Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut microbiota in human metabolic health and disease

Abstract

Observational findings achieved during the past two decades suggest that the intestinal microbiota may contribute to the metabolic health of the human host and, when aberrant, to the pathogenesis of various common metabolic disorders including obesity, type 2 diabetes, non-alcoholic liver disease, cardio-metabolic diseases and malnutrition. However, to gain a mechanistic understanding of how the gut microbiota affects host metabolism, research is moving from descriptive microbiota census analyses to cause-and-effect studies. Joint analyses of high-throughput human multi-omics data, including metagenomics and metabolomics data, together with measures of host physiology and mechanistic experiments in humans, animals and cells hold potential as initial steps in the identification of potential molecular mechanisms behind reported associations. In this Review, we discuss the current knowledge on how gut microbiota and derived microbial compounds may link to metabolism of the healthy host or to the pathogenesis of common metabolic diseases. We highlight examples of microbiota-targeted interventions aiming to optimize metabolic health, and we provide perspectives for future basic and translational investigations within the nascent and promising research field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impact of diet on gut microbiota and host metabolism.
Fig. 2: Some of the reported intestinal microbial taxonomic and functional features linked to common metabolic disorders.
Fig. 3: Microbial messengers regulate host metabolism.

Similar content being viewed by others

References

  1. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Jaacks, L. M. et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 7, 231–240 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease — meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    Article  PubMed  Google Scholar 

  4. Zheng, Y., Ley, S. H. & Hu, F. B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14, 88 (2018).

    Article  PubMed  Google Scholar 

  5. Reddy, K. S. & Yusuf, S. Emerging epidemic of cardiovascular disease in developing countries. Circulation 97, 596–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Lakka, H.-M. et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288, 2709–2716 (2002).

    Article  PubMed  Google Scholar 

  7. Müller, O. & Krawinkel, M. Malnutrition and health in developing countries. CMAJ 173, 279–286 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012). This is the first metagenome-wide association study to identify links between the gut microbiome and T2D.

    Article  CAS  PubMed  Google Scholar 

  9. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Koeth, R. A. et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allin, K. H. et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 61, 810–820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016). This study identifies P. copri and B. vulgatus as the main species driving the association between biosynthesis of BCAAs and insulin resistance under conditions of high fat intake.

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen, H. K. et al. A computational framework to integrate high-throughput ‘-omics’ datasets for the identification of potential mechanistic links. Nat. Protoc. 13, 2781 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Korem, T. et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 349, 1101–1106 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeevi, D. et al. Structural variation in the gut microbiome associates with host health. Nature 568, 43–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  CAS  Google Scholar 

  19. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Falony, G., Vieira-Silva, S. & Raes, J. Richness and ecosystem development across faecal snapshots of the gut microbiota. Nat. Microbiol. 3, 526–528 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Jakobsson, H. E. et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63, 559–566 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Rodríguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 26, 26050 (2015).

    PubMed  Google Scholar 

  23. Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Shafquat, A., Joice, R., Simmons, S. L. & Huttenhower, C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol. 22, 261–266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tyakht, A. V. et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun. 4, 1–9 (2013).

    Article  CAS  Google Scholar 

  28. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013). This work shows that adults with low bacterial gene richness in their gut microbiome feature insulin resistance, pro-inflammation dyslipidaemia and increased body adiposity compared with individuals with high bacterial gene richness.

    Article  PubMed  CAS  Google Scholar 

  29. Cox, L. M. & Blaser, M. J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 11, 182–190 (2015).

    Article  PubMed  Google Scholar 

  30. Ajslev, T., Andersen, C., Gamborg, M., Sørensen, T. & Jess, T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int. J. Obes. 35, 522 (2011).

    Article  CAS  Google Scholar 

  31. Mor, A. et al. Prenatal exposure to systemic antibacterials and overweight and obesity in Danish schoolchildren: a prevalence study. Int. J. Obes. 39, 1450 (2015).

    Article  CAS  Google Scholar 

  32. Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Thuny, F. et al. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS ONE 5, e9074 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mikkelsen, K. H. et al. Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism. PLoS ONE 10, e0142352 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Reijnders, D. et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab. 24, 63–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Fujisaka, S. et al. Antibiotic effects on gut microbiota and metabolism are host dependent. J. Clin. Invest. 126, 4430–4443 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. World Health Organization. Obesity: Preventing and Managing the Global Epidemic (World Health Organization, 2000).

  40. McAllister, E. J. et al. Ten putative contributors to the obesity epidemic. Crit. Rev. Food Sci. Nutr. 49, 868–913 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  42. Tims, S. et al. Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J. 7, 707–717 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Gophna, U., Konikoff, T. & Nielsen, H. B. Oscillospira and related bacteria—from metagenomic species to metabolic features. Environ. Microbiol. 19, 835–841 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Miller, T. L., Wolin, M., de Macario, E. C. & Macario, A. Isolation of Methanobrevibacter smithii from human feces. Appl. Environ. Microbiol. 43, 227–232 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017). This study links intestinal microbiota alterations, circulating amino acids and obesity, and suggests that a possible way to intervene in obesity is by targeting the gut microbiota.

    Article  CAS  PubMed  Google Scholar 

  46. Thingholm, L. B. et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 26, 252–264.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013). This study shows that adiposity is transmissible in a diet-dependent manner from human to mouse and is associated with alterations in serum levels of BCAAs.

    Article  PubMed  CAS  Google Scholar 

  48. Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020). This study observes that obesity-associated microbiota dysbiosis is negatively associated with statin treatment, indicating statins as a possible target for the development of future drug-based strategies for the modulation of the intestinal microbiota.

    Article  CAS  PubMed  Google Scholar 

  49. Jensen, A. B. et al. Increase in clinically recorded type 2 diabetes after colectomy. eLife 7, e37420 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Thaiss, C. A. et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359, 1376–1383 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Association, A. D. Diagnosis and classification of diabetes mellitus. Diabetes Care 37, S81–S90 (2014).

    Article  Google Scholar 

  52. Deshpande, A. D., Harris-Hayes, M. & Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther. 88, 1254–1264 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Grarup, N., Sandholt, C. H., Hansen, T. & Pedersen, O. Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia 57, 1528–1541 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Kasuga, M. Insulin resistance and pancreatic β cell failure. J. Clin. Invest. 116, 1756–1760 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bornfeldt, K. E. & Tabas, I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 14, 575–585 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Laakso, M. & Kuusisto, J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat. Rev. Endocrinol. 10, 293–302 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Vila, A. V. et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 1–11 (2020).

    Google Scholar 

  58. Zhong, H. et al. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine 47, 373–383 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Whiting, D. R., Guariguata, L., Weil, C. & Shaw, J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 94, 311–321 (2011).

    Article  PubMed  Google Scholar 

  60. Crusell, M. K. W. et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome 6, 89 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015). This work outlines a paradigm to disentangle disease microbiome features from secondary changes in the microbiome induced by medication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Bryrup, T. et al. Metformin-induced changes of the gut microbiota in healthy young men: results of a non-blinded, one-armed intervention study. Diabetologia 62, 1024–1035 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun, L. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24, 1919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. De La Cuesta-Zuluaga, J. et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 40, 54–62 (2017).

    Article  PubMed  CAS  Google Scholar 

  67. Adeshirlarijaney, A., Zou, J., Tran, H. Q., Chassaing, B. & Gewirtz, A. T. Amelioration of metabolic syndrome by metformin associates with reduced indices of low-grade inflammation independently of the gut microbiota. Am. J. Physiol. Endocrinol. Metab. 317, E1121–E1130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pryor, R. et al. Host–microbe–drug–nutrient screen identifies bacterial effectors of metformin therapy. Cell 178, 1299–1312.e29 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Herrington, W., Lacey, B., Sherliker, P., Armitage, J. & Lewington, S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ. Res. 118, 535–546 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Fan, Y. et al. Comprehensive metabolomic characterization of coronary artery diseases. J. Am. Coll. Cardiol. 68, 1281–1293 (2016).

    Article  PubMed  Google Scholar 

  71. Michos, E. D., McEvoy, J. W. & Blumenthal, R. S. Lipid management for the prevention of atherosclerotic cardiovascular disease. N. Engl. J. Med. 381, 1557–1567 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cui, X. et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci. Rep. 8, 1–15 (2018).

    Article  CAS  Google Scholar 

  76. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011). This work discovers a relationship between the gut microbiota-dependent metabolism of dietary phosphatidylcholine and pathogenesis of arteriosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, Z. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595 (2015). This study discovers a structural analogue of choline that inhibits microbial TMA lyases and the production of TMA by the gut microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Haghikia, A. et al. Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscl. Throm. Vas. Biol. 38, 2225–2235 (2018).

    Article  CAS  Google Scholar 

  80. Senthong, V. et al. Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J. Am. Heart Assoc. 5, e002816 (2016).

    PubMed  PubMed Central  Google Scholar 

  81. Collins, H. L. et al. l-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE−/− transgenic mice expressing CETP. Atherosclerosis 244, 29–37 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. He, K. et al. Accumulated evidence on fish consumption and coronary heart disease mortality: a meta-analysis of cohort studies. Circulation 109, 2705–2711 (2004).

    Article  PubMed  Google Scholar 

  83. Koay, Y. C. et al. Plasma levels of TMAO can be increased with ‘healthy’ and ‘unhealthy’ diets and do not correlate with the extent of atherosclerosis but with plaque instability. Cardiovasc. Res. 8, cvaa094 (2020).

    Article  Google Scholar 

  84. Tang, W. W. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brunt, E. M. et al. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53, 810–820 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Jiang, W. et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 5, 8096 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhu, L. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601–609 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Del Chierico, F. et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 65, 451–464 (2017).

    Article  PubMed  CAS  Google Scholar 

  89. Nair, S., Cope, K., Terence, R. H. & Diehl, A. M. Obesity and female gender increase breath ethanol concentration: potential implications for the pathogenesis of nonalcoholic steatohepatitis. Am. J. Gastroenterol. 96, 1200–1204 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Rao, R., Seth, A. & Sheth, P. Recent advances in alcoholic liver disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G881–G884 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Xu, J. et al. Synergistic steatohepatitis by moderate obesity and alcohol in mice despite increased adiponectin and p-AMPK. J. Hepatol. 55, 673–682 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. de Medeiros, I. C. & de Lima, J. G. Is nonalcoholic fatty liver disease an endogenous alcoholic fatty liver disease? — A mechanistic hypothesis. Med. Hypotheses 85, 148–152 (2015).

    Article  PubMed  CAS  Google Scholar 

  93. Schwenger, K. J., Clermont-Dejean, N. & Allard, J. P. The role of the gut microbiome in chronic liver disease: the clinical evidence revised. JHEP Rep. 1, 214–226 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Le Roy, T. et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62, 1787–1794 (2013).

    Article  PubMed  CAS  Google Scholar 

  95. Yuan, J. et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab. 30, 675–688.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Hoyles, L. et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24, 1070–1080 (2018). This study demonstrates that individuals with liver steatosis have low microbial gene richness and increased genetic potential for the processing of dietary lipids and endotoxin biosynthesis, hepatic inflammation and dysregulation of aromatic and BCAA metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. UNICEF–WHO–The World Bank Group: Joint Child Malnutrition Estimates — levels and trends in child malnutrition: key findings of the 2015 edition. Global Database on Child Growth and Malnutrition (WHO, 2015).

  98. Black, R. E. et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371, 243–260 (2008).

    Article  PubMed  Google Scholar 

  99. Million, M., Diallo, A. & Raoult, D. Gut microbiota and malnutrition. Microb. Pathog. 106, 127–138 (2017).

    Article  PubMed  Google Scholar 

  100. Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee, J.-H., Li, X. & O’Sullivan, D. J. Transcription analysis of a lantibiotic gene cluster from Bifidobacterium longum DJO10A. Appl. Environ. Microbiol. 77, 5879–5887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mata, L. J. et al. Gastrointestinal flora of children with protein — calorie malnutrition. Am. J. Clin. Nutr. 25, 1118–1126 (1972).

    Article  Google Scholar 

  103. Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat. Immunol. 5, 104–112 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Martens, J.-H., Barg, H., Warren, M. A. & Jahn, D. Microbial production of vitamin B 12. Appl. Microbiol. Biotechnol. 58, 275–285 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Stecher, B. & Hardt, W.-D. The role of microbiota in infectious disease. Trends Microbiol. 16, 107–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365, eaau4732 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jumpertz, R. et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 94, 58–65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lin, H. V. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7, e35240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xiong, Y. et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl Acad. Sci. USA 101, 1045–1050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vinolo, M. A. R. et al. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am. J. Physiol. Endocrinol. Metab. 303, E272–E282 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Pluznick, J. L. Renal and cardiovascular sensory receptors and blood pressure regulation. Am. J. Physiol. Ren. Physiol. 305, F439–F444 (2013).

    Article  CAS  Google Scholar 

  114. Byndloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tang, T. W. et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circulation 139, 647–659 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600 (2019). This study presents data providing evidence of a causal effect of the gut microbiome on metabolic traits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tirosh, A. et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci. Transl Med. 11, eaav0120 (2019).

    Article  PubMed  CAS  Google Scholar 

  119. Bouter, K. et al. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin. Trans. Gastroenterol 9, 155 (2018).

    Article  CAS  Google Scholar 

  120. Gao, X. et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat. Commun. 7, 11960 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Perry, R. J. et al. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Freeland, K. R. & Wolever, T. M. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-α. Br. J. Nutr. 103, 460–466 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Fiorucci, S., Mencarelli, A., Palladino, G. & Cipriani, S. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol. Sci. 30, 570–580 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Prawitt, J. et al. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60, 1861–1871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Pathak, P. et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 68, 1574–1588 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Modica, S., Gadaleta, R. M. & Moschetta, A. Deciphering the nuclear bile acid receptor FXR paradigm. Nucl. Recept. Signal. https://doi.org/10.1621/nrs.08005 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Spinelli, V. et al. Influence of Roux-en-Y gastric bypass on plasma bile acid profiles: a comparative study between rats, pigs and humans. Int. J. Obes. 40, 1260 (2016).

    Article  CAS  Google Scholar 

  132. Kindel, T. L. et al. Increased glycine-amidated hyocholic acid correlates to improved early weight loss after sleeve gastrectomy. Surg. Endosc. 32, 805–812 (2018).

    Article  PubMed  Google Scholar 

  133. Canfora, E. E., Meex, R. C., Venema, K. & Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Bansal, T., Alaniz, R. C., Wood, T. K. & Jayaraman, A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl Acad. Sci. USA 107, 228–233 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Shimada, Y. et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS ONE 8, e80604 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Chimerel, C. et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 9, 1202–1208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. De Mello, V. D. et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci. Rep. 7, 46337 (2017). This study shows that microbial indole propionate and additional metabolites associate with lower risk of incident T2D.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Sun, H. et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Koh, A. et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961.e17 (2018). This study demonstrates that imidazole propionate is produced from histidine in a gut simulator at higher concentrations when using faecal microbiota from subjects with T2D than from individuals without T2D, and that it impairs glucose tolerance when administered to mice.

    Article  CAS  PubMed  Google Scholar 

  141. MacDonald, M. J., Fahien, L. A., Mertz, R. J. & Rana, R. S. Effect of esters of succinic acid and other citric acid cycle intermediates on insulin release and inositol phosphate formation by pancreatic islets. Arch. Biochem. Biophys. 269, 400–406 (1989).

    Article  CAS  PubMed  Google Scholar 

  142. Mills, E. L. et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560, 102–106 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tannahill, G. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Suárez-Zamorano, N. et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat. Med. 21, 1497 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Li, B. et al. Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue. Cell Rep. 26, 2720–2737.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Kamio, Y. & Nikaido, H. Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase C and cyanogen bromide activated dextran in the external medium. Biochemistry 15, 2561–2570 (1976).

    Article  CAS  PubMed  Google Scholar 

  147. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Luck, H. et al. Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nat. Commun. 10, 1–17 (2019).

    Article  CAS  Google Scholar 

  149. Winer, D. A., Luck, H., Tsai, S. & Winer, S. The intestinal immune system in obesity and insulin resistance. Cell Metab. 23, 413–426 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Breton, J. et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab. 23, 324–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Tennoune, N. et al. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl Psychiat. 4, e458–e458 (2014).

    Article  CAS  Google Scholar 

  152. Breton, J. et al. Elevated plasma concentrations of bacterial ClpB protein in patients with eating disorders. Int. J. Eat. Disord. 49, 805–808 (2016).

    Article  PubMed  Google Scholar 

  153. Cohen, L. J. et al. Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist. Proc. Natl Acad. Sci. USA 112, E4825–E4834 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cohen, L. J. et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Qiang, X. et al. New melanocortin-like peptide of E. coli can suppress inflammation via the mammalian melanocortin-1 receptor (MC1R): possible endocrine-like function for microbes of the gut. NPJ Biofilms Microbiomes 3, 31 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Elsden, S. R., Hilton, M. G. & Waller, J. M. The end products of the metabolism of aromatic amino acids by Clostridia. Arch. Microbiol. 107, 283–288 (1976).

    Article  CAS  PubMed  Google Scholar 

  157. Lin, C.-J., Wu, V., Wu, P.-C. & Wu, C.-J. Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS ONE 10, e0132589 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Krisko, T. I. et al. Dissociation of adaptive thermogenesis from glucose homeostasis in microbiome-deficient mice. Cell Metab. 31, 592–604.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Vojinovic, D. et al. Relationship between gut microbiota and circulating metabolites in population-based cohorts. Nat. Commun. 10, 1–7 (2019).

    Article  CAS  Google Scholar 

  160. Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507 (2017). This study builds a workflow for the quantitative microbiome profiling of faecal material, showing that quantitative microbiome profiling has a substantial effect on co-occurrence analyses and the characterization of disease-associated microbiota perturbations.

    Article  CAS  PubMed  Google Scholar 

  161. Zhou, W. et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569, 663–671 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Flint, A., Raben, A., Rehfeld, J., Holst, J. & Astrup, A. The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. Int. J. Obes. 24, 288 (2000).

    Article  CAS  Google Scholar 

  163. Batterham, R. L. et al. Gut hormone PYY 3-36 physiologically inhibits food intake. Nature 418, 650 (2002).

    Article  CAS  PubMed  Google Scholar 

  164. Holz, I. V. IV, G. G., Kiihtreiber, W. M. & Habener, J. F. Pancreatic β-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1 (7–37). Nature 361, 362 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Macfarlane, S. & Macfarlane, G. T. Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl. Environ. Microbiol. 72, 6204–6211 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Roager, H. M. et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat. Microbiol. 1, 16093 (2016). This study indicates that the colonic transit time is an important factor to consider in microbiome and metabolomics studies.

    Article  CAS  PubMed  Google Scholar 

  167. Russell, W. R. et al. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol. Nutr. Food Res. 57, 523–535 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Flemer, B. et al. The oral microbiota in colorectal cancer is distinctive and predictive. Gut 67, 1454–1463 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Plaza Oñate, F. et al. MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics 35, 1544–1552 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  170. Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C. & Segata, N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 27, 626–638 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zolfo, M., Tett, A., Jousson, O., Donati, C. & Segata, N. MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples. Nucleic Acids Res. 45, e7–e7 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Greenblum, S., Carr, R. & Borenstein, E. Extensive strain-level copy-number variation across human gut microbiome species. Cell 160, 583–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008).

    Article  CAS  Google Scholar 

  175. Wikoff, W. R. et al. Diacetylspermine is a novel prediagnostic serum biomarker for non-small-cell lung cancer and has additive performance with pro-surfactant protein B. J. Clin. Oncol. 33, 3880 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. de Hoffmann, E. Tandem mass spectrometry: a primer. J. Mass. Spectrom. 31, 129–137 (1996).

    Article  Google Scholar 

  177. Donia, M. S. & Fischbach, M. A. Small molecules from the human microbiota. Science 349, 1254766 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Wolters, M. et al. Dietary fat, the gut microbiota, and metabolic health — a systematic review conducted within the MyNewGut project. Clin. Nutr. 38, 2504–2520 (2018).

    Article  PubMed  Google Scholar 

  180. Kjølbæk, L. et al. Arabinoxylan oligosaccharides and polyunsaturated fatty acid effects on gut microbiota and metabolic markers in overweight individuals with signs of metabolic syndrome: a randomized cross-over trial. Clin. Nutr. 39, 67–79 (2019).

    Article  PubMed  CAS  Google Scholar 

  181. Dieterich, W. et al. Influence of low FODMAP and gluten-free diets on disease activity and intestinal microbiota in patients with non-celiac gluten sensitivity. Clin. Nutr. 38, 697–707 (2019).

    Article  PubMed  Google Scholar 

  182. Hansen, L. B. et al. A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nat. Commun. 9, 4630 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Roager, H. M. et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut 68, 83–93 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).

    Article  PubMed  Google Scholar 

  185. Martín, R. et al. Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front. Microbiol. 8, 1226 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019). This proof-of-concept study shows that supplementation with A. muciniphila improves several dysmetabolic features.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Cani, P. D. & Van Hul, M. Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr. Opin. Biotechnol. 32, 21–27 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Kristensen, N. B. et al. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 8, 52 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Dewulf, E. M. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62, 1112–1121 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Nicolucci, A. C. et al. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology 153, 711–722 (2017).

    Article  PubMed  Google Scholar 

  194. Tsilingiri, K. et al. Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model. Gut 61, 1007–1015 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. Van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    Article  PubMed  CAS  Google Scholar 

  197. Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611–619.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Duan, F. F., Liu, J. H. & March, J. C. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes 64, 1794–1803 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Górski, A. et al. Perspectives of phage therapy in non-bacterial infections. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.03306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Ramachandran, G. & Bikard, D. Editing the microbiome the CRISPR way. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Marie Skłodowska-Curie Individual Fellowship 797267 (granted to Y.F.). The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent research centre at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Oluf Pedersen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks M. Nieuwdorp, C. Thaiss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Supervised machine learning

A form of applied artificial intelligence where the algorithm learns by experience to classify new data according to prior labels.

Random forest

A machine learning approach where a multitude of algorithms (decision trees) are used to optimize, for instance, classification or regression of data sets.

Kyoto Encyclopedia of Genes and Genomes

A publicly available database in bioinformatics and system medicine-driven analyses with information on omics-generated data, biological pathways, chemicals and drugs.

Dysmetabolism

Metabolic dysfunctions often including abdominal obesity, dyslipidaemia and higher blood glucose and higher blood pressure than normal.

Endotoxaemia

The presence of endotoxin(s) within the blood, for example, bacterial lipopolysaccharides.

Dyslipidaemia

An abnormal amount and an abnormal relative distribution of various lipids in the blood.

Atherogenesis

The dynamic process of forming atheromas (also called plaques), that is, accumulated inflammatory cells, lipids, cell debris, minerals and connective tissue in and on the walls of an artery forming a swelling that narrows the arterial lumen and restricts the flow of blood.

Thrombosis

The formation of a blood clot, known as a thrombus, within a blood vessel. The blood clot that consists of platelets, red blood cells and fibrin proteins obstructs the flow of blood through the blood vessel.

Stroke

An acute brain insult where compromised blood flow in atherosclerotic arteries or bleeding from brain arteries causes damage to brain tissues often resulting in various paresis.

Myocardial infarction

(Also known as an acute heart attack or acute coronary syndrome). An event that occurs when blood flow is acutely compromised or is completely stopped to a part of the heart muscle (myocardium), causing severe damage to the heart.

Atherosclerosis

The build-up of cholesterol, other lipids, inflammatory cells and calcium in artery walls, which can restrict blood flow.

Atherothrombosis

The formation of a blood clot within an artery that is affected by arteriosclerosis.

Plaque instability

Vulnerable arterial wall plague that intermittently ruptures giving rise to circulating plaque fragments called emboli, which may cause myocardial infarction or stroke.

Intima

The innermost coating of the vessel wall including the endothelial surface at the lumen.

Steatosis

An abnormal retention of lipids within an organ. The term is most often used about a fatty liver.

Portal endotoxaemia

Endotoxins, primarily bacterial lipopolysaccharides, which are absorbed from the intestines into mensenteric and liver veins (portal drainage).

Liver cirrhosis

A chronic liver disease caused, for instance, by alcohol abuse or virus infection with impairment of multiple liver functions owing to replacement of normal liver tissues by scar tissue.

Hepatic encephalopathy

A spectrum of cognitive and neuro-psychiatric abnormalities such as personality changes, anxiety, confusion, fatigue, shaky hands or seizures caused by severely impaired liver function.

Holobiont

The unique and discrete collective of a macro-organism — a host — and the complex microbial communities for which the macro-organism is the habitat.

Anorexigenic hormones

These appetite-decreasing hormones include glucagon-like peptide 1 (GLP-1) and peptide YY (PYY), both produced by specialized intestinal cells and leptin produced by adipocytes and intestinal cells.

Leptin

A hormone predominantly synthesized in adipose cells and enterocytes in the small intestine that helps to regulate energy balance by inhibiting hunger, which in turn diminishes fat storage in adipocytes.

Hyperinsulinemia

A state where the concentration of insulin in blood is higher than what is considered normal.

Hyperphagia

An abnormally great desire for food.

Ghrelin

A circulating hormone that is produced mainly by stomach cells and that stimulates appetite and promotes fat storage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Pedersen, O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19, 55–71 (2021). https://doi.org/10.1038/s41579-020-0433-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-020-0433-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing