Chytrid fungi and global amphibian declines


Discovering that chytrid fungi cause chytridiomycosis in amphibians represented a paradigm shift in our understanding of how emerging infectious diseases contribute to global patterns of biodiversity loss. In this Review we describe how the use of multidisciplinary biological approaches has been essential to pinpointing the origins of amphibian-parasitizing chytrid fungi, including Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, as well as to timing their emergence, tracking their cycles of expansion and identifying the core mechanisms that underpin their pathogenicity. We discuss the development of the experimental methods and bioinformatics toolkits that have provided a fuller understanding of batrachochytrid biology and informed policy and control measures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Global distribution of Batrachochytrium.
Fig. 2: Global spread of Batrachochytrium dendrobatidis and the amphibian trade.
Fig. 3: Factors influencing the virulence of batrachochytrids.
Fig. 4: Pathogenic potential of batrachochytrids.


  1. 1.

    Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl Acad. Sci. USA 95, 9031–9036 (1998). First study detailing the discovery of amphibian chytridiomycosis and linking chytrid fungi to amphibian declines.

  2. 2.

    Longcore, J. E., Pessier, A. P. & Nichols, D. K. Batrachochytrium dendrobatidis gen et sp nov, a chytrid pathogenic to amphibians. Mycologia 91, 219–227 (1999). Naming of Batrachochytrium dendrobatidis and description of its lifecycle.

  3. 3.

    Fisher, M. C., Garner, T. W. J. & Walker, S. F. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63, 291–310 (2009).

  4. 4.

    Scheele, B. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019). Analysis of the temporal emergence of chytridiomycosis and the numbers of amphibian species affected.

  5. 5.

    Martel, A. et al. Batrachochytrium salamandrivorans sp nov causes lethal chytridiomycosis in amphibians. Proc. Natl Acad. Sci. USA 110, 15325–15329 (2013). Discovery of Batrachochytrium salamandrivorans and description of its lifecycle.

  6. 6.

    Houlahan, J. E., Findlay, C. S., Schmidt, B. R., Meyer, A. H. & Kuzmin, S. L. Quantitative evidence for global amphibian population declines. Nature 404, 752–755 (2000).

  7. 7.

    Berger, L., Hyatt, A. D., Speare, R. & Longcore, J. E. Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Dis. Aquat. Organ. 68, 51–63 (2005).

  8. 8.

    Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T. & Hyatt, A. D. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Organ. 60, 141–148 (2004).

  9. 9.

    Olson, D. H. & Ronnenberg, K. L. Global Bd Mapping Project: 2014 update. FrogLog 22, 17–21 (2014).

  10. 10.

    Stegen, G. et al. Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature 544, 353–356 (2017).

  11. 11.

    Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630–631 (2014). Discovery of the Southeast Asian origins of B. salamandrivorans and its restricted host range.

  12. 12.

    Laking, A. E., Ngo, H. N., Pasmans, F., Martel, A. & Nguyen, T. T. Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders. Sci. Rep. 7, 44443 (2017).

  13. 13.

    Lips, K. R. et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc. Natl Acad. Sci. USA 103, 3165–3170 (2006).

  14. 14.

    Carvalho, T., Becker, C. G. & Toledo, L. F. Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proc. Biol. Sci. 284, 20162254 (2017).

  15. 15.

    Weldon, C., Channing, A., Misinzo, G. & Cunningham, A. A. Disease driven extinction in the wild of the Kihansi spray toad (Nectophrynoides asperginis). Preprint at (2019).

  16. 16.

    Yong, E. The Worst Disease Ever Recorded. The Atlantic (2019).

  17. 17.

    Boyle, D. G. et al. Cryo-archiving of Batrachochytrium dendrobatidis and other chytridiomycetes. Dis. Aquat. Organ. 56, 59–64 (2003).

  18. 18.

    Fisher, M. C. et al. Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi. Sci. Rep. 8, 7772 (2018).

  19. 19.

    Aanensen, D. M., Huntley, D. M., Feil, E. J., al-Own, F. & Spratt, B. G. EpiCollect: linking smartphones to web applications for epidemiology, ecology and community data collection. PLoS One 4, e6968 (2009).

  20. 20.

    Skerratt, L. F. et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. Ecohealth 4, 125–134 (2007).

  21. 21.

    Morehouse, E. A. et al. Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Mol. Ecol. 12, 395–403 (2003).

  22. 22.

    James, T. Y. et al. Rapid expansion of an emerging fungal disease into declining and healthy amphibian populations. PLoS Pathog. 5, e1000458 (2009).

  23. 23.

    Hudson, M. A. et al. Dynamics and genetics of a disease-driven species decline to near extinction: lessons for conservation. Sci. Rep. 6, 30772 (2016).

  24. 24.

    Joneson, S., Stajich, J. E., Shiu, S. H. & Rosenblum, E. B. Genomic transition to pathogenicity in chytrid fungi. PLoS Pathog. 7, e1002338 (2011).

  25. 25.

    Farrer, R. A. et al. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc. Natl Acad. Sci. USA 108, 18732–18736 (2011). First use of population genomics to describe patterns of B. dendrobatidis diversity and its timescale of emergence.

  26. 26.

    Farrer, R. A. et al. Chromosomal copy number variation, selection and uneven rates of recombination reveal cryptic genome diversity linked to pathogenicity. PLoS Genet. 9, e1003703 (2013).

  27. 27.

    Rosenblum, E. B. et al. Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proc. Natl Acad. Sci. USA 110, 9385–9390 (2013).

  28. 28.

    Weldon, C., du Preez, L. H., Hyatt, A. D., Muller, R. & Speare, R. Origin of the amphibian chytrid fungus. Emerg. Infect. Dis. 10, 2100–2105 (2004).

  29. 29.

    Goka, K. et al. Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Mol. Ecol. 18, 4757–4774 (2009).

  30. 30.

    Bataille, A. et al. Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians. Mol. Ecol. 22, 4196–4209 (2013).

  31. 31.

    Rodriguez, D., Becker, C. G., Pupin, N. C., Haddad, C. F. B. & Zamudio, K. R. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic forest of Brazil. Mol. Ecol. 23, 774–787 (2014).

  32. 32.

    Talley, B. L., Muletz, C. R., Vredenburg, V. T., Fleischer, R. C. & Lips, K. R. A century of Batrachochytrium dendrobatidis in Illinois amphibians (1888–1989). Biol. Conserv. 182, 254–261 (2015).

  33. 33.

    O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018). Discovery of the East Asian origins of B. dendrobatidis using population genomics.

  34. 34.

    Tajima, F. Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

  35. 35.

    Fong, J. J. et al. Early 1900s detection of Batrachochytrium dendrobatidis in Korean amphibians. PLoS One 10, e0115656 (2015).

  36. 36.

    Swei, A. et al. Is chytridiomycosis an emerging infectious disease in Asia? PLoS One 6, e23179 (2011).

  37. 37.

    Olson, D. H. et al. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One 8, e56802 (2013).

  38. 38.

    Byrne, A. Q. et al. Cryptic diversity of a widespread global pathogen reveals expanded threats to amphibian conservation. Proc. Natl Acad. Sci. USA 116, 20382–20387 (2019).

  39. 39.

    Fu, M. J. & Waldman, B. Ancestral chytrid pathogen remains hypervirulent following its long coevolution with amphibian hosts. Proc. Biol. Sci. 286, 20190833 (2019).

  40. 40.

    Lips, K. R., Diffendorfer, J., Mendelson, J. R. & Sears, M. W. Riding the wave: Reconciling the roles of disease and climate change in amphibian declines. PLoS Biol. 6, 441–454 (2008).

  41. 41.

    Murray, K. et al. The distribution and host range of the pandemic disease chytridiomycosis in Australia, spanning surveys from 1956–2007. Ecology 91, 1557–1558 (2010).

  42. 42.

    Laurance, W. F., McDonald, K. R. & Speare, R. Australian rain forest frogs: support for the epidemic disease hypothesis. Conserv. Biol. 10, 406–413 (1996).

  43. 43.

    Lips, K. R. Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. Lond. B Biol. Sci. 286, 20190833 (2016).

  44. 44.

    Fisher, M. C. & Garner, T. W. J. The relationship between the introduction of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal Biol. Rev. 21, 2–9 (2007).

  45. 45.

    Walker, S. F. et al. Invasive pathogens threaten species recovery programs. Curr. Biol. 18, R853–R854 (2008). Detection of long-distance transfer and introduction of African BdCAPE to Alytes muletensis on the Balearic island of Mallorca.

  46. 46.

    Valenzuela-Sanchez, A. et al. Genomic epidemiology of the emerging pathogen Batrachochytrium dendrobatidis from native and invasive amphibian species in Chile. Transbound. Emerg. Dis. 65, 309–314 (2018).

  47. 47.

    Jenkinson, T. S. et al. Amphibian-killing chytrid in Brazil comprises both locally endemic and globally expanding populations. Mol. Ecol. 25, 2978–2996 (2016).

  48. 48.

    Schloegel, L. M. et al. Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol. Ecol. 21, 5162–5177 (2012).

  49. 49.

    Greenspan, S. E. et al. Hybrids of amphibian chytrid show high virulence in native hosts. Sci. Rep. 8, 9600 (2018).

  50. 50.

    Doherty-Bone, T. et al. Amphibian chytrid fungus in Africa—realigning hypotheses and the research paradigm. Anim. Conserv. (2019).

  51. 51.

    Soto-Azat, C., Clarke, B. T., Poynton, J. C. & Cunningham, A. A. Widespread historical presence of Batrachochytrium dendrobatidis in African pipid frogs. Divers. Distrib. 16, 126–131 (2010).

  52. 52.

    Vredenburg, V. T. et al. Prevalence of Batrachochytrium dendrobatidis in Xenopus collected in Africa (1871–2000) and in California (2001–2010). PLoS One (2013).

  53. 53.

    Seimon, T. A. et al. Assessing the threat of amphibian chytrid fungus in the Albertine Rift: past, present and future. PLoS One (2015).

  54. 54.

    Hydeman, M. E. et al. Prevalence and genetic diversity of Batrachochytrium dendrobatidis in Central African island and continental amphibian communities. Ecol. Evol. 7, 7729–7738 (2017).

  55. 55.

    Bletz, M. C. et al. Widespread presence of the pathogenic fungus Batrachochytrium dendrobatidis in wild amphibian communities in Madagascar. Sci. Rep. 5, 8633 (2015).

  56. 56.

    Kolby, J. E. & Skerratt, L. F. Amphibian chytrid fungus in Madagascar neither shows widespread presence nor signs of certain establishment. PLoS One (2015).

  57. 57.

    Hirschfeld, M. et al. Dramatic declines of montane frogs in a central African biodiversity hotspot. PLoS One 11, e0155129 (2016).

  58. 58.

    Griffiths, S. M. et al. Genetic variability and ontogeny predict microbiome structure in a disease-challenged montane amphibian. ISME J. 12, 2506–2517 (2018).

  59. 59.

    Gower, D. J. et al. Batrachochytrium dendrobatidis Infection and lethal chytridiomycosis in caecilian amphibians (Gymnophiona). Ecohealth 10, 173–183 (2013).

  60. 60.

    Morgan, J. A. T. et al. Population genetics of the frog-killing fungus Batrachochytrium dendrobatidis. Proc. Natl Acad. Sci. USA 104, 13845–13850 (2007).

  61. 61.

    van de Vossenberg, B. T. L. H. et al. Comparative genomics of chytrid fungi reveal insights into the obligate biotrophic and pathogenic lifestyle of Synchytrium endobioticum. Sci. Rep. 9, 8672 (2019).

  62. 62.

    James, T. Y. et al. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research. Ecol. Evol. 5, 4079–4097 (2015).

  63. 63.

    de Roode, J. C. et al. Virulence and competitive ability in genetically diverse malaria infections. Proc Natl Acad. Sci. USA 102, 7624–7628 (2005).

  64. 64.

    Karvonen, A., Rellstab, C., Louhi, K. R. & Jokela, J. Synchronous attack is advantageous: mixed genotype infections lead to higher infection success in trematode parasites. Proc. Biol. Sci. 279, 171–176 (2012).

  65. 65.

    Ghosh, P. The Ecology of Chytrid Lineages in Southern Africa. PhD thesis, Imperial College London (2019).

  66. 66.

    Farrer, R. A. et al. Genomic innovations linked to infection strategies across emerging pathogenic chytrid fungi. Nat. Commun. 8, 14742 (2017). Comparative and functional genomic description of batrachochytrid virulence.

  67. 67.

    Farrer, R. A. & Fisher, M. C. Describing genomic and epigenomic traits underpinning emerging fungal pathogens. Adv. Genet. 100, 73–140 (2017).

  68. 68.

    Abramyan, J. & Stajich, J. E. Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis. mBio. 3, e00150-12 (2012).

  69. 69.

    Van Rooij, P. et al. Development of in vitro models for a better understanding of the early pathogenesis of Batrachochytrium dendrobatidis infections in amphibians. Altern. Lab. Anim. 38, 519–528 (2010). First description of a skin explant model of chytridiomycosis.

  70. 70.

    Liew, N. et al. Chytrid fungus infection in zebrafish demonstrates that the pathogen can parasitize non-amphibian vertebrate hosts. Nat. Commun. 8, 15048 (2017). First description of a non-amphibian vertebrate model of chytridiomycosis.

  71. 71.

    Voyles, J. Phenotypic profiling of Batrachochytrium dendrobatidis, a lethal fungal pathogen of amphibians. Fungal Ecol. 4, 196–200 (2011).

  72. 72.

    Fisher, M. C. et al. Proteomic and phenotypic profiling of the amphibian pathogen Batrachochytrium dendrobatidis shows that genotype is linked to virulence. Mol. Ecol. 18, 415–429 (2009).

  73. 73.

    Langhammer, P. F. et al. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages. PLoS One (2013).

  74. 74.

    Voyles, J. et al. Experimental evolution alters the rate and temporal pattern of population growth in Batrachochytrium dendrobatidis, a lethal fungal pathogen of amphibians. Ecol. Evol. 4, 3633–3641 (2014).

  75. 75.

    Woodhams, D. C., Alford, R. A., Briggs, C. J., Johnson, M. & Rollins-Smith, L. A. Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. Ecology 89, 1627–1639 (2008).

  76. 76.

    Refsnider, J. M., Poorten, T. J., Langhammer, P. F., Burrowes, P. A. & Rosenblum, E. B. Genomic correlates of virulence attenuation in the deadly amphibian chytrid fungus, Batrachochytrium dendrobatidis. G3 5, 2291–2298 (2015).

  77. 77.

    Kriger, K. M. & Hero, J. M. Altitudinal distribution of chytrid (Batrachochytrium dendrobatidis) infection in subtropical Australian frogs. Austral Ecol. 33, 1022–1032 (2008).

  78. 78.

    Kriger, K. M., Pereoglou, F. & Hero, J. M. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in Eastern Australia. Conserv. Biol. 21, 1280–1290 (2007).

  79. 79.

    Kriger, K. M. & Hero, J. M. Large-scale seasonal variation in the prevalence and severity of chytridiomycosis. J. Zool. 271, 352–359 (2007).

  80. 80.

    Clare, F. C. et al. Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150454 (2016).

  81. 81.

    Garner, T. W. J., Rowcliffe, J. M. & Fisher, M. C. Climate change, chytridiomycosis or condition: an experimental test of amphibian survival. Glob. Change Biol. 17, 667–675 (2011).

  82. 82.

    Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. Biol. Sci. 282, 20142039 (2015).

  83. 83.

    Ortiz-Santaliestra, M. E., Fisher, M. C., Fernandez-Beaskoetxea, S., Fernandez-Beneitez, M. J. & Bosch, J. Ambient ultraviolet B radiation and prevalence of infection by Batrachochytrium dendrobatidis in two amphibian species. Conserv. Biol. 25, 975–982 (2011).

  84. 84.

    Walker, S. F. et al. Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia. Ecol. Lett. 13, 372–382 (2010).

  85. 85.

    Rohr, J. R. et al. Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality. Proc. Biol. Sci. 280, 20131502 (2014).

  86. 86.

    Briggs, C. J., Knapp, R. A. & Vredenburg, V. T. Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc. Natl Acad. Sci. USA 107, 9695–9700 (2010). Development of a mathematical epidemiological framework for analysing host/pathogen dynamics.

  87. 87.

    Garner, T. W. J. et al. Life history tradeoffs influence mortality associated with the amphibian pathogen Batrachochytrium dendrobatidis. Oikos 118, 783–791 (2009).

  88. 88.

    Ribas, L. et al. Expression profiling the temperature-dependent amphibian response to infection by Batrachochytrium dendrobatidis. PLoS One 4, e8408 (2009).

  89. 89.

    Daversa, D. R., Manica, A., Bosch, J., Jolles, J. W. & Garner, T. W. J. Routine habitat switching alters the likelihood and persistence of infection with a pathogenic parasite. Funct. Ecol. 32, 1262–1270 (2018).

  90. 90.

    Clulow, S. et al. Elevated salinity blocks pathogen transmission and improves host survival from the global amphibian chytrid pandemic: implications for translocations. J. Appl. Ecol. 55, 830–840 (2018).

  91. 91.

    Vredenburg, V. T., Knapp, R. A., Tunstall, T. S. & Briggs, C. J. Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc. Natl Acad. Sci. USA 107, 9689–9694 (2010). Epidemiology of the spread of B. dendrobatidis in the North American Sierra Nevada and mountain yellow-legged frogs.

  92. 92.

    Clare, F., Daniel, O., Garner, T. & Fisher, M. Assessing the ability of swab data to determine the true burden of infection for the amphibian pathogen Batrachochytrium dendrobatidis. Ecohealth 13, 360–367 (2016).

  93. 93.

    Schmeller, D. S. et al. Microscopic aquatic predators strongly affect infection dynamics of a globally emerged pathogen. Curr. Biol. 24, 176–180 (2014). Determination that aquatic fauna can predate and limit B. dendrobatidis infectious stages.

  94. 94.

    Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H. & Hudson, P. J. Evaluating the links between climate, disease spread, and amphibian declines. Proc. Natl Acad. Sci. USA 105, 17436–17441 (2008).

  95. 95.

    Pounds, A. J. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).

  96. 96.

    Rohr, J. R. & Raffel, T. R. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proc. Natl Acad. Sci. USA 107, 8269–8274 (2010).

  97. 97.

    Rachowicz, L. J. & Briggs, C. J. Quantifying the disease transmission function: effects of density on Batrachochytrium dendrobatidis transmission in the mountain yellow-legged frog Rana muscosa. J. Anim. Ecol. 76, 711–721 (2007).

  98. 98.

    Balaz, V. et al. Assessing risk and guidance on monitoring of Batrachochytrium dendrobatidis in Europe through identification of taxonomic selectivity of infection. Conserv. Biol. 28, 213–223 (2014).

  99. 99.

    Bosch, J., Fernandez-Beaskoetxea, S., Garner, T. W. J. & Carrascal, L. M. Long-term monitoring of an amphibian community after a climate change- and infectious disease-driven species extirpation. Glob. Change Biol. 24, 2622–2632 (2018).

  100. 100.

    Grogan, L. F. et al. Review of the amphibian immune response to chytridiomycosis, and future directions. Front. Immunol. 9, 2536 (2018).

  101. 101.

    Fites, J. S. et al. The invasive chytrid fungus of amphibians paralyzes lymphocyte responses. Science 342, 366–369 (2013).

  102. 102.

    McMahon, T. A. et al. Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. Proc. Natl Acad. Sci. USA 110, 210–215 (2013).

  103. 103.

    Savage, A. E. & Zamudio, K. R. Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations. Proc. Biol. Sci. 283, 20153115 (2016).

  104. 104.

    Pasmans, F. et al. Fungicidal skin secretions mediate resistance to chytridiomycosis in the European plethodontid genus Speleomantes. PLoS One 8, e63639 (2013).

  105. 105.

    Voyles, J. et al. Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science 359, 1517–1519 (2018).

  106. 106.

    Bates, K. A. et al. Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nat. Commun. 9, 693 (2018).

  107. 107.

    Kueneman, J. G. et al. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat. Ecol. Evol. 3, 381–389 (2019).

  108. 108.

    Piovia-Scott, J. et al. Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microb. Ecol. 74, 217–226 (2017).

  109. 109.

    Kearns, P. J. et al. Fight fungi with fungi: antifungal properties of the amphibian mycobiome. Front. Microbiol. 8, 2494 (2017).

  110. 110.

    Jenkinson, T. S. et al. Globally invasive genotypes of the amphibian chytrid outcompete an enzootic lineage in coinfections. Proc. Biol. Sci. 285, 20181894 (2018).

  111. 111.

    Rosa, G. M. et al. Impact of asynchronous emergence of two lethal pathogens on amphibian assemblages. Sci. Rep. 7, 43260 (2017).

  112. 112.

    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012). Description of the emerging threat that fungi pose to biota.

  113. 113.

    American Society for Microbiology. One Health: Fungal Pathogens of Humans, Animals and Plants. Colloq. Rep. (American Society for Microbiology, 2019).

  114. 114.

    Langwig, K. E. et al. Context-dependent conservation responses to emerging wildlife diseases. Front. Ecol. Env. 13, 195–202 (2015).

  115. 115.

    Garner, T. W. et al. Mitigating amphibian chytridiomycoses in nature. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20160207 (2016).

  116. 116.

    European Food Safety Authority. Risk of survival establishment, spread of Batrachochytrium salamandrivorans (Bsal) in the EU. EFSA J. 16, 5259 (2018).

  117. 117.

    U.S. Fish & Wildlife Service. Listing Salamanders as Injurious Due to Risk of Salamander Chytrid Fungus (January 12, 2016). (2016).

  118. 118.

    Canada Border Services Agency. Environment and Climate Change Canada (ECCC)’s Import Restrictions on Salamanders: Customs Notice 17-17. (2018).

  119. 119.

    Bosch, J. et al. Successful elimination of a lethal wildlife infectious disease in nature. Biol. Letters 11, 20150874 (2015). First successful mitigation of an invasive chytrid in nature.

  120. 120.

    Rebollar, E. A. et al. Using ‘omics’ and integrated multi-omics approaches to guide probiotic selection to mitigate chytridiomycosis and other emerging infectious diseases. Front. Microbiol. 7, 68 (2016).

  121. 121.

    Vredenburg, V. T., Briggs, C. J. & Harris, R. in Fungal Diseases: An Emerging Threat to Human, Animal, and Plant Health. Workshop Summary (eds Olsen, L., Choffnes, E. R., Relman, D. A. & Pray, L.) 342–355 (National Academies Press, 2011).

  122. 122.

    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287, 443–449 (2000).

  123. 123.

    Blehert, D. S. et al. Bat white-nose syndrome: an emerging fungal pathogen? Science 323, 227–227 (2009).

  124. 124.

    Worobey, M. et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 455, 661–664 (2008).

  125. 125.

    Cui, Y. J. et al. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc. Natl Acad. Sci. USA 110, 577–582 (2013).

  126. 126.

    Roe, C. C. et al. Dating the Cryptococcus gattii dispersal to the North American Pacific Northwest. mSphere 3, e00499-17 (2018).

  127. 127.

    Biek, R., Pybus, O. G., Lloyd-Smith, J. O. & Didelot, X. Measurably evolving pathogens in the genomic era. Trends Ecol. Evol. 30, 306–313 (2015).

  128. 128.

    Rambaut, A. Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16, 395–399 (2000).

  129. 129.

    Rieux, A. & Balloux, F. Inferences from tip-calibrated phylogenies: a review and a practical guide. Mol. Ecol. 25, 1911–1924 (2016).

  130. 130.

    Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15 (2015).

  131. 131.

    Greenberg, D. A. & Palen, W. J. A deadly amphibian disease goes global. Science 363, 1386–1388 (2019).

  132. 132.

    Herrel, A. & van der Meijden, A. An analysis of the live reptile and amphibian trade in the USA compared to the global trade in endangered species. Herpetol. J. 24, 103–110 (2014).

Download references


We acknowledge funding from the Natural Environment Research Council (NERC) (NE/E006701/1, NE/E006841/1, NE/G002193/1, NE/K014455/1, NE/K012 509/1, NE/M000591/1, NE/N009800/1, NE/N009967/1, NE/S000844/1, NE/S000992/1), The Morris Animal Foundation (D12ZO-002 and D16ZO-022) and the Leverhulme Trust (RPG-2014-273). We thank S. O’Hanlon and P. Ghosh, who assisted with drafting the figures. M.C.F. is a Fellow in the CIFAR ‘Fungal Kingdom’ Program.

Author information

Both authors wrote the article.

Correspondence to Matthew C. Fisher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks T. James and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Amphibian Disease Portal:




North American Bsal Task Force:




Global outbreak of an infectious disease in animals.

Multilocus sequence typing

Matching the DNA sequences of fragments of multiple housekeeping genes in order to assay genetic diversity.


Local outbreaks of an infectious disease in animals.

Bayesian-based haplotype clustering

Population assignment using large numbers of resequenced genomes.

Mutation–drift equilibrium

State of balance in which the rate at which variation is lost through genetic drift is equal to the rate at which new variation is created by mutation.

Tajima’s D statistic

Population genetic test statistic distinguishing between DNA sequences that evolve neutrally (at mutation–drift equilibria) and those that evolve in response to a nonrandom process, such as demographic change or natural selection.


Subjected to a process of assigning alleles to the paternal and maternal chromosomes.


Segregation of alleles between homologous chromosomes through DNA breaks and reconnections.


Sexual recombination resulting in crossovers.

Mating-type alleles

Genes that regulate compatibility leading to meiosis in fungi, also called mating-type ‘idiomorphs’.

Chromosomal copy number variation

State in which the number of copies of a haplotype varies between one individual and another, also known as ‘aneuploidy’.

Amphibian arks

Ex situ breeding of threatened species in biocontainment facilities.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fisher, M.C., Garner, T.W.J. Chytrid fungi and global amphibian declines. Nat Rev Microbiol (2020).

Download citation