Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Target protection as a key antibiotic resistance mechanism


Antibiotic resistance is mediated through several distinct mechanisms, most of which are relatively well understood and the clinical importance of which has long been recognized. Until very recently, neither of these statements was readily applicable to the class of resistance mechanism known as target protection, a phenomenon whereby a resistance protein physically associates with an antibiotic target to rescue it from antibiotic-mediated inhibition. In this Review, we summarize recent progress in understanding the nature and importance of target protection. In particular, we describe the molecular basis of the known target protection systems, emphasizing that target protection does not involve a single, uniform mechanism but is instead brought about in several mechanistically distinct ways.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of target protection types.
Fig. 2: Protection of ribosomes from tetracycline by Tet(M).
Fig. 3: Ribosomal protection against antibiotics mediated by the ARE ABC-F proteins.
Fig. 4: Target protection mediated by FusB-type proteins.
Fig. 5: Proposed mechanism of target protection by HflXr proteins.
Fig. 6: Evolution of target protection proteins within the elongation factor 2 and ABC-F families of translation factors.


  1. 1.

    O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. (2016).

  2. 2.

    Abraham, E. P. & Chain, E. An enzyme from bacteria able to destroy penicillin. Nature 146, 837 (1940).

    CAS  Google Scholar 

  3. 3.

    Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    CAS  PubMed  Google Scholar 

  4. 4.

    Sharkey, L. K. & O’Neill, A. J. in Bacterial Resistance to Antibiotics: From Molecules to Man (eds Bonev, B. B. & Brown, N. M.) 27–50 (Wiley & Sons, 2019).

  5. 5.

    Manavathu, E. K., Fernandez, C. L., Cooperman, B. S. & Taylor, D. E. Molecular studies on the mechanism of tetracycline resistance mediated by Tet(O). Antimicrob. Agents Chemother. 34, 71–77 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Burdett, V. Purification and characterization of Tet(M), a protein that renders ribosomes resistant to tetracycline. J. Biol. Chem. 266, 2872–2877 (1991).

    CAS  PubMed  Google Scholar 

  7. 7.

    Nguyen, F. et al. Tetracycline antibiotics and resistance mechanisms. Biol. Chem. 395, 559–575 (2014).

    CAS  PubMed  Google Scholar 

  8. 8.

    Brodersen, D. E. et al. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103, 1143–1154 (2000).

    CAS  PubMed  Google Scholar 

  9. 9.

    Pioletti, M. et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 20, 1829–1839 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Jenner, L. et al. Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis. Proc. Natl Acad. Sci. USA 110, 3812–3816 (2013).

    CAS  PubMed  Google Scholar 

  11. 11.

    Schedlbauer, A. et al. Structural characterization of an alternative mode of tigecycline binding to the bacterial ribosome. Antimicrob. Agents Chemother. 59, 2849–2854 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Roberts, M. C. Tet mechanisms of resistance (2020).

  13. 13.

    Connell, S. R., Tracz, D. M., Nierhaus, K. H. & Taylor, D. E. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother. 47, 3675–3681 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Roberts, M. C. Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 245, 195–203 (2005).

    CAS  PubMed  Google Scholar 

  15. 15.

    Shen, Y. et al. Identification and characterization of fluoroquinolone non-susceptible Streptococcus pyogenes clones harboring tetracycline and macrolide resistance in Shanghai, China. Front. Microbiol. 9, 542 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Metcalf, B. J. et al. Using whole genome sequencing to identify resistance determinants and predict antimicrobial resistance phenotypes for year 2015 invasive pneumococcal disease isolates recovered in the United States. Clin. Microbiol. Infect. 22, 1002 e1001–1002 e1008 (2016).

    Google Scholar 

  17. 17.

    Trzcinski, K., Cooper, B. S., Hryniewicz, W. & Dowson, C. G. Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 45, 763–770 (2000).

    CAS  PubMed  Google Scholar 

  18. 18.

    Emaneini, M. et al. Distribution of genes encoding tetracycline resistance and aminoglycoside modifying enzymes in Staphylococcus aureus strains isolated from a burn center. Ann. Burn. Fire Disasters 26, 76–80 (2013).

    CAS  Google Scholar 

  19. 19.

    Nishimoto, Y. et al. Analysis of the prevalence of tetracycline resistance genes in clinical isolates of Enterococcus faecalis and Enterococcus faecium in a Japanese hospital. Microb. Drug Resist. 11, 146–153 (2005).

    CAS  PubMed  Google Scholar 

  20. 20.

    Tian, Y., Yu, H. & Wang, Z. Distribution of acquired antibiotic resistance genes among Enterococcus spp. isolated from a hospital in Baotou, China. BMC Res. Notes 12, 27 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Spahn, C. M. et al. Localization of the ribosomal protection protein Tet(O) on the ribosome and the mechanism of tetracycline resistance. Mol. Cell 7, 1037–1045 (2001).

    CAS  PubMed  Google Scholar 

  22. 22.

    Dönhöfer, A. et al. Structural basis for TetM-mediated tetracycline resistance. Proc. Natl Acad. Sci. USA 109, 16900–16905 (2012).

    PubMed  Google Scholar 

  23. 23.

    Li, W. et al. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat. Commun. 4, 1477 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Arenz, S., Nguyen, F., Beckmann, R. & Wilson, D. N. Cryo-EM structure of the tetracycline resistance protein TetM in complex with a translating ribosome at 3.9-Å resolution. Proc. Natl Acad. Sci. USA 112, 5401–5406 (2015). This study presents the highest-resolution cryo-electron microscopy structure of Tet(M) in complex with the ribosome, revealing that the TRPPs mediate target protection directly (type I) rather than indirectly (type II).

    CAS  PubMed  Google Scholar 

  25. 25.

    Burdett, V. Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent. J. Bacteriol. 178, 3246–3251 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Trieber, C. A., Burkhardt, N., Nierhaus, K. H. & Taylor, D. E. Ribosomal protection from tetracycline mediated by Tet(O) interaction with ribosomes Is GTP-dependent. Biol. Chem. 379, 847–855 (1998).

    CAS  PubMed  Google Scholar 

  27. 27.

    Grossman, T. H. et al. Target- and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic. Antimicrob. Agents Chemother. 56, 2559–2564 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Draper, M. P. et al. Mechanism of action of the novel aminomethylcycline antibiotic omadacycline. Antimicrob. Agents Chemother. 58, 1279–1283 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Linkevicius, M., Sandegren, L. & Andersson, D. I. Potential of tetracycline resistance proteins to evolve tigecycline resistance. Antimicrob. Agents Chemother. 60, 789–796 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Sharkey, L. K., Edwards, T. A. & O’Neill, A. J. ABC-F proteins mediate antibiotic resistance through ribosomal protection. MBio 7, e01975 (2016). This study provides the first direct evidence that antibiotic resistance ABC-F proteins mediate resistance through target protection (rather than efflux, as was generally thought).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Sharkey, L. K. R. & O’Neill, A. J. Antibiotic resistance ABC-F proteins: bringing target protection into the limelight. ACS Infect. Dis. 4, 239–246 (2018).

    CAS  PubMed  Google Scholar 

  32. 32.

    Murina, V. et al. ABCF ATPases involved in protein synthesis, ribosome assembly and antibiotic resistance: structural and functional diversification across the tree of life. J. Mol. Biol. (2018).

  33. 33.

    Boel, G. et al. The ABC-F protein EttA gates ribosome entry into the translation elongation cycle. Nat. Struct. Mol. Biol. 21, 143–151 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Chen, B. et al. EttA regulates translation by binding the ribosomal E site and restricting ribosome-tRNA dynamics. Nat. Struct. Mol. Biol. 21, 152–159 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Crowe-McAuliffe, C. et al. Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR. Proc. Natl Acad. Sci. USA 115, 8978–8983 (2018).

    CAS  PubMed  Google Scholar 

  36. 36.

    Wang, Y. et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 70, 2182–2190 (2015).

    CAS  PubMed  Google Scholar 

  37. 37.

    Murina, V., Kasari, M., Hauryliuk, V. & Atkinson, G. C. Antibiotic resistance ABCF proteins reset the peptidyl transferase centre of the ribosome to counter translational arrest. Nucleic Acids Res. 46, 3753–3763 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Antonelli, A. et al. Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin. J. Antimicrob. Chemother. 73, 1763–1769 (2018).

    CAS  PubMed  Google Scholar 

  39. 39.

    Su, W. et al. Ribosome protection by antibiotic resistance ATP-binding cassette protein. Proc. Natl Acad. Sci. USA 115, 5157–5162 (2018). Together with Crowe-McAuliffe et al. (2018), this study offers the first structural insights into how antibiotic resistance ABC-F proteins interact with the ribosome to mediate target protection indirectly (type II).

    CAS  PubMed  Google Scholar 

  40. 40.

    Ero, R., Kumar, V., Su, W. & Gao, Y. G. Ribosome protection by ABC-F proteins-molecular mechanism and potential drug design. Protein Sci. 28, 684–693 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Novotna, G. & Janata, J. A new evolutionary variant of the streptogramin a resistance protein, Vga(A)LC, from Staphylococcus haemolyticus with shifted substrate specificity towards lincosamides. Antimicrob. Agents Chemother. 50, 4070–4076 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Lenart, J., Vimberg, V., Vesela, L., Janata, J. & Balikova Novotna, G. Detailed mutational analysis of Vga(A) interdomain linker: implication for antibiotic resistance specificity and mechanism. Antimicrob. Agents Chemother. 59, 1360–1364 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Ohki, R., Tateno, K., Takizawa, T., Aiso, T. & Murata, M. Transcriptional termination control of a novel ABC transporter gene involved in antibiotic resistance in Bacillus subtilis. J. Bacteriol. 187, 5946–5954 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wilson, D. N. The ABC of ribosome-related antibiotic resistance. mBio 7 (2016).

  45. 45.

    Orelle, C. et al. Tools for characterizing bacterial protein synthesis inhibitors. Antimicrob. Agents Chemother. 57, 5994–6004 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Nakahigashi, K. et al. Comprehensive identification of translation start sites by tetracycline-inhibited ribosome profiling. DNA Res. 23, 193–201 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Dar, D. et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352, aad9822 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Chotewutmontri, P. & Barkan, A. Multilevel effects of light on ribosome dynamics in chloroplasts program genome-wide and psbA-specific changes in translation. PLoS Genet. 14, e1007555 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Wilson, D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48 (2014).

    CAS  PubMed  Google Scholar 

  50. 50.

    Marks, J. et al. Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center. Proc. Natl Acad. Sci. USA 113, 12150–12155 (2016).

    CAS  PubMed  Google Scholar 

  51. 51.

    Seo, H. S. et al. EF-G-dependent GTPase on the ribosome, conformational change and fusidic acid inhibition. Biochemistry 45, 2504–2514 (2006).

    CAS  PubMed  Google Scholar 

  52. 52.

    Tanaka, N., Kinoshita, T. & Masukawa, H. Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochem. Biophys. Res. Comm. 30, 278–283 (1968).

    CAS  PubMed  Google Scholar 

  53. 53.

    Bodley, J. W., Zieve, F. J., Lin, L. & Zieve, S. T. Formation of the ribosome-G factor-GDP complex in the presence of fusidic acid. Biochem. Biophys. Res. Comm. 37, 437–443 (1969).

    CAS  PubMed  Google Scholar 

  54. 54.

    McLaws, F. B., Larsen, A. R., Skov, R. L., Chopra, I. & O’Neill, A. J. Distribution of fusidic acid resistance determinants in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 55, 1173–1176 (2011).

    CAS  PubMed  Google Scholar 

  55. 55.

    McLaws, F., Chopra, I. & O’Neill, A. J. High prevalence of resistance to fusidic acid in clinical isolates of Staphylococcus epidermidis. J. Antimicrob. Chemother. 61, 1040–1043 (2008).

    CAS  PubMed  Google Scholar 

  56. 56.

    O’Neill, A. J., Larsen, A. R., Henriksen, A. S. & Chopra, I. A fusidic acid-resistant epidemic strain of Staphylococcus aureus carries the fusB determinant, whereas fusA mutations are prevalent in other resistant isolates. Antimicrob. Agents Chemother. 48, 3594–3597 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Castanheira, M., Watters, A. A., Bell, J. M., Turnidge, J. D. & Jones, R. N. Fusidic acid resistance rates and prevalence of resistance mechanisms among Staphylococcus spp. isolated in North America and Australia, 2007-2008. Antimicrob. Agents Chemother. 54, 3614–3617 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Castanheira, M., Watters, A. A., Mendes, R. E., Farrell, D. J. & Jones, R. N. Occurrence and molecular characterization of fusidic acid resistance mechanisms among Staphylococcus spp. from European countries (2008). J. Antimicrob. Chemother. 65, 1353–1358 (2010).

    CAS  PubMed  Google Scholar 

  59. 59.

    O’Neill, A. J. & Chopra, I. Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol. Microbiol. 59, 664–676 (2006).

    CAS  PubMed  Google Scholar 

  60. 60.

    Cox, G. et al. Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid. Proc. Natl Acad. Sci. USA 109, 2102–2107 (2012).

    CAS  PubMed  Google Scholar 

  61. 61.

    Guo, X. et al. Structure and function of FusB: an elongation factor G-binding fusidic acid resistance protein active in ribosomal translocation and recycling. Open Biol. 2, 120016 (2012).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Tomlinson, J. H., Thompson, G. S., Kalverda, A. P., Zhuravleva, A. & O’Neill, A. J. A target-protection mechanism of antibiotic resistance at atomic resolution: insights into FusB-type fusidic acid resistance. Sci. Rep. 6, 19524 (2016). This study provides the most recent model for how FusB-type proteins promote dissociation of EF-G from the ribosome even in the presence of the antibiotic fusidic acid, thereby mediating type III target protection.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Gao, Y. G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Li, W., Trabuco, L. G., Schulten, K. & Frank, J. Molecular dynamics of EF-G during translocation. Proteins 79, 1478–1486 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Zhou, J., Lancaster, L., Donohue, J. P. & Noller, H. F. Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation. Science 340, 1236086 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Tran, J. H. & Jacoby, G. A. Mechanism of plasmid-mediated quinolone resistance. Proc. Natl Acad. Sci. USA 99, 5638–5642 (2002). This study provides the first detailed description of Qnr-mediated resistance to quinolones.

    CAS  PubMed  Google Scholar 

  67. 67.

    Tran, J. H., Jacoby, G. A. & Hooper, D. C. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob. Agents Chemother. 49, 118–125 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Tran, J. H., Jacoby, G. A. & Hooper, D. C. Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV. Antimicrob. Agents Chemother. 49, 3050–3052 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Jacoby, G. A., Strahilevitz, J. & Hooper, D. C. Plasmid-mediated quinolone resistance. Microbiol. Spectr. (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Vetting, M. W. et al. Structure of QnrB1, a plasmid-mediated fluoroquinolone resistance factor. J. Biol. Chem. 286, 25265–25273 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Xiong, X., Bromley, E. H., Oelschlaeger, P., Woolfson, D. N. & Spencer, J. Structural insights into quinolone antibiotic resistance mediated by pentapeptide repeat proteins: conserved surface loops direct the activity of a Qnr protein from a gram-negative bacterium. Nucleic Acids Res. 39, 3917–3927 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Tenson, T. & Mankin, A. S. Short peptides conferring resistance to macrolide antibiotics. Peptides 22, 1661–1668 (2001).

    CAS  PubMed  Google Scholar 

  73. 73.

    Tripathi, S., Kloss, P. S. & Mankin, A. S. Ketolide resistance conferred by short peptides. J. Biol. Chem. 273, 20073–20077 (1998).

    CAS  PubMed  Google Scholar 

  74. 74.

    Lovmar, M. et al. The molecular mechanism of peptide-mediated erythromycin resistance. J. Biol. Chem. 281, 6742–6750 (2006).

    CAS  PubMed  Google Scholar 

  75. 75.

    Tenson, T., Xiong, L., Kloss, P. & Mankin, A. S. Erythromycin resistance peptides selected from random peptide libraries. J. Biol. Chem. 272, 17425–17430 (1997).

    CAS  PubMed  Google Scholar 

  76. 76.

    Vimberg, V., Xiong, L., Bailey, M., Tenson, T. & Mankin, A. Peptide-mediated macrolide resistance reveals possible specific interactions in the nascent peptide exit tunnel. Mol. Microbiol. 54, 376–385 (2004).

    CAS  PubMed  Google Scholar 

  77. 77.

    Tenson, T., DeBlasio, A. & Mankin, A. A functional peptide encoded in the Escherichia coli 23S rRNA. Proc. Natl Acad. Sci. USA 93, 5641–5646 (1996).

    CAS  PubMed  Google Scholar 

  78. 78.

    Lau, C. H., van Engelen, K., Gordon, S., Renaud, J. & Topp, E. Novel antibiotic resistance determinants from agricultural soil exposed to antibiotics widely used in human medicine and animal farming. Appl. Environ. Microbiol. 83, e00989-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Duval, M. et al. HflXr, a homolog of a ribosome-splitting factor, mediates antibiotic resistance. Proc. Natl Acad. Sci. USA 115, 13359–13364 (2018). This study suggests that some bacteria contain HflX homologues capable of mediating target protection against lincosamide and macrolide antibiotics.

    CAS  PubMed  Google Scholar 

  80. 80.

    Zhang, Y. et al. HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions. Nat. Struct. Mol. Biol. 22, 906–913 (2015).

    CAS  PubMed  Google Scholar 

  81. 81.

    Srinivasan, K., Dey, S. & Sengupta, J. Structural modules of the stress-induced protein HflX: an outlook on its evolution and biological role. Curr. Genet. 65, 363–370 (2019).

    CAS  PubMed  Google Scholar 

  82. 82.

    Rudra, P., Hurst-Hess, K. R., Cotten, K. L., Partida-Miranda, A. & Ghosh, P. Mycobacterial HflX is a ribosome splitting factor that mediates antibiotic resistance. Proc. Natl Acad. Sci. USA 117, 629–634 (2020).

    CAS  PubMed  Google Scholar 

  83. 83.

    Kobras, C. M. et al. BceAB-type antibiotic resistance transporters appear to act by target protection of cell wall synthesis. Antimicrob. Agents Chemother. 64, e02241-19 (2020). This study suggests that BceAB-type proteins mediate resistance to bacitracin by a target protection mechanism that operates outside the bacterial cell.

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Clemens, R., Zaschke-Kriesche, J., Khosa, S. & Smits, S. H. J. Insight into two ABC transporter families involved in lantibiotic resistance. Front. Mol. Biosci. 4, 91 (2017).

    PubMed  Google Scholar 

  85. 85.

    Popella, P. et al. VraH is the third component of the Staphylococcus aureus VraDEH system involved in gallidermin and daptomycin resistance and pathogenicity. Antimicrob. Agents Chemother. 60, 2391–2401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Blake, K. L., Randall, C. P. & O’Neill, A. J. In vitro studies indicate a high resistance potential for the lantibiotic nisin in Staphylococcus aureus and define a genetic basis for nisin resistance. Antimicrob. Agents Chemother. 55, 2362–2368 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Randall, C. P. et al. Acquired nisin resistance in Staphylococcus aureus involves constitutive activation of an intrinsic peptide antibiotic detoxification module. mSphere 3, e00633-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Gebhard, S. ABC transporters of antimicrobial peptides in firmicutes bacteria - phylogeny, function and regulation. Mol. Microbiol. 86, 1295–1317 (2012).

    CAS  PubMed  Google Scholar 

  89. 89.

    Singh, K. V., Weinstock, G. M. & Murray, B. E. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob. Agents Chemother. 46, 1845–1850 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Karray, F. et al. Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens. Microbiology 153, 4111–4122 (2007).

    CAS  PubMed  Google Scholar 

  91. 91.

    Gonzalez-Plaza, J. J. et al. Functional repertoire of antibiotic resistance genes in antibiotic manufacturing effluents and receiving freshwater sediments. Front. Microbiol. 8, 2675 (2017).

    PubMed  Google Scholar 

  92. 92.

    Atkinson, G. C. et al. Distinction between the Cfr methyltransferase conferring antibiotic resistance and the housekeeping RlmN methyltransferase. Antimicrob. Agents Chemother. 57, 4019–4026 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Kaminska, K. H. et al. Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria. Nucleic Acids Res. 38, 1652–1663 (2010).

    CAS  PubMed  Google Scholar 

  94. 94.

    Park, A. K., Kim, H. & Jin, H. J. Phylogenetic analysis of rRNA methyltransferases, Erm and KsgA, as related to antibiotic resistance. FEMS Microbiol. Lett. 309, 151–162 (2010).

    CAS  PubMed  Google Scholar 

  95. 95.

    Shaw, K. J. et al. In vitro activity of TR-700, the antibacterial moiety of the prodrug TR-701, against linezolid-resistant strains. Antimicrob. Agents Chemother. 52, 4442–4447 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Zhong, X. et al. A novel inhibitor of the new antibiotic resistance protein OptrA. Chem. Biol. Drug. Des. 92, 1458–1467 (2018).

    CAS  PubMed  Google Scholar 

  97. 97.

    Starosta, A. L. The bacterial translation stress response. FEMS Microbiol. Rev. 38, 1172–1201 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Tu, D., Blaha, G., Moore, P. B. & Steitz, T. A. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121, 257–270 (2005).

    CAS  PubMed  Google Scholar 

  99. 99.

    Dunkle, J. A., Xiong, L., Mankin, A. S. & Cate, J. H. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl Acad. Sci. USA 107, 17152–17157 (2010).

    CAS  PubMed  Google Scholar 

  100. 100.

    Matzov, D. et al. Structural insights of lincosamides targeting the ribosome of Staphylococcus aureus. Nucleic Acids Res. 45, 10284–10292 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Schlunzen, F., Pyetan, E., Fucini, P., Yonath, A. & Harms, J. M. Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol. Microbiol. 54, 1287–1294 (2004).

    PubMed  Google Scholar 

  102. 102.

    Wilson, D. N. et al. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc. Natl Acad. Sci. USA 105, 13339–13344 (2008).

    CAS  PubMed  Google Scholar 

  103. 103.

    Atkinson, G. C. The evolutionary and functional diversity of classical and lesser-known cytoplasmic and organellar translational GTPases across the tree of life. BMC Genomics 16, 78 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Stewart, J. D., Cowan, J. L., Perry, L. S., Coldwell, M. J. & Proud, C. G. ABC50 mutants modify translation start codon selection. Biochem. J. 467, 217–229 (2015).

    CAS  PubMed  Google Scholar 

  105. 105.

    Su, T. et al. Structure and function of Vms1 and Arb1 in RQC and mitochondrial proteome homeostasis. Nature 570, 538–542 (2019).

    CAS  PubMed  Google Scholar 

  106. 106.

    Vazquez de Aldana, C. R., Marton, M. J. & Hinnebusch, A. G. GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2 alpha kinase GCN2 in amino acid-starved cells. EMBO J. 14, 3184–3199 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


Work on ribosome protection by the D.N.W. group is supported by Deutsche Forschungsgemeinschaft grants (WI3285/8-1 to D.N.W.), and studies in A.J.O.’s laboratory have been supported by the UK Biotechnology and Biological Sciences Research Council (grants BB/H018433/1 and BB/F016603/1). Antibiotic resistance studies in the D.N.W. and V.H. groups are also supported by the Deutsche Zentrum für Luft- und Raumfahrt (DLR01Kl1820 to D.N.W) and the Swedish Research Council (2018-00956 to V.H.) within the RIBOTARGET consortium under the frame of JPIAMR. The Swedish Research Council supports V.H. and G.C.A. (2017-03783 to V.H. and 2015-04746 and 2019-01085 to G.C.A.). Additional support to V.H. comes from the Ragnar Söderbergs Stiftelse, the European Regional Development Fund through the Centre of Excellence for Molecular Cell Engineering, Molecular Infection Medicine Sweden, and the Estonian Science Foundation (IUT2-22). G.C.A. is also supported by the Carl Tryggers Stiftelse förVetenskaplig Forskning (CTS 19:24), Kempestiftelserna(SMK-1858.3), Jeanssons Stiftelser, the Umeå Centre for Microbial Research gender policy programme and Umeå Universitet Insamlingsstiftelsen för Medicinsk Forskning.

Author information




A.J.O. and D.N.W. led the drafting of the manuscript, with substantial input from the other authors.

Corresponding authors

Correspondence to Daniel N. Wilson or Alex J. O’Neill.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Enzymes that bind GTP and hydrolyse it to GDP, and play a role in diverse cellular processes.

Shine–Dalgarno helix

A short helix between the Shine–Dalgarno sequence present in the 5′ untranslated region of the mRNA and the anti-Shine–Dalgarno sequence present at the 3′ end of the 16S ribosomal RNA that promotes translation initiation.

Type II topoisomerases

ATP-dependent enzymes that alter DNA topology to manage chromosome segregation and DNA supercoiling.

Clinical breakpoints

Antibiotic susceptibility levels used to distinguish bacterial infections for which antibiotic treatment is likely to succeed from those for which it will likely fail.


5ʹ-Guanylyl imidodiphosphate, which is a non-hydrolysable GTP analogue.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilson, D.N., Hauryliuk, V., Atkinson, G.C. et al. Target protection as a key antibiotic resistance mechanism. Nat Rev Microbiol 18, 637–648 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing