., in which R.E.W.H. has an ownership position and E.F.H. owns shares. M.A.A. declares no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks G. Diamond, P. Stoodley and M. Zasloff for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Activity landscapes

The chemical spaces of peptides encompass all possible combinations of amino acids for a peptide of length N. The activity landscape can be conceptualized as a topographical map in which a particular function of a host defence peptide (for example, antimicrobial, antibiofilm or immune modulatory) is projected across all possible sequences within the peptide chemical space. In such an illustration, optimal peptide sequences would be represented by peaks, whereas less active peptides would localize within valleys.

Minimal inhibitory concentration

(MIC). The lowest concentration of a compound that prevents visible growth of bacteria. Bacteria are considered susceptible to a compound if the MIC is below the clinical breakpoint for that compound.

Twitching motility

A form of bacterial locomotion that depends on the type IV pilus in the model organism Pseudomonas aeruginosa and contributes to biofilm maturation as well as virulence.

Stringent-stress response

A broadly conserved bacterial stress response that controls adaptation to nutrient deprivation and is activated by a number of different starvation and stress signals. The molecular hallmark of this response is synthesis of the small molecules guanosine tetraphosphate and its precursor, guanosine pentaphosphate.

Abscess

A collection of pus within the tissues that can contain a high density of bacteria. Although not a biofilm per se, it shares several features with biofilms (local infection, can be chronic, high density, guanosine tetraphosphate dependence, adaptive antibiotic resistance or existence of matrix components).

Biofilm matrix

The protective extracellular matrix of a biofilm consisting primarily of bacteria-produced molecules, including polysaccharides, proteins, lipids and extracellular DNA.

Bacteriocin

Peptide toxins produced by bacteria that act upon closely related bacterial strains.

Microcosm

A community, place or situation regarded as encapsulating, in miniature, the characteristic qualities or features of something large.

Air–liquid interface (ALI) models

Cell culture technique in which mammalian cells are grown until they cover a support (for example, a membrane filter) and then the liquid on top of the cells is removed, enabling the growth of organ-like structures (for example, skin).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hancock, R.E.W., Alford, M.A. & Haney, E.F. Antibiofilm activity of host defence peptides: complexity provides opportunities. Nat Rev Microbiol 19, 786–797 (2021). https://doi.org/10.1038/s41579-021-00585-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-021-00585-w

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology