Evolutionary causes and consequences of bacterial antibiotic persistence

Abstract

Antibiotic treatment failure is of growing concern. Genetically encoded resistance is key in driving this process. However, there is increasing evidence that bacterial antibiotic persistence, a non-genetically encoded and reversible loss of antibiotic susceptibility, contributes to treatment failure and emergence of resistant strains as well. In this Review, we discuss the evolutionary forces that may drive the selection for antibiotic persistence. We review how some aspects of antibiotic persistence have been directly selected for whereas others result from indirect selection in disparate ecological contexts. We then discuss the consequences of antibiotic persistence on pathogen evolution. Persisters can facilitate the evolution of antibiotic resistance and virulence. Finally, we propose practical means to prevent persister formation and how this may help to slow down the evolution of virulence and resistance in pathogens.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Evolution of higher persistence.
Fig. 2: Selection for persistence.
Fig. 3: Evolutionary consequences of persistence.

References

  1. 1.

    WHO. Antimicrobial Resistance: Global Report on Surveillance (World Health Organization, 2014).

  2. 2.

    Bigger, J. W. Treatment of staphylococcal infections with penicillin—by intermittent sterilisation. Lancet 2, 497–500 (1944).

    Article  Google Scholar 

  3. 3.

    Hobby, G. L., Meyer, K. & Chaffee, E. Observations on the mechanism of action of penicillin. Proc. Soc. Exp. Biol. Med. 50, 281–285 (1942).

    CAS  Article  Google Scholar 

  4. 4.

    Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019). This Consensus Statement summarizes the most important definitions regarding research in antibiotic persistence.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Dewachter, L., Fauvart, M. & Michiels, J. Bacterial heterogeneity and antibiotic survival: understanding and combatting persistence and heteroresistance. Mol. Cell 76, 255–267 (2019).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Gollan, B., Grabe, G., Michaux, C. & Helaine, S. Bacterial persisters and infection: past, present, and progressing. Annu. Rev. Microbiol. 73, 359–385 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    D’Costa, V. M., McGrann, K. M., Hughes, D. W. & Wright, G. D. Sampling the antibiotic resistome. Science 311, 374–377 (2006).

    PubMed  Article  Google Scholar 

  8. 8.

    Wright, G. D. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 5, 175–186 (2007).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Munita, J. M. & Arias, C. A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4, VMBF-0016-2015 (2016).

    Article  CAS  Google Scholar 

  11. 11.

    Van den Bergh, B., Fauvart, M. & Michiels, J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol. Rev. 41, 219–251 (2017).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Jayol, A., Nordmann, P., Brink, A. & Poirel, L. Heteroresistance to colistin in Klebsiella pneumoniae associated with alterations in the PhoPQ regulatory system. Antimicrob. Agents Chemother. 59, 2780–2784 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Band, V. I. & Weiss, D. S. Heteroresistance: a cause of unexplained antibiotic treatment failure? PLoS Pathog. 15, e1007726 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Hardt, W. D. Antimicrobial resistance: survival by reversible resistance. Nat. Microbiol. 1, 16072 (2016).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Band, V. I. et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae. Nat. Microbiol. 1, 16053 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Michiels, J. E., Van den Bergh, B., Verstraeten, N. & Michiels, J. Molecular mechanisms and clinical implications of bacterial persistence. Drug Resist. Updat. 29, 76–89 (2016).

    PubMed  Article  Google Scholar 

  17. 17.

    Cohen, N. R., Lobritz, M. A. & Collins, J. J. Microbial persistence and the road to drug resistance. Cell Host Microbe 13, 632–642 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Harms, A., Maisonneuve, E. & Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, aaf4268 (2016).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Pontes, M. H. & Groisman, E. A. Slow growth determines nonheritable antibiotic resistance in Salmonella enterica. Sci. Signal. 12, eaax3938 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017). This work is the first to show that tolerance or persistence has a link to the evolution of antibiotic resistance.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Fridman, O., Goldberg, A., Ronin, I., Shoresh, N. & Balaban, N. Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513, 418–421 (2014). This work is the first to demonstrate the evolvability of tolerance in the presence of intermittent antibiotic selection by the accumulation of mutations that lead to the optimization of time until re-entry into growth after treatment.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004). This work shows that persisters can be phenotypically generated as a response to environmental stimuli (that is, triggered persistence), but that another category of persisters can pre-exist (that is, spontaneous persistence).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Moyed, H. S. & Bertrand, K. P. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155, 768–775 (1983).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Van den Bergh, B. et al. Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nat. Microbiol. 1, 16020 (2016).

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Michiels, J. E., Van den Bergh, B., Verstraeten, N., Fauvart, M. & Michiels, J. In vitro emergence of high persistence upon periodic aminoglycoside challenge in the ESKAPE pathogens. Antimicrob. Agents Chemother. 60, 4630–4637 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Mechler, L. et al. A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus. Antimicrob. Agents Chemother. 59, 5366–5376 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Khare, A. & Tavazoie, S. Extreme antibiotic persistence via heterogeneity-generating mutations targeting translation. mSystems 5, e00847-19 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Sulaiman, J. E. & Lam, H. Proteomic investigation of tolerant Escherichia coli populations from cyclic antibiotic treatment. J. Proteome Res. 19, 900–913 (2020).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Grant, S. S. & Hung, D. T. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 4, 273–283 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Fisher, R. A., Gollan, B. & Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15, 453–464 (2017).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Monack, D. M., Mueller, A. & Falkow, S. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat. Rev. Microbiol. 2, 747–765 (2004).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Moreno-Gamez, S. et al. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proc. Natl Acad. Sci. USA 112, E2874–E2883 (2015).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Diard, M. & Hardt, W. D. Evolution of bacterial virulence. FEMS Microbiol. Rev. 41, 679–697 (2017).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Gopinath, S., Carden, S. & Monack, D. Shedding light on Salmonella carriers. Trends Microbiol. 20, 320–327 (2012).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Lawley, T. D. et al. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect. Immun. 76, 403–416 (2008).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Monack, D. M., Bouley, D. M. & Falkow, S. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNγ neutralization. J. Exp. Med. 199, 231–241 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Pham, T. H. M. et al. Salmonella-driven polarization of granuloma macrophages antagonizes TNF-mediated pathogen restriction during persistent infection. Cell Host Microbe 27, 54–67 (2020).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Stapels, D. A. C. et al. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 362, 1156–1160 (2018).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Helaine, S. et al. Dynamics of intracellular bacterial replication at the single cell level. Proc. Natl Acad. Sci. USA 107, 3746–3751 (2010).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Helaine, S. et al. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343, 204–208 (2014). This study is an important description of host-induced persister formation in an invasive pathogen, supporting the idea that virulence factors that allow invasion and survival in cells can coincidentally evolve persistence.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Avraham, R. et al. Pathogen cell-to-cell variability drives heterogeneity in host immune responses. Cell 162, 1309–1321 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Diard, M. et al. Antibiotic treatment selects for cooperative virulence of Salmonella typhimurium. Curr. Biol. 24, 2000–2005 (2014). This work demonstrates for the first time that persistence can affect the evolution of virulence.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Kaiser, P. et al. Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment. PLoS Biol. 12, e1001793 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Bakkeren, E. et al. Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut. Nature 573, 276–280 (2019). This study furthers the link between persisters and the evolution of antibiotic resistance by supporting the fact that persisters can form reservoirs that can facilitate the spread of antibiotic resistance plasmids.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Claudi, B. et al. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 158, 722–733 (2014).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Gonzalez-Escobedo, G., Marshall, J. M. & Gunn, J. S. Chronic and acute infection of the gall bladder by Salmonella Typhi: understanding the carrier state. Nat. Rev. Microbiol. 9, 9–14 (2011).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Moreau-Marquis, S., Stanton, B. A. & O’Toole, G. A. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm. Pharmacol. Ther. 21, 595–599 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Geddes-McAlister, J., Kugadas, A. & Gadjeva, M. Tasked with a challenging objective: why do neutrophils fail to battle pseudomonas aeruginosa biofilms. Pathogens 8, 283 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  49. 49.

    Spoering, A. L. & Lewis, K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 6746–6751 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Kordes, A. et al. Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat. Commun. 10, 3397 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51.

    Rossi, E., Falcone, M., Molin, S. & Johansen, H. K. High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs. Nat. Commun. 9, 3459 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Cornforth, D. M. et al. Pseudomonas aeruginosa transcriptome during human infection. Proc. Natl Acad. Sci. USA 115, E5125–E5134 (2018).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Bartell, J. A. et al. Evolutionary highways to persistent bacterial infection. Nat. Commun. 10, 629 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Winstanley, C., O’Brien, S. & Brockhurst, M. A. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 24, 327–337 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Ramsey, B. W. et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N. Engl. J. Med. 340, 23–30 (1999).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Mulcahy, L. R., Burns, J. L., Lory, S. & Lewis, K. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J. Bacteriol. 192, 6191–6199 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Sendi, P. & Proctor, R. A. Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol. 17, 54–58 (2009).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Olson, M. E. & Horswill, A. R. Staphylococcus aureus osteomyelitis: bad to the bone. Cell Host Microbe 13, 629–631 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Vulin, C., Leimer, N., Huemer, M., Ackermann, M. & Zinkernagel, A. S. Prolonged bacterial lag time results in small colony variants that represent a sub-population of persisters. Nat. Commun. 9, 4074 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Horsburgh, C. R. Jr., Barry, C. E. 3rd & Lange, C. Treatment of tuberculosis. N Engl J Med 373, 2149–2160 (2015).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Meacci, F. et al. Drug resistance evolution of a Mycobacterium tuberculosis strain from a noncompliant patient. J. Clin. Microbiol. 43, 3114–3120 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Liu, Y. et al. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. J. Exp. Med. 213, 809–825 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    De Groote, M. A. et al. Comparative studies evaluating mouse models used for efficacy testing of experimental drugs against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 55, 1237–1247 (2011).

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Manina, G., Dhar, N. & McKinney, J. D. Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host Microbe 17, 32–46 (2015).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Wakamoto, Y. et al. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339, 91–95 (2013).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Rego, E. H., Audette, R. E. & Rubin, E. J. Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature 546, 153–157 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Rosenberg, A. et al. Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nat. Commun. 9, 2470 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. 68.

    Wuyts, J., Van Dijck, P. & Holtappels, M. Fungal persister cells: the basis for recalcitrant infections? PLoS Pathog. 14, e1007301 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Sengupta, S. & Siliciano, R. F. Targeting the latent reservoir for HIV-1. Immunity 48, 872–895 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Speck, S. H. & Ganem, D. Viral latency and its regulation: lessons from the γ-herpesviruses. Cell Host Microbe 8, 100–115 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Wolfson, J. S., Hooper, D. C., McHugh, G. L., Bozza, M. A. & Swartz, M. N. Mutants of Escherichia coli K-12 exhibiting reduced killing by both quinolone and β-lactam antimicrobial agents. Antimicrob. Agents Chemother. 34, 1938–1943 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Gefen, O. & Balaban, N. Q. The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol. Rev. 33, 704–717 (2009).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Hong, S. H., Wang, X., O’Connor, H. F., Benedik, M. J. & Wood, T. K. Bacterial persistence increases as environmental fitness decreases. Microb. Biotechnol. 5, 509–522 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Windels, E. M. et al. Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. ISME J. 13, 1239–1251 (2019). This work shows an alternative mechanism for the link between the evolution of persistence and antibiotic resistance, stating that persisters themselves have higher mutation rates leading to a higher probability of evolution of resistance (or other traits).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Gefen, O., Chekol, B., Strahilevitz, J. & Balaban, N. Q. TDtest: easy detection of bacterial tolerance and persistence in clinical isolates by a modified disk-diffusion assay. Sci. Rep. 7, 41284 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Proctor, R. A. et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat. Rev. Microbiol. 4, 295–305 (2006).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Liu, J., Gefen, O., Ronin, I., Bar-Meir, M. & Balaban, N. Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367, 200–204 (2020).

    CAS  PubMed  Google Scholar 

  79. 79.

    Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Gutierrez, A. et al. Understanding and sensitizing density-dependent persistence to quinolone antibiotics. Mol. Cell 68, 1147–1154 (2017).

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Kotte, O., Volkmer, B., Radzikowski, J. L. & Heinemann, M. Phenotypic bistability in Escherichia coli’s central carbon metabolism. Mol. Syst. Biol. 10, 736 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. 82.

    Nguyen, D. et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334, 982–986 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Fung, D. K., Chan, E. W., Chin, M. L. & Chan, R. C. Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development. Antimicrob. Agents Chemother. 54, 1082–1093 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Vega, N. M., Allison, K. R., Khalil, A. S. & Collins, J. J. Signaling-mediated bacterial persister formation. Nat. Chem. Biol. 8, 431–433 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Moker, N., Dean, C. R. & Tao, J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J. Bacteriol. 192, 1946–1955 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Leung, V. & Levesque, C. M. A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J. Bacteriol. 194, 2265–2274 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Wu, Y., Vulic, M., Keren, I. & Lewis, K. Role of oxidative stress in persister tolerance. Antimicrob. Agents Chemother. 56, 4922–4926 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Harrison, J. J., Ceri, H. & Turner, R. J. Multimetal resistance and tolerance in microbial biofilms. Nat. Rev. Microbiol. 5, 928–938 (2007).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Pearl, S., Gabay, C., Kishony, R., Oppenheim, A. & Balaban, N. Q. Nongenetic individuality in the host-phage interaction. PLoS Biol. 6, e120 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. 90.

    Goneau, L. W. et al. Selective target inactivation rather than global metabolic dormancy causes antibiotic tolerance in uropathogens. Antimicrob. Agents Chemother. 58, 2089–2097 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91.

    Desai, P. T. et al. Evolutionary genomics of Salmonella enterica subspecies. mBio 4, e00579-12 (2013).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Fookes, M. et al. Salmonella bongori provides insights into the evolution of the Salmonellae. PLoS Pathog. 7, e1002191 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Stecher, B. et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, 2177–2189 (2007).

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Cunrath, O. & Bumann, D. Host resistance factor SLC11A1 restricts Salmonella growth through magnesium deprivation. Science 366, 995–999 (2019).

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Griffin, A. J., Li, L. X., Voedisch, S., Pabst, O. & McSorley, S. J. Dissemination of persistent intestinal bacteria via the mesenteric lymph nodes causes typhoid relapse. Infect. Immun. 79, 1479–1488 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Sturm, A. et al. The cost of virulence: retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLoS Pathog. 7, e1002143 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Arnoldini, M. et al. Bistable expression of virulence genes in Salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biol. 12, e1001928 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. 98.

    Bliven, K. A. & Maurelli, A. T. Evolution of bacterial pathogens within the human host. Microbiol. Spectr. 4, VMBF-0017-2015 (2016).

    Article  CAS  Google Scholar 

  99. 99.

    Vazquez-Torres, A. et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287, 1655–1658 (2000).

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    De Groote, M. A. et al. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc. Natl Acad. Sci. USA 94, 13997–14001 (1997).

    PubMed  Article  Google Scholar 

  101. 101.

    Felmy, B. et al. NADPH oxidase deficient mice develop colitis and bacteremia upon infection with normally avirulent, TTSS-1- and TTSS-2-deficient Salmonella Typhimurium. PLoS One 8, e77204 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    van der Heijden, J., Bosman, E. S., Reynolds, L. A. & Finlay, B. B. Direct measurement of oxidative and nitrosative stress dynamics in Salmonella inside macrophages. Proc. Natl Acad. Sci. USA 112, 560–565 (2015).

    PubMed  Article  CAS  Google Scholar 

  103. 103.

    Flannagan, R. S., Cosio, G. & Grinstein, S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 7, 355–366 (2009).

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Craig, M. & Slauch, J. M. Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella. PLoS One 4, e4975 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. 105.

    Page, R. & Peti, W. Toxin–antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 12, 208–214 (2016).

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Vazquez-Laslop, N., Lee, H. & Neyfakh, A. A. Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. J. Bacteriol. 188, 3494–3497 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Vogwill, T., Comfort, A. C., Furio, V. & MacLean, R. C. Persistence and resistance as complementary bacterial adaptations to antibiotics. J. Evol. Biol. 29, 1223–1233 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Bjedov, I. et al. Stress-induced mutagenesis in bacteria. Science 300, 1404–1409 (2003).

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Coque, T. M., Baquero, F. & Canton, R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill. 13, 19044 (2008).

    PubMed  Google Scholar 

  110. 110.

    Crump, J. A., Sjolund-Karlsson, M., Gordon, M. A. & Parry, C. M. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 28, 901–937 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Marzel, A. et al. Persistent infections by nontyphoidal Salmonella in humans: epidemiology and genetics. Clin. Infect. Dis. 62, 879–886 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Barthel, M. et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71, 2839–2858 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Stecher, B., Maier, L. & Hardt, W. D. ‘Blooming’ in the gut: how dysbiosis might contribute to pathogen evolution. Nat. Rev. Microbiol. 11, 277–284 (2013).

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Stecher, B. et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl Acad. Sci. USA 109, 1269–1274 (2012).

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Cullen, L. & McClean, S. Bacterial adaptation during chronic respiratory infections. Pathogens 4, 66–89 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Salvador, E. et al. Comparison of asymptomatic bacteriuria Escherichia coli isolates from healthy individuals versus those from hospital patients shows that long-term bladder colonization selects for attenuated virulence phenotypes. Infect. Immun. 80, 668–678 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Hapfelmeier, S. et al. The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J. Immunol. 174, 1675–1685 (2005).

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008).

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Gerlach, R. G. et al. Salmonella pathogenicity island 4 encodes a giant non-fimbrial adhesin and the cognate type 1 secretion system. Cell Microbiol. 9, 1834–1850 (2007).

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Gerlach, R. G., Jackel, D., Geymeier, N. & Hensel, M. Salmonella pathogenicity island 4-mediated adhesion is coregulated with invasion genes in Salmonella enterica. Infect. Immun. 75, 4697–4709 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Main-Hester, K. L., Colpitts, K. M., Thomas, G. A., Fang, F. C. & Libby, S. J. Coordinate regulation of Salmonella pathogenicity island 1 (SPI1) and SPI4 in Salmonella enterica serovar Typhimurium. Infect. Immun. 76, 1024–1035 (2008).

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Furter, M., Sellin, M. E., Hansson, G. C. & Hardt, W. D. Mucus architecture and near-surface swimming affect distinct Salmonella Typhimurium infection patterns along the murine intestinal tract. Cell Rep. 27, 2665–2678 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Sellin, M. E. et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16, 237–248 (2014).

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Thiennimitr, P. et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl Acad. Sci. USA 108, 17480–17485 (2011).

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Raffatellu, M. et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5, 476–486 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Rivera-Chavez, F. et al. Salmonella uses energy taxis to benefit from intestinal inflammation. PLoS Pathog. 9, e1003267 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Nedialkova, L. P. et al. Inflammation fuels colicin Ib-dependent competition of Salmonella serovar Typhimurium and E. coli in enterobacterial blooms. PLoS Pathog. 10, e1003844 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. 129.

    Diard, M. et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494, 353–356 (2013).

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Endt, K. et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog. 6, e1001097 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  131. 131.

    Diard, M. et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 355, 1211–1215 (2017).

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Petrovska, L. et al. Microevolution of monophasic Salmonella Typhimurium during epidemic, United Kingdom, 2005–2010. Emerg. Infect. Dis. 22, 617–624 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Fortier, L. C. & Sekulovic, O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4, 354–365 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Elwell, L. P. & Shipley, P. L. Plasmid-mediated factors associated with virulence of bacteria to animals. Annu. Rev. Microbiol. 34, 465–496 (1980).

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Tenaillon, O., Skurnik, D., Picard, B. & Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 8, 207–217 (2010).

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Kuenzli, E. et al. High colonization rates of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in Swiss travellers to South Asia — a prospective observational multicentre cohort study looking at epidemiology, microbiology and risk factors. BMC Infect. Dis. 14, 528 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  138. 138.

    OstholmBalkhed, A. et al. Duration of travel-associated faecal colonisation with ESBL-producing Enterobacteriaceae — a one year follow-up study. PLoS One 13, e0205504 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  139. 139.

    Williams, R. J. & Heymann, D. L. Containment of antibiotic resistance. Science 279, 1153–1154 (1998).

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Blanquart, F. Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. Evol. Appl. 12, 365–383 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Wotzka, S. Y. et al. Escherichia coli limits Salmonella Typhimurium infections after diet shifts and fat-mediated microbiota perturbation in mice. Nat. Microbiol. 4, 2164–2174 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  142. 142.

    Levin, B. R., Stewart, F. M. & Rice, V. A. The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid 2, 247–260 (1979).

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Benz, F. et al. Clinical extended-spectrum β-lactamase antibiotic resistance plasmids have diverse transfer rates and can spread in the absence of antibiotic selection. bioRxiv https://doi.org/10.1101/796243 (2020).

    Article  Google Scholar 

  144. 144.

    Madsen, J. S., Burmolle, M., Hansen, L. H. & Sorensen, S. J. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 65, 183–195 (2012).

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Gardner, A., West, S. A. & Griffin, A. S. Is bacterial persistence a social trait? PLoS One 2, e752 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  146. 146.

    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Hamilton, W. D. The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17–52 (1964).

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Defraine, V., Fauvart, M. & Michiels, J. Fighting bacterial persistence: current and emerging anti-persister strategies and therapeutics. Drug Resist. Updat. 38, 12–26 (2018).

    PubMed  Article  Google Scholar 

  149. 149.

    Orman, M. A. & Brynildsen, M. P. Inhibition of stationary phase respiration impairs persister formation in E. coli. Nat. Commun. 6, 7983 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. 150.

    Adams, K. N. et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145, 39–53 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Allison, K. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Conlon, B. P. et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503, 365–370 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Tkhilaishvili, T., Lombardi, L., Klatt, A. B., Trampuz, A. & Di Luca, M. Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus. Int. J. Antimicrob. Agents 52, 842–853 (2018).

    CAS  PubMed  Article  Google Scholar 

  154. 154.

    MacLean, R. C. & San Millan, A. The evolution of antibiotic resistance. Science 365, 1082–1083 (2019).

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Moor, K. et al. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 544, 498–502 (2017).

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    Moor, K. et al. Peracetic acid treatment generates potent inactivated oral vaccines from a broad range of culturable bacterial species. Front. Immunol. 7, 34 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  157. 157.

    Levin, B. R., Concepcion-Acevedo, J. & Udekwu, K. I. Persistence: a copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics. Curr. Opin. Microbiol. 21, 18–21 (2014).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Hardt laboratory for discussion. Work relevant to this review has been funded by grants from the Swiss National Science Foundation (SNF) (310030B-173338, 310030-192567 and the SNF NFP 72 407240-167121) and the Gebert Rüf Foundation to W.-D.H, a SNF professorship grant (PP00PP_176954) to M.D. and a Boehringer Ingelheim Fonds PhD Fellowship to E.B.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Médéric Diard or Wolf-Dietrich Hardt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks Sophie Helaine, William Jacobs and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antibiotic

An antimicrobial agent that either inhibits (bacteriostatic antibiotic) or kills (bactericidal antibiotic) bacteria.

Resistance

The genetically encoded ability of cells to grow in the presence of an antibiotic. Resistance increases the minimum inhibitory concentration of an antibiotic compared with susceptible cells. The offspring remains resistant, even if grown in the absence of antibiotics.

Persisters

Cells belonging to a subpopulation that is killed much slower than the rest of the population during exposure to bactericidal antibiotics. Typically, persisters halt growth during this survival. However, they can re-engage in fast growth when the antibiotic is removed.

Persistence

The phenomenon that for a population in which two or more distinct subpopulations exist (susceptible and tolerant), treatment with a bactericidal antibiotic will kill the susceptible subpopulation quickly, simultaneous with a much slower killing of the tolerant subpopulation. This leads to biphasic killing curves characteristic of persistence. Persistence is not heritable (clones isolated from the tolerant subpopulation will again give rise to a mix of susceptible and tolerant cells). Persistence can also be called heterotolerance.

Heteroresistance

The ability to grow a subpopulation of cells in the presence of an antibiotic. This subpopulation can be the result of rare resistant mutants that increase in frequency over time (polyclonal heteroresistance) or two distinct subpopulations (sensitive and resistant) that switch back and forth phenotypically even in the absence of antibiotics. In the latter case, the antibiotic exerts a selective pressure that can change the relative frequency of sensitive versus resistant cells (monoclonal heteroresistance). In standard minimum inhibitory concentration (MIC) assays, this increases the MIC of an antibiotic compared with a population of susceptible cells (when the inoculum is grown without antibiotics).

Tolerance

The ability of cells to survive in the presence of a bactericidal antibiotic to a higher extent than susceptible cells. This phenomenon pertains to all cells of the population and increases the minimum duration of killing in the presence of an antibiotic.

Horizontal gene transfer

(HGT). The transfer of genetic information from one organism to another. In bacteria, the main mechanisms are conjugation (mediated by plasmids), transduction (mediated by phages) or transformation (uptake of DNA from the environment).

Spontaneous persistence

Persistence observed without any stimulus; subpopulations of tolerant cells exist even during growth when environmental parameters are kept optimal.

Triggered persistence

Persistence that arises in response to a certain stimulus. This stimulus can result from stressful conditions in which it can be beneficial to maintain minimal metabolic activity in a subpopulation of cells.

Clinical persistence

The failure of either the immune system or antimicrobial therapy to eliminate the pathogen, resulting in the pathogen remaining in the host for long periods of time. That is, clinical persistence can be the result of either antibiotic persistence or persistent infection (for example, as a result of impaired immunity, immune subversion or evasion, biofilm formation or intracellular survival).

Persistent infection

The pathogen is not cleared from the host but remains in specific cells or compartments of the host for long periods of time, independently of antimicrobial treatment. Persistent infection can lead to clinical persistence.

Biofilms

A collection of microorganisms that adhere to each other and surfaces, embedded within an extracellular matrix. Exchange of nutrients, chemical messengers and genetic information is prominent, promoting a heterogeneous mixture of cells, including dormant cells. Biofilms are typically recalcitrant to antibiotic therapy (through poor antibiotic penetration, antibiotic persistence or both).

Stringent response

A stress response in bacteria as a result of nutrient limitation or other stress conditions that is mediated by accumulation of the alarmone (p)ppGpp. (p)ppGpp influences the transcriptional profile of the cell, for example to favour general metabolism maintenance rather than ribosome biosynthesis.

SOS response

A response to damage-inducing stresses detected by single-stranded breaks in DNA stalling the DNA polymerase. This induces LexA-repressed genes, which often include error-prone DNA repair and inhibitors of cell division.

Bet-hedging

An evolutionary strategy in which part of the population has decreased fitness in favourable conditions but is able to survive after a shift to more stressful environments. In bacteria, bet-hedging can occur when more than one phenotype is expressed at a population scale. One phenotype promotes optimal growth in the present environment, whereas others grow or survive suboptimally in this environment but would be more fit if the conditions changed. This mixture of phenotypes leads to an optimal fitness of the entire population over time under changing conditions.

Nutrient starvation

A cell is faced with no or insufficient nutrients to grow and must therefore use its own reserves, or rely on dormancy to survive.

Dormant

A state of reduced metabolic activity and halted growth that can protect bacterial cells against antibiotics that target aspects of cellular growth or metabolism. Dormancy is a mechanism by which cells are tolerant or persistent.

Responsive diversification

The generation of a range of different responses to a certain stimulus. In bacteria, for example, several subpopulations expressing different phenotypes can emerge in response to stressful conditions, favouring survival in changing environments.

Defectors

Mutants that do not pay a cost associated with production of a public good, as they do not produce it, but can still profit from the public good produced by others. This destabilizes cooperation in bacteria, as defectors are more fit (given the presence of the public good) and will therefore outcompete cooperators. Defectors can also be called ‘cheaters’.

Persistence as a social trait

An ecological explanation for persistence in which subpopulations of metabolically inactive, slow-growing and fast-growing cells exist so that nutrient competition is decreased among cells. This cooperative behaviour increases the growth efficiency at a population scale.

Persistence as stuff happens

An explanation for the existence of persistence in which persistence occurs owing to errors in cellular processes. Such errors occur in only a minor fraction of cells at a given time and could explain why metabolically inactive, survival-ready cells emerge in populations of otherwise susceptible growing cells.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakkeren, E., Diard, M. & Hardt, W. Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbiol (2020). https://doi.org/10.1038/s41579-020-0378-z

Download citation