Abstract
Developing general principles of host–microorganism interactions necessitates a robust understanding of the eco-evolutionary processes that structure microbiota. Phylosymbiosis, or patterns of microbiome composition that can be predicted by host phylogeny, is a unique framework for interrogating these processes. Identifying the contexts in which phylosymbiosis does and does not occur facilitates an evaluation of the relative importance of different ecological processes in shaping the microbial community. In this Review, we summarize the prevalence of phylosymbiosis across the animal kingdom on the basis of the current literature and explore the microbial community assembly processes and related host traits that contribute to phylosymbiosis. We find that phylosymbiosis is less prevalent in taxonomically richer microbiomes and hypothesize that this pattern is a result of increased stochasticity in the assembly of complex microbial communities. We also note that despite hosting rich microbiomes, mammals commonly exhibit phylosymbiosis. We hypothesize that this pattern is a result of a unique combination of mammalian traits, including viviparous birth, lactation and the co-evolution of haemochorial placentas and the eutherian immune system, which compound to ensure deterministic microbial community assembly. Examining both the individual and the combined importance of these traits in driving phylosymbiosis provides a new framework for research in this area moving forward.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Al Nabhani, Z. & Eberl, G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 13, 183–189 (2020).
Pronovost, G. N. & Hsiao, E. Y. Perinatal interactions between the microbiome, immunity, and neurodevelopment. Immunity 50, 18–36 (2019).
Sylvia, K. E. & Demas, G. E. A gut feeling: microbiome-brain-immune interactions modulate social and affective behaviors. Horm. Behav. 99, 41–49 (2018).
Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10, 4505 (2019).
Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008). This work examines the gut microbiomes of 60 species of mammals, finding that both host diet and phylogeny strongly influenced gut microbial composition.
Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).
Delsuc, F. et al. Convergence of gut microbiomes in myrmecophagous mammals. Mol. Ecol. 23, 1301–1317 (2014).
Song, S. J. et al. Is there convergence of gut microbes in blood-feeding vertebrates? Phil. Trans. R. Soc. B 374, 20180249 (2019).
McKenney, E. A., Maslanka, M., Rodrigo, A. & Yoder, A. D. Bamboo specialists from two mammalian orders (Primates, Carnivora) share a high number of low-abundance gut microbes. Microb. Ecol. 76, 272–284 (2018).
Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).
Kohl, K. D., Varner, J., Wilkening, J. L. & Dearing, M. D. Gut microbial communities of American pikas (Ochotona princeps): evidence for phylosymbiosis and adaptations to novel diets. J. Anim. Ecol. 87, 323–330 (2018).
Moeller, A. H. & Sanders, J. G. Roles of the gut microbiota in the adaptive evolution of mammalian species. Phil. Trans. R. Soc. B 375, 20190597 (2020).
Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).
Amato, K. R. et al. Convergence of human and old world monkey gut microbiomes demonstrates the importance of human ecology over phylogeny. Genome Biol. 20, 201 (2019).
Mazel, F. et al. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems 3, e00097-18 (2018).
Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341, 667–669 (2013). The study shows that relationships between the microbial communities of Nasonia wasps recapitulate host phylogeny when different species are reared in the same environmental conditions.
Bordenstein, S. R. & Theis, K. R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol. 13, e1002226 (2015).
Koskella, B. & Bergelson, J. The study of host–microbiome (co)evolution across levels of selection. Phil. Trans. R. Soc. B 375, 20190604 (2020).
Lim, S. J. & Bordenstein, S. R. An introduction to phylosymbiosis. Proc. R. Soc. B 287, 20192900 (2020).
O’Brien, P. A. et al. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J. 14, 2211–2222 (2020).
Kohl, K. D. Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Phil. Trans. R. Soc. B 375, 20190251 (2020).
Sanders, J. G. et al. Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol. Ecol. 23, 1268–1283 (2014).
Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).
Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).
Apprill, A. et al. Marine mammal skin microbiotas are influenced by host phylogeny. R. Soc. Open Sci. 7, 192046 (2020).
Bird, A. K., Prado-Irwin, S. R., Vredenburg, V. T. & Zink, A. G. Skin microbiomes of California terrestrial salamanders are influenced by habitat more than host phylogeny. Front. Microbiol. 9, 442 (2018).
Doane, M. P. et al. The skin microbiome of elasmobranchs follows phylosymbiosis, but in teleost fishes, the microbiomes converge. Microbiome 8, 93 (2020).
Russell, S. L., Chappell, L. & Sullivan, W. in Current Topics in Developmental Biology vol. 135 (ed. Lehmann, R.) 315–351 (Academic, 2019).
Russell, S. L., McCartney, E. & Cavanaugh, C. M. Transmission strategies in a chemosynthetic symbiosis: detection and quantification of symbionts in host tissues and their environment. Proc. R. Soc. B 285, 20182157 (2018).
Usher, K. M., Kuo, J., Fromont, J. & Sutton, D. C. Vertical transmission of cyanobacterial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Hydrobiologia 461, 9–13 (2001).
Usher, K. M., Sutton, D. C., Toze, S., Kuo, J. & Fromont, J. Inter-generational transmission of microbial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Mar. Freshw. Res. 56, 125–131 (2005).
Nyholm, S. V. In the beginning: egg–microbe interactions and consequences for animal hosts. Phil. Trans. R. Soc. B 375, 20190593 (2020).
Funkhouser, L. J. & Bordenstein, S. R. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 11, e1001631 (2013).
Perlmutter, J. I. & Bordenstein, S. R. Microorganisms in the reproductive tissues of arthropods. Nat. Rev. Microbiol. 18, 97–111 (2020).
Hosokawa, T., Kikuchi, Y., Shimada, M. & Fukatsu, T. Symbiont acquisition alters behaviour of stinkbug nymphs. Biol. Lett. 4, 45–48 (2008).
Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci USA 107, 11971–11975 (2010).
Mitchell, C. et al. Delivery mode impacts newborn gut colonization efficiency. Preprint at bioRxiv https://doi.org/10.1101/2020.01.29.919993 (2020).
Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145.e5 (2018). This study uses longitudinal sampling of 25 mother–infant pairs to demonstrate persistent colonization of the infant by maternal gut microbial strains and emphasizes the importance of mother–infant microbial transmission.
Brandl, H. B. et al. Composition of bacterial assemblages in different components of reed warbler nests and a possible role of egg incubation in pathogen regulation. PLoS ONE 9, e114861 (2014).
Kyle, G. Z. & Kyle, P. D. Rehabilitation and Conservation of Chimney Swifts (Driftwood Wildlife Association, 2004).
Wang, Y. & Rozen, D. E. Gut microbiota colonization and transmission in the burying beetle Nicrophorus vespilloides throughout development. Appl. Environ. Microbiol. 83, e03250-16 (2017).
Hosokawa, T. et al. Diverse strategies for vertical symbiont transmission among subsocial stinkbugs. PLoS ONE 8, e65081 (2013).
Parker, E. S., Dury, G. J. & Moczek, A. P. Transgenerational developmental effects of species-specific, maternally transmitted microbiota in Onthophagus dung beetles: host-symbiont interactions in dung beetles. Ecol. Entomol. 44, 274–282 (2019).
Perofsky, A. C., Lewis, R. J., Abondano, L. A., Di Fiore, A. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc. R. Soc. B 284, 20172274 (2017).
Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. eLife 4, e05224 (2015). This article shows that both shared social group membership and the frequency of social interaction predicted how similar the gut microbiome composition and function of two individuals are.
Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. eLife 2, e00458 (2013).
Moeller, A. H. et al. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc. Natl Acad. Sci. USA 114, 201700122 (2017).
Chandler, J. A., Lang, J. M., Bhatnagar, S., Eisen, J. A. & Kopp, A. Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet. 7, e1002272 (2011).
Franzenburg, S. et al. Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc. Natl Acad. Sci. USA 110, e3730–e3738 (2013).
McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A. L. & Foster, K. R. Host selection of microbiota via differential adhesion. Cell Host Microbe 19, 550–559 (2016).
Schluter, J. & Foster, K. R. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol. 10, e1001424 (2012).
Chu, H. & Mazmanian, S. K. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat. Immunol. 14, 668–675 (2013).
Brugman, S. et al. T lymphocytes control microbial composition by regulating the abundance of Vibrio in the zebrafish gut. Gut Microbes 5, 737–747 (2014).
Dimitriu, P. A. et al. Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity. Environ. Microbiol. Rep. 5, 200–210 (2013).
Kawamoto, S. et al. Foxp3+ T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41, 152–165 (2014).
McFall-Ngai, M. J. Care for the community. Nature 445, 153–153 (2007). This article argues that the adaptive immune system may have evolved in part to regulate interactions between vertebrate hosts and commensal microorganisms given the higher-diversity microbiomes observed in vertebrates.
Hsu, E. Mutation, selection, and memory in B lymphocytes of exothermic vertebrates. Immunol. Rev. 162, 25–36 (1998).
Parra, D., Takizawa, F. & Sunyer, J. O. Evolution of B cell immunity. Ann. Rev. Anim. Biosci. 1, 65–97 (2013).
Woodhams, D. C. et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 21, 23 (2020).
Zhang, H., Sparks, J. B., Karyala, S. V., Settlage, R. & Luo, X. M. Host adaptive immunity alters gut microbiota. ISME J. 9, 770–781 (2015). This article demonstrates that genetically immunodeficient mice have a distinct microbiome and distinct microbial developmental trajectory compared with wild-type mice.
Logan, S. L. et al. The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proc. Natl Acad. Sci. USA 115, E3779–E3787 (2018).
Macfarlane, G. T., Macfarlane, S. & Gibson, G. R. Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb. Ecol. 35, 180–187 (1998).
Schlomann, B. H., Wiles, T. J., Wall, E. S., Guillemin, K. & Parthasarathy, R. Bacterial cohesion predicts spatial distribution in the larval zebrafish intestine. Biophys. J. 115, 2271–2277 (2018).
Godoy-Vitorino, F. et al. Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J. 6, 531–541 (2012).
Poole, A. C. et al. Human salivary amylase gene copy number impacts oral and gut microbiomes. Cell Host Microbe 25, 553–564.e7 (2019).
Kohl, K. D., Sadowska, E. T., Rudolf, A. M., Dearing, M. D. & Koteja, P. Experimental evolution on a wild mammal species results in modifications of gut microbial communities. Front. Microbiol. 7, 634 (2016).
Barroso-Batista, J., Demengeot, J. & Gordo, I. Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria. Nat. Commun. 6, 8945 (2015). This article shows that evolution of Escherichia coli is slower in genetically immunocompromised mice than in wild-type mice.
Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).
Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008).
Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667.e8 (2019).
Garud, N. R. & Pollard, K. S. Population genetics in the human microbiome. Trends Genet. 36, 53–67 (2020).
Kwong, W. K., Engel, P., Koch, H. & Moran, N. A. Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc. Natl Acad. Sci. USA 111, 11509–11514 (2014).
Wernegreen, J. J. & Moran, N. A. Vertical transmission of biosynthetic plasmids in aphid endosymbionts (Buchnera). J. Bacteriol. 183, 785–790 (2001).
Moeller, A. H. et al. Cospeciation of gut microbiota with hominids. Science 353, 380–382 (2016).
Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 8, e1000546 (2010).
Guittar, J., Shade, A. & Litchman, E. Trait-based community assembly and succession of the infant gut microbiome. Nat. Commun. 10, 512 (2019).
Vega, N. M. Experimental evolution reveals microbial traits for association with the host gut. PLoS Biol. 17, e3000129 (2019). This study uses experimental evolution of A. veronii in a zebrafish host system to demonstrate that improved microbial motility can be a key adaptation for successful microbial colonization of hosts.
Kuthyar, S., Manus, M. B. & Amato, K. R. Leveraging non-human primates for exploring the social transmission of microbes. Curr. Opin. Microbiol. 50, 8–14 (2019).
Sarkar, A. et al. Microbial transmission in animal social networks and the social microbiome. Nat. Ecol. Evol. 4, 1020–1035 (2020).
Parker, A., Lawson, M. A. E., Vaux, L. & Pin, C. Host-microbe interaction in the gastrointestinal tract. Environ. Microbiol. 20, 2337–2353 (2018).
d’Hennezel, E., Abubucker, S., Murphy, L. O. & Cullen, T. W. Total lipopolysaccharide from the human gut microbiome silences Toll-like receptor signaling. mSystems 2, e00046-17 (2017). This study uses computational and experimental analyses to show that lipopolysaccharide from Bacteroidales silences TLR4 signalling for the entire gut microbiota.
Jeyakumar, T., Beauchemin, N. & Gros, P. Impact of the microbiome on the human genome. Trends Parasitol. 35, 809–821 (2019).
Aldunate, M. et al. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Front. Physiol. 6, 164 (2015).
Mackie, R. I., Sghir, A. & Gaskins, H. R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69, 1035s–1045s (1999).
Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).
Amato, K. R. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution. Am. J. Phys. Anthropol. 159, S196–S215 (2016).
Amato, K. R., Jeyakumar, T., Poinar, H. & Gros, P. Shifting climates, foods, and diseases: the human microbiome through evolution. BioEssays 41, e1900034 (2019).
Kolodny, O. & Schulenburg, H. Microbiome-mediated plasticity directs host evolution along several distinct time scales. Phil. Trans. R. Soc. B 375, 20190589 (2020).
Rudman, S. M. et al. Microbiome composition shapes rapid genomic adaptation of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 116, 20025–20032 (2019). This study alters D. melanogaster microbiota by means of the diet and demonstrates that these changes altered fly body mass and population size and resulted in population genome divergence over five generations.
Brucker, R. M. & Bordenstein, S. R. The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities. Evolution 66, 349–362 (2012).
Dietrich, C., Köhler, T. & Brune, A. The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl. Environ. Microbiol. 80, 2261–2269 (2014).
Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 15, e2000225 (2016).
Díaz-Sánchez, S., Estrada-Peña, A., Cabezas-Cruz, A. & de la Fuente, J. Evolutionary insights into the tick hologenome. Trends Parasitol. 35, 725–737 (2019).
Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, e1600513 (2017).
Tinker, K. A. & Ottesen, E. A. Phylosymbiosis across deeply diverging lineages of omnivorous cockroaches (order Blattodea). Appl. Environ. Microbiol. 86, e02513–e02519 (2020).
Zolnik, C. P., Prill, R. J., Falco, R. C., Daniels, T. J. & Kolokotronis, S.-O. Microbiome changes through ontogeny of a tick pathogen vector. Mol. Ecol. 25, 4963–4977 (2016).
Parker, E. S., Newton, I. L. G. & Moczek, A. P. (My microbiome) would walk 10,000 miles: maintenance and turnover of microbial communities in introduced dung beetles. Microb. Ecol. 80, 435–446 (2020).
Novakova, E. et al. Mosquito microbiome dynamics, a background for prevalence and seasonality of West Nile virus. Front. Microbiol. 8, 526 (2017).
Osei-Poku, J., Mbogo, C. M., Palmer, W. J. & Jiggins, F. M. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol. Ecol. 21, 5138–5150 (2012).
Colman, D. R., Toolson, E. C. & Takacs-Vesbach, C. D. Do diet and taxonomy influence insect gut bacterial communities? Mol. Ecol. 21, 5124–5137 (2012).
Wong, A. C.-N., Chaston, J. M. & Douglas, A. E. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J. 7, 1922–1932 (2013).
Easson, C. G. & Thacker, R. W. Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Front. Microbiol. 5, 532 (2014).
Schöttner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, e55505 (2013).
Reveillaud, J. et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 8, 1198–1209 (2014).
Webster, N. S. & Thomas, T. The sponge hologenome. mBio 7, e00135-16 (2016).
Hentschel, U., Piel, J., Degnan, S. M. & Taylor, M. W. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10, 641–654 (2012).
Griffiths, S. M. et al. Host genetics and geography influence microbiome composition in the sponge Ircinia campana. J. Anim. Ecol. 88, 1684–1695 (2019).
Cleary, D. F. R. et al. The sponge microbiome within the greater coral reef microbial metacommunity. Nat. Commun. 10, 1644 (2019).
Hentschel, U. et al. Microbial diversity of marine sponges. Prog. Mol. Subcell. Biol. 37, 59–88 (2003).
Glasl, B., Smith, C. E., Bourne, D. G. & Webster, N. S. Exploring the diversity-stability paradigm using sponge microbial communities. Sci. Rep. 8, 8425 (2018).
Easson, C. G., Chaves-Fonnegra, A., Thacker, R. W. & Lopez, J. V. Host population genetics and biogeography structure the microbiome of the sponge Cliona delitrix. Ecol. Evol. 10, 2007–2020 (2020).
Britstein, M. et al. Sponge microbiome stability during environmental acquisition of highly specific photosymbionts. Environ. Microbiol. 22, 3593–3607 (2020).
Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 8, 1884–1897 (2018).
Sherrill-Mix, S. et al. Allometry and ecology of the bilaterian gut microbiome. mBio 9, e00319-18 (2018).
Knowles, S. C. L., Eccles, R. M. & Baltrūnaitė, L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecol. Lett. 22, 826–837 (2019).
Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl Acad. Sci. USA 116, 23588–23593 (2019).
Trevelline, B. K., Sosa, J., Hartup, B. K. & Kohl, K. D. A bird’s-eye view of phylosymbiosis: weak signatures of phylosymbiosis among all 15 species of cranes. Phil. Trans. R. Soc. B 287, 20192988 (2020).
Capunitan, D. C., Johnson, O., Terrill, R. S. & Hird, S. M. Evolutionary signal in the gut microbiomes of 74 bird species from Equatorial Guinea. Mol. Ecol. 29, 829–847 (2020).
Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).
Song, S. J. et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. mBio 11, e02901-19 (2020). This study of 892 vertebrate species finds that the gut microbiomes of birds and bats do not follow a pattern of phylosymbiosis and that bat gut microbiomes are more similar to those of birds than to the gut microbiomes of other mammals.
Grond, K. et al. No evidence for phylosymbiosis in western chipmunk species. FEMS Microbiol. Ecol. 96, fiz182 (2020).
Lutz, H. L. et al. Ecology and host identity outweigh evolutionary history in shaping the bat microbiome. mSystems 4, e00511-19 (2019).
Gaulke, C. A., Arnold, H. K., Kembel, S. W., O’Dwyer, J. P. & Sharpton, T. J. Ecophylogenetics reveals the evolutionary associations between mammals and their gut microbiota. mBio 9, e01348-18 (2017).
Gaulke, C. A. & Sharpton, T. J. The influence of ethnicity and geography on human gut microbiome composition. Nat. Med. 24, 1495–1496 (2018).
Engelberts, J. P. et al. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J. 14, 1100–1110 (2020).
Gauthier, M.-E. A., Watson, J. R. & Degnan, S. M. Draft genomes shed light on the dual bacterial symbiosis that dominates the microbiome of the coral reef sponge Amphimedon queenslandica. Front. Mar. Sci. 3, 196 (2016).
Hird, S. M. Context is key: comparative biology illuminates the vertebrate microbiome. mBio 11, e00153-20 (2020).
Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).
Price, J. T. et al. Characterization of the juvenile green turtle (Chelonia mydas) microbiome throughout an ontogenetic shift from pelagic to neritic habitats. PLoS ONE 12, e0177642 (2017).
Cabrera-Rubio, R. et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96, 544–551 (2012).
Cioffi, C. C., Tavalire, H. F., Neiderhiser, J. M., Bohannan, B. & Leve, L. D. History of breastfeeding but not mode of delivery shapes the gut microbiome in childhood. PLoS ONE 15, e0235223 (2020).
Ding, J. et al. The composition and function of pigeon milk microbiota transmitted from parent pigeons to squabs. Front. Microbiol. 11, 1789 (2020).
Lane, A. A. et al. Household composition and the infant fecal microbiome: The INSPIRE study. Am. J. Phys. Anthropol. 169, 526–539 (2019).
Manus, M., Kuthyar, S., Perroni-Marañón, A. G., Nuñez de la Mora, A. & Amato, K. R. Infant skin bacterial communities vary by skin site and infant age across populations in Mexico and the USA. mSystems https://doi.org/10.1128/mSystems.00834-20 (2020).
Biedermann, P. H. & Rohlfs, M. Evolutionary feedbacks between insect sociality and microbial management. Curr. Opin. Insect Sci. 22, 92–100 (2017).
Chambers, S. A. & Townsend, S. D. Like mother, like microbe: human milk oligosaccharide mediated microbiome symbiosis. Biochem. Soc. Trans. 48, 1139–1151 (2020). This study demonstrates the importance of the microbial properties of breast milk in shaping the infant gut microbiota.
Donovan, S. M. et al. Host-microbe interactions in the neonatal intestine: role of human milk oligosaccharides. Adv. Nutr. 3, 450S–455S (2012).
Gopalakrishna, K. P. & Hand, T. W. Influence of maternal milk on the neonatal intestinal microbiome. Nutrients 12, 823 (2020).
Hasselquist, D. & Nilsson, J.-Å. Maternal transfer of antibodies in vertebrates: trans-generational effects on offspring immunity. Phil. Trans. R. Soc. B 364, 51–60 (2009).
Flajnik, M. F. A cold-blooded view of adaptive immunity. Nat. Rev. Immunol. 18, 438–453 (2018).
Omenetti, S. & Pizarro, T. T. The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Front. Immunol. 6, 639 (2015).
Chaouat, G. Reconsidering the Medawar paradigm placental viviparity existed for eons, even in vertebrates; without a “problem”: why are Tregs important for preeclampsia in great apes? J. Reprod. Immunol. 114, 48–57 (2016).
Samstein, R. M., Josefowicz, S. Z., Arvey, A., Treuting, P. M. & Rudensky, A. Y. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150, 29–38 (2012). This article argues that the adaptive immune system may have evolved in part to regulate interactions between vertebrate hosts and commensal microorganisms given the higher-diversity microbiomes observed in vertebrates.
Campbell, C. et al. Extrathymically generated regulatory T cells establish a niche for intestinal border-dwelling bacteria and affect physiologic metabolite balance. Immunity 48, 1245–1257.e9 (2018). This article shows that reduction of pTreg cell activity alters host epithelial cells, reduces gut microbial diversity and alters gut microbiome function.
Yadav, M., Stephan, S. & Bluestone, J. A. Peripherally induced Tregs — role in immune homeostasis and autoimmunity. Front. Immunol. 4, 232 (2013).
Lund, F. E. & Randall, T. D. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat. Rev. Immunol. 10, 236–247 (2010).
McCoy, K. D., Burkhard, R. & Geuking, M. B. The microbiome and immune memory formation. Immunol. Cell Biol. 97, 625–635 (2019).
Azad, M. B. et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 185, 385–394 (2013).
Younge, N. E., Araújo-Pérez, F., Brandon, D. & Seed, P. C. Early-life skin microbiota in hospitalized preterm and full-term infants. Microbiome 6, 98 (2018).
Perofsky, A. C., Lewis, R. J. & Meyers, L. A. Terrestriality and bacterial transfer: a comparative study of gut microbiomes in sympatric Malagasy mammals. ISME J. 13, 50–63 (2019).
Grieneisen, L. E. et al. Genes, geology and germs: gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proc. R. Soc. B 286, 20190431 (2019).
Rutayisire, E., Huang, K., Liu, Y. & Tao, F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. 16, 86 (2016).
Wampach, L. et al. Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front. Microbiol. 8, 738 (2017).
Cullender, T. C. et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14, 571–581 (2013).
Suzuki, K. et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl Acad. Sci. USA 101, 1981–1986 (2004).
Stagaman, K., Burns, A. R., Guillemin, K. & Bohannan, B. J. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish. ISME J. 11, 1630–1639 (2017).
Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88, 87–98 (2000).
Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Phil. Trans. R. Soc. B 363, 321–339 (2008).
Ingala, M. R., Becker, D. J., Bak Holm, J., Kristiansen, K. & Simmons, N. B. Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats. Ecol. Evol. 9, 6508–6523 (2019).
Phillips, C. D. et al. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol. Ecol. 21, 2617–2627 (2012).
Banerjee, A. et al. Novel insights into immune systems of bats. Front. Immunol. 11, 26 (2020).
Brun, A. et al. Morphological bases for intestinal paracellular absorption in bats and rodents. J. Morphol. 280, 1359–1369 (2019).
Caviedes-Vidal, E. et al. Paracellular absorption: a bat breaks the mammal paradigm. PLoS ONE 3, e1425 (2008).
Price, E. R., Brun, A., Caviedes-Vidal, E. & Karasov, W. H. Digestive adaptations of aerial lifestyles. Physiology 30, 69–78 (2015).
Rodriguez-Peña, N., Price, E. R., Caviedes-Vidal, E., Flores-Ortiz, C. M. & Karasov, W. H. Intestinal paracellular absorption is necessary to support the sugar oxidation cascade in nectarivorous bats. J. Exp. Biol. 219, 779–782 (2016).
Hayman, D. T. S. Bat tolerance to viral infections. Nat. Microbiol. 4, 728–729 (2019).
O’Shea, T. J. et al. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 20, 741–745 (2014).
Zhang, G. et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339, 456–460 (2013).
Ahn, M., Cui, J., Irving, A. T. & Wang, L.-F. Unique loss of the PYHIN gene family in bats amongst mammals: implications for inflammasome sensing. Sci. Rep. 6, 21722 (2016).
Härtlova, A. et al. DNA damage primes the type I Interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42, 332–343 (2015).
Rathinam, V. A. K. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395–402 (2010).
Xie, J. et al. Dampened STING-dependent interferon activation in bats. Cell Host Microbe 23, 297–301.e4 (2018).
Zhou, P. et al. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proc. Natl Acad. Sci. USA 113, 2696–2701 (2016).
Stockmaier, S., Dechmann, D. K. N., Page, R. A. & O’Mara, M. T. No fever and leucocytosis in response to a lipopolysaccharide challenge in an insectivorous bat. Biol. Lett. 11, 20150576 (2015).
Kohl, K. D. & Dearing, M. D. Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores. Ecol. Lett. 15, 1008–1015 (2012).
Gomez, A. et al. Plasticity in the human gut microbiome defies evolutionary constraints. mSphere 4, e00271-19 (2019).
Wooding, P. and Burton, G. Comparative Placentation: Structures, Functions and Evolution (Springer, 2008).
Andersen, K. G., Nissen, J. K. & Betz, A. G. Comparative genomics reveals key gain-of-function events in Foxp3 during regulatory T cell evolution. Front. Immunol. 3, 113 (2012).
Mess, A. & Carter, A. M. Evolution of the placenta during the early radiation of placental mammals. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 148, 769–779 (2007).
Wildman, D. E. et al. Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc. Natl Acad. Sci. USA 103, 3203–3208 (2006). This article concludes that the ancestral from of the mammalian placenta was the invasive, haemochorial form.
Acknowledgements
K.R.A. is supported as a fellow in CIFAR’s Humans & the Microbiome programme. E.K.M. is supported by the Vanderbilt Microbiome Initiative and was partially supported by CIFAR.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Microbiology thanks K. Kohl; R. Ley, who co-reviewed with N. Youngblut; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
TimeTree: http://timetree.org
Supplementary information
Glossary
- Phylosymbiosis
-
Similarities in host-associated microbial community structure that mirror the phylogenetic relationships of the hosts.
- Vertical transmission
-
A pathway of transmission where a symbiotic organism is transmitted from the host parent to offspring.
- Co-evolution
-
Reciprocal genetic change in two species that occurs as a result of the selective pressures that each imposes on the other.
- Priority effects
-
A phenomenon in which species that arrive first at a site alter the abiotic and/or biotic conditions such that this impacts the colonization success of species arriving later.
- Ecological drift
-
The random fluctuation of species abundances in a community or population, often as a result of isolation from other populations.
- Horizontal transmission
-
A pathway of transmission where a symbiotic organism is transmitted between individuals via the social or physical environment instead of from parent to offspring.
- Oviparous animals
-
Animals that lay eggs and in which embryonic development does not occur internally in the mother.
- Ovipositors
-
Tubes through which a female animal lays or deposits eggs; most often refers to a structure found in insects.
- Viviparous animals
-
Animals characterized by live birth (viviparity) of offspring with embryonic development occurring internally in the mother.
- Innate immune system
-
A non-specific immune response to potential pathogens found in invertebrates and vertebrates. In vertebrates, the innate immune system has a role in activating the adaptive immune system.
- Adaptive immune system
-
The portion of the immune system that, in vertebrates, allows an organism to identify, learn about and respond to specific pathogens.
- Sacculated foregut
-
A multichambered stomach which allows microbial fermentation before food moves further into the digestive tract.
- Co-diversification
-
Diversification of two species at the same pace and that have a shared evolutionary history as a result of either co-evolution or a shared environment.
- Niche construction
-
When a species changes its local environment, altering the selective pressures acting on it and other organisms in its environment.
- Succession
-
The process of change in the composition of an ecological community over time, often involving increasing community diversity.
- Endosymbionts
-
Symbiotic, often mutualistic, organisms living inside the tissue of another organism. Symbionts are transmitted either horizontally or vertically, and the symbiosis relationship can be obligatory or not obligatory.
- Host specificity
-
Microbial ability to colonize a host depending on physiological interactions with the host and environmental requirements (for example, pH tolerance, biofilm regulation and polysaccharide utilization loci).
- Monotremes
-
Egg-laying mammals.
- Matrilineal species
-
Species in which females remain in their natal group, males disperse, dominance rank is inherited by females from their mothers and social bonds between closely related females are strong.
- Prebiotics
-
Dietary items which provide substrates for bacterial growth in the digestive tract.
- Sympatric terrestrial species
-
Distinct species living in the same terrestrial habitat.
- Sympatric arboreal species
-
Distinct species living in the same arboreal habitat.
- Host selectivity
-
Host ability to limit the microbial strains that associate with it via various physiological filters (for example, immune system, gut anatomy and diet/nutrients).
Rights and permissions
About this article
Cite this article
Mallott, E.K., Amato, K.R. Host specificity of the gut microbiome. Nat Rev Microbiol 19, 639–653 (2021). https://doi.org/10.1038/s41579-021-00562-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41579-021-00562-3
This article is cited by
-
Fine-scale geographic difference of the endangered Big-headed Turtle (Platysternon megacephalum) fecal microbiota, and comparison with the syntopic Beale’s Eyed Turtle (Sacalia bealei)
BMC Microbiology (2024)
-
Maternal transmission as a microbial symbiont sieve, and the absence of lactation in male mammals
Nature Communications (2024)
-
The intestinal digesta microbiota of tropical marine fish is largely uncultured and distinct from surrounding water microbiota
npj Biofilms and Microbiomes (2024)
-
Divergence between sea urchins and their microbiota following speciation
Marine Biology (2024)
-
The panda-derived Lactiplantibacillus plantarum BSG201683 improves LPS-induced intestinal inflammation and epithelial barrier disruption in vitro
BMC Microbiology (2023)