Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Innovative and rapid antimicrobial susceptibility testing systems


Antimicrobial resistance (AMR) is a major threat to human health worldwide, and the rapid detection and quantification of resistance, combined with antimicrobial stewardship, are key interventions to combat the spread and emergence of AMR. Antimicrobial susceptibility testing (AST) systems are the collective set of diagnostic processes that facilitate the phenotypic and genotypic assessment of AMR and antibiotic susceptibility. Over the past 30 years, only a few high-throughput AST methods have been developed and widely implemented. By contrast, several studies have established proof of principle for various innovative AST methods, including both molecular-based and genome-based methods, which await clinical trials and regulatory review. In this Review, we discuss the current state of AST systems in the broadest technical, translational and implementation-related scope.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic overview of antimicrobial susceptibility testing and antimicrobial resistance detection methods.
Fig. 2: New phenotypic methods: microbial characteristics along with restricted survey and description of the mechanisms of new phenotypic methods to help overcome the limitations of current methods.
Fig. 3: Molecular antimicrobial susceptibility testing assays.


  1. 1.

    Theuretzbacher, U. et al. Analysis of the clinical antibacterial and antituberculosis pipeline. Lancet Infect. Dis. 19, e40–e50 (2019). Excellent analysis of the state of the art in antibiotic discovery and codification, with shortcomings in development routes succinctly described.

    CAS  PubMed  Google Scholar 

  2. 2.

    Bartlett, J. G., Gilbert, D. N. & Spellberg, B. Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis. 56, 1445–1450 (2013).

    CAS  PubMed  Google Scholar 

  3. 3.

    Nathwani, D. et al. Value of hospital antimicrobial stewardship programs [ASPs]: a systematic review. Antimicrob. Resist. Infect. Control 8, 35 (2019).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Okeke, I. N. et al. Diagnostics as essential tools for containing antibacterial resistance. Drug Resist. Updat. 14, 95–106 (2011).

    PubMed  Google Scholar 

  5. 5.

    Kjeldgaard, J. S. Results from the MIC Survey 2017 (DTU Food, National Food Institute, Denmark, 2018).

  6. 6.

    Bertrand, R. L. Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. J. Bacteriol. 201, e00697–18 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Sommer, M. O. A., Munck, C., Toft-Kehler, R. V. & Andersson, D. I. Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat. Rev. Microbiol. 15, 689–696 (2017).

    CAS  PubMed  Google Scholar 

  8. 8.

    Nicoloff, H., Hjort, K., Levin, B. R. & Andersson, D. I. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat. Microbiol. 4, 504–514 (2019).

    CAS  PubMed  Google Scholar 

  9. 9.

    Knopp, M. et al. De novo emergence of peptides that confer antibiotic resistance. mBio 10, e00837–19 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016).

    CAS  PubMed  Google Scholar 

  11. 11.

    Brauner, A., Shoresh, N., Fridman, O. & Balaban, N. Q. An experimental framework for quantifying bacterial tolerance. Biophys. J. 112, 2664–2671 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Bakshi, S. et al. Nonperturbative imaging of nucleoid morphology in live bacterial cells during an antimicrobial peptide attack. Appl. Environ. Microbiol. 80, 4977–4986 (2016).

    Google Scholar 

  13. 13.

    Veloo, A. C. M., Baas, W. H., Haan, F. J., Coco, J. & Rossen, J. W. Prevalence of antimicrobial resistance genes in Bacteroides spp. and Prevotella spp. Dutch clinical isolates. Clin. Microbiol. Infect. 25, S1198–S1743 (2019).

    PubMed  Google Scholar 

  14. 14.

    Veloo, A. C. M., Chlebowicz, M., Winter, H. L. J., Bathoorn, D. & Rossen, J. W. A. Three metronidazole-resistant Prevotella bivia strains harbour a mobile element, encoding a novel nim gene, nimK, and an efflux small MDR transporter. J. Antimicrob. Chemother. 73, 2687–2690 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Van Belkum, A. et al. Developmental roadmap for antimicrobial susceptibility testing systems. Nat. Rev. Microbiol. 17, 51–62 (2019).

    PubMed  Google Scholar 

  16. 16.

    Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    CAS  PubMed  Google Scholar 

  17. 17.

    Mason, A. et al. Accuracy of different bioinformatics methods in detecting antibiotic resistance and virulence factors from Staphylococcus aureus whole-genome sequences. J. Clin. Microbiol. 56, 1815–1817 (2018).

    Google Scholar 

  18. 18.

    Heyckendorf, J. et al. What is resistance? Impact of phenotypic versus molecular drug resistance testing on therapy for multi- and extensively drug-resistant tuberculosis. Antimicrob. Agents Chemother. 62, e01550–17 (2018). This report clearly describes the discrepancies between phenotypic and genotypic assessments of antibiotic susceptibility and suggests useful solutions to some of these discrepancies.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Schumacher, A., Vranken, T., Malhotra, A., Arts, J. J. C. & Habibovic, P. In vitro antimicrobial susceptibility testing methods: agar dilution to 3D tissue-engineered models. Eur. J. Clin. Microbiol. Infect. Dis. 37, 187–208 (2018).

    CAS  PubMed  Google Scholar 

  20. 20.

    Shin, D. J., Andini, N., Hsieh, K., Yang, S. & Wang, T. H. Emerging analytical techniques for rapid pathogen identification and susceptibility testing. Annu. Rev. Anal. Chem. 12, 41–67 (2019).

    CAS  Google Scholar 

  21. 21.

    Leonard, H., Colodner, R., Halachmi, S. & Segal, E. Recent advances in the race to design a rapid diagnostic test for antimicrobial resistance. ACS Sens. 3, 2202–2217 (2018).

    CAS  PubMed  Google Scholar 

  22. 22.

    Idelevich, E. A. & Becker, K. How to accelerate antimicrobial susceptibility testing. Clin. Microbiol. Infect. 25, 1347–1355 (2019).

    CAS  PubMed  Google Scholar 

  23. 23.

    Hombach, M. et al. Rapid detection of ESBL, carbapenemases, MRSA and other important resistance phenotypes within 6–8 h by automated disc diffusion antibiotic susceptibility testing. J. Antimicrob. Chemother. 72, 3063–3069 (2017). This study shows that simple add-ons to classic AST systems can still lead to substantial gains in turn-around time.

    CAS  PubMed  Google Scholar 

  24. 24.

    Junkins, A. D. et al. BD Phoenix and Vitek 2 detection of mecA-mediated resistance in Staphylococcus aureus with cefoxitin. J. Clin. Microbiol. 47, 2879–2882 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Isenberg, H. D., Reichler, A. & Wiseman, D. Prototype of a fully automated device for determination of bacterial antibiotic susceptibility in the clinical laboratory. Appl. Microbiol. 22, 980–986 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Cantón, R. et al. Validation of the VITEK2 and the advance expert system with a collection of Enterobacteriaceae harboring extended spectrum or inhibitor resistant β-lactamases. Diagn. Microbiol. Infect. Dis. 41, 65–70 (2001).

    PubMed  Google Scholar 

  27. 27.

    Rockland, M. et al. Implementation of semiautomated antimicrobial susceptibility interpretation hardware for nontuberculous mycobacteria may overestimate susceptibility. J. Clin. Microbiol. 57, e01756–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Reller, L. B., Weinstein, M., Jorgensen, J. H. & Ferraro, M. J. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin. Infect. Dis. 49, 1749–1755 (2009).

    Google Scholar 

  29. 29.

    Marschal, M. et al. Evaluation of the accelerate pheno system for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by Gram-negative pathogens. J. Clin. Microbiol. 55, 2116–2126 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Pancholi, P. et al. Multicenter evaluation of the accelerate phenotest BC kit for rapid identification and phenotypic antimicrobial susceptibility testing using morphokinetic cellular analysis. J. Clin. Microbiol. 56, e01329–17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wang, H. Y., Uh, Y., Kim, S., Shim, T. S. & Lee, H. Evaluation of the Quantamatrix Multiplexed Assay Platform system for simultaneous detection of Mycobacterium tuberculosis and the rifampicin resistance gene using culture-positive mycobacteria. Int. J. Infect. Dis. 61, 107–113 (2017).

    CAS  PubMed  Google Scholar 

  32. 32.

    Kim, J. H. et al. Prospective evaluation of a rapid antimicrobial susceptibility test (QMAC-dRAST) for selecting optimal targeted antibiotics in positive blood culture. J. Antimicrob. Chemother. 74, 2255–2260 (2019).

    CAS  PubMed  Google Scholar 

  33. 33.

    Bailey, A. L., Ledeboer, N. & Burnham, C. D. Clinical microbiology is growing up: the total laboratory automation revolution. Clin. Chem. 65, 634–643 (2019).

    CAS  PubMed  Google Scholar 

  34. 34.

    Lainhart, W. & Burnham, C. A. Enhanced recovery of fastidious organisms from urine culture in the setting of total laboratory automation. J. Clin. Microbiol. 56, e00546–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Eyre, D. W. et al. WGS to predict antibiotic MICs for Neisseria gonorrhoeae. J. Antimicrob. Chemother. 72, 1937–1947 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Alonso, C. A. et al. Antibiogramj: a tool for analysing images from disk diffusion tests. Comput. Methods Prog. Biomed. 143, 159–169 (2017).

    CAS  Google Scholar 

  37. 37.

    Wood, C. S. et al. Taking connected mobile-health diagnostics of infectious diseases to the field. Nature 566, 467–474 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Perry, J. D. A decade of development of chromogenic culture media for clinical microbiology in an era of molecular diagnostics. Clin. Microbiol. Rev. 30, 449–479 (2017). Perry et al. provide an excellent overview of combined classic microbial identification and targeted AST in the format of the oldest (growth-based) type of diagnostics in clinical bacteriology.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Park, M. J. et al. Performance of a novel fluorogenic chimeric analog for the detection of third-generation cephalosporin resistant bacteria. J. Microbiol. Methods 131, 161–165 (2016).

    CAS  PubMed  Google Scholar 

  40. 40.

    Smith, K. P., Richmond, D. L., Brennan-Krohn, T., Elliott, H. L. & Kirby, J. E. Development of MAST: a microscopy-based antimicrobial susceptibility testing platform. SLAS Technol. 22, 662–674 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Nordmann, P., Jayol, A. & Poirel, L. Rapid detection of polymyxin resistance in Enterobacteriaceae. Emerg. Infect. Dis. 22, 1038–1043 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Flentie, K. et al. Microplate-based surface area assay for rapid phenotypic antibiotic susceptibility testing. Sci. Rep. 9, 237 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Hayden, R. T. et al. Rapid antimicrobial susceptibility testing using forward laser light scatter technology. J. Clin. Microbiol. 54, 2701–2706 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Johnson, W. L., France, D. C., Rentz, N. S., Cordell, W. T. & Walls, F. L. Sensing bacterial vibrations and early response to antibiotics with phase noise of a resonant crystal. Sci. Rep. 7, 12138 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Cowger, T. A. et al. Protein-adsorbed magnetic-nanoparticle-mediated assay for rapid detection of bacterial antibiotic resistance. Bioconjug. Chem. 28, 890–896 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Shi, X., Kadiyala, U., VanEpps, J. S. & Yau, S. T. Culture-free bacterial detection and identification from blood with rapid, phenotypic, antibiotic susceptibility testing. Sci. Rep. 8, 3416 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Malmberg, C. et al. A novel microfluidic assay for rapid phenotypic antibiotic susceptibility testing of bacteria detected in clinical blood cultures. PLoS One 11, e0167356 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Baltekin, Ö., Boucharin, A., Tano, E., Andersson, D. I. & Elf, J. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc. Natl Acad. Sci. USA 114, 9170–9175 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Li, H. et al. Adaptable microfluidic system for single-cell pathogen classification and antimicrobial susceptibility testing. Proc. Natl Acad. Sci. USA 116, 201819569 (2019).

    Google Scholar 

  50. 50.

    Kittel, M. et al. Rapid susceptibility testing of multi-drug resistant Escherichia coli and Klebsiella by glucose metabolization monitoring. Clin. Chem. Lab. Med. 57, 1271–1279 (2019).

    CAS  PubMed  Google Scholar 

  51. 51.

    Chung, C. Y., Wang, J. C. & Chuang, H. S. Rapid bead-based antimicrobial susceptibility testing by optical diffusometry. PLoS One 11, e0148864 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Iriya, R. et al. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation. J. Biomed. Opt. 22, 1–9 (2017).

    PubMed  Google Scholar 

  53. 53.

    Sparbier, K., Schubert, S. & Kostrzewa, M. MBT-ASTRA: A suitable tool for fast antibiotic susceptibility testing? Methods 104, 48–54 (2016).

    CAS  PubMed  Google Scholar 

  54. 54.

    Ibarlucea, B. et al. Nanowire sensors monitor bacterial growth kinetics and response to antibiotics. Lab Chip 17, 4283–4293 (2017).

    CAS  PubMed  Google Scholar 

  55. 55.

    Kuss, S. et al. Versatile electrochemical sensing platform for bacteria. Anal. Chem. 91, 4317–4322 (2019).

    CAS  PubMed  Google Scholar 

  56. 56.

    Idelevich, E. A. et al. Rapid phenotypic detection of microbial resistance in Gram-positive bacteria by a real-time laser scattering method. Front. Microbiol. 8, 1064 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Stupar, P. et al. Nanomechanical sensor applied to blood culture pellets: a fast approach to determine the antibiotic susceptibility against agents of bloodstream infections. Clin. Microbiol. Infect. 23, 400–405 (2017).

    CAS  PubMed  Google Scholar 

  58. 58.

    Fonseca, E. et al. Evaluation of rapid colistin susceptibility directly from positive blood cultures using a flow cytometry assay. Int. J. Antimicrob. Agents 54, 820–823 (2019).

    Google Scholar 

  59. 59.

    Novelli-Rousseau, A. et al. Culture-free antibiotic-susceptibility determination from single-bacterium Raman spectra. Sci. Rep. 8, 3957 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Tannert, A., Grohs, R., Popp, J. & Neugebauer, U. Phenotypic antibiotic susceptibility testing of pathogenic bacteria using photonic readout methods: recent achievements and impact. Appl. Microbiol. Biotechnol. 103, 549–566 (2019).

    CAS  PubMed  Google Scholar 

  61. 61.

    Gao, J. et al. Nanotube assisted microwave electroporation for single cell pathogen identification and antimicrobial susceptibility testing. Nanomedicine 17, 246–253 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Pitruzzello, G. et al. Multiparameter antibiotic resistance detection based on hydrodynamic trapping of individual E. coli. Lab Chip 19, 1417–1426 (2019).

    CAS  PubMed  Google Scholar 

  63. 63.

    Yu, H. et al. Phenotypic antimicrobial susceptibility testing with deep learning video microscopy. Anal. Chem. 90, 6314–6322 (2018).

    CAS  PubMed  Google Scholar 

  64. 64.

    Machen, A., Drake, T. & Wang, Y. F. Same day identification and full panel antimicrobial susceptibility testing of bacteria from positive blood culture bottles made possible by a combined lysis-filtration method with MALDI-TOF VITEK mass spectrometry and the VITEK2 system. PLoS One 9, e87870 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Correa-Martínez, C. L., Idelevich, E. A., Sparbier, K., Kostrzewa, M. & Becker, K. rapid detection of extended-spectrum β-lactamases (ESBL) and AmpC β-lactamases in Enterobacterales: development of a screening panel using the MALDI-TOF MS-based direct-on-target microdroplet growth assay. Front. Microbiol. 10, 13 (2019).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Köck, R. et al. Implementation of short incubation MALDI-TOF MS identification from positive blood cultures in routine diagnostics and effects on empiric antimicrobial therapy. Antimicrob. Resist. Infect. Control 6, 12 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Ruppé, E. et al. Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat. Microbiol. 4, 112–123 (2019). This study describes a novel software-mediated approach for resistomics, showing that resistance traits can be reliably defined without prior (selective) culture.

    PubMed  Google Scholar 

  68. 68.

    Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019). This analysis of resistance markers found in a global collection of sewage specimens underscores the depth of environmental penetration of antibiotic resistance.

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Jin, N., Paraskevaidi, M., Semple, K. T., Martin, F. L. & Zhang, D. Infrared spectroscopy coupled with a dispersion model for quantifying the real-time dynamics of kanamycin resistance in artificial microbiota. Anal. Chem. 89, 9814–9821 (2017).

    CAS  PubMed  Google Scholar 

  70. 70.

    Fowler, P. W. et al. Robust prediction of resistance to trimethoprim in Staphylococcus aureus. Cell. Chem. Biol. 25, 339–349 (2018).

    CAS  PubMed  Google Scholar 

  71. 71.

    Chen, B. A. et al. Detection of multidrug-resistance proteins with protein array chips [Chinese]. Zhonghua Zhong Liu Za Zhi 27, 528–530 (2005).

    CAS  PubMed  Google Scholar 

  72. 72.

    Mertins, S. et al. Generation and selection of antibodies for a novel immunochromatographic lateral flow test to rapidly identify OXA-23-like-mediated carbapenem resistance in Acinetobacter baumannii. J. Med. Microbiol. 68, 1021–1032 (2019).

    CAS  PubMed  Google Scholar 

  73. 73.

    Tada, T. et al. Assessment of a newly developed immunochromatographic assay for NDM-type metallo-β-lactamase producing Gram-negative pathogens in Myanmar. BMC Infect. Dis. 28, 565 (2019).

    Google Scholar 

  74. 74.

    Rösner, S. et al. Evaluation of a novel immunochromatographic lateral flow assay for rapid detection of OXA-48, NDM, KPC and VIM carbapenemases in multidrug-resistant Enterobacteriaceae. J. Med. Microbiol. 68, 379–381 (2019).

    PubMed  Google Scholar 

  75. 75.

    Volland, H. et al. Development and multicentric validation of a lateral flow immunoassay for rapid detection of MCR-1-producing Enterobacteriaceae. J. Clin. Microbiol. 57, e01454–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Pasteran, F. et al. Rapid identification of OXA-48 and OXA-163 subfamilies in carbapenem-resistant Gram-negative bacilli with a novel immunochromatographic lateral flow assay. J. Clin. Microbiol. 54, 2832–2836 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Charretier, Y. et al. Rapid bacterial identification, resistance, virulence and type profiling using selected reaction monitoring mass spectrometry. Sci. Rep. 5, 13944 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Liang, T. et al. Rapid microbial identification and antibiotic resistance detection by mass spectrometric analysis of membrane lipids. Anal. Chem. 91, 1286–1294 (2019).

    CAS  PubMed  Google Scholar 

  79. 79.

    Schulze, H., Rubtsova, M. & Bachmann, T. T. in Modern Techniques for Pathogen Detection (eds Popp, J. & Bauer, M.) 113–220 (Wiley, 2015).

  80. 80.

    Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

    PubMed  Google Scholar 

  81. 81.

    Schoepp, N. G. et al. Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples. Sci. Transl Med. 9, eaal3693 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Athamanolap, P., Hsieh, K., Chen, L., Yang, S. & Wang, T. H. Integrated bacterial identification and antimicrobial susceptibility testing using PCR and high-resolution melt. Anal. Chem. 89, 11529–11536 (2017).

    CAS  PubMed  Google Scholar 

  83. 83.

    Dunne, W. M. Jr, Jaillard, M., Rochas, O. & Van Belkum, A. Microbial genomics and antimicrobial susceptibility testing. Expert Rev. Mol. Diagn. 17, 257–269 (2017).

    CAS  PubMed  Google Scholar 

  84. 84.

    Igarashi, Y. et al. Laboratory evaluation of the Anyplex™ II MTB/MDR and MTB/XDR tests based on multiplex real-time PCR and melting-temperature analysis to identify Mycobacterium tuberculosis and drug resistance. Diagn. Microbiol. Infect. Dis. 89, 276–281 (2017).

    CAS  PubMed  Google Scholar 

  85. 85.

    Özenci, V. & Rossolini, G. M. Rapid microbial identification and antimicrobial susceptibility testing to drive better patient care: an evolving scenario. J. Antimicrob. Chemother. 74, i2–i5 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Bishop, E. J. et al. Concurrent analysis of nose and groin swab specimens by the IDI-MRSA PCR assay is comparable to analysis by individual-specimen PCR and routine culture assays for detection of colonization by methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 44, 2904–2908 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Jacqmin, H., Schuermans, A., Desmet, S., Verhaegen, J. & Saegeman, V. Performance of three generations of Xpert MRSA in routine practice: approaching the aim? Eur. J. Clin. Microbiol. Infect. Dis. 36, 1363–1365 (2017).

    CAS  PubMed  Google Scholar 

  88. 88.

    Holzknecht, B. J., Hansen, D. S., Nielsen, L., Kailow, A. & Jarløv, J. O. Screening for vancomycin-resistant enterococci with Xpert® vanA/vanB: diagnostic accuracy and impact on infection control decision making. New Microbes New Infect. 2, 54–59 (2017).

    Google Scholar 

  89. 89.

    Cortegiani, A. et al. Use of Cepheid Xpert Carba-R® for rapid detection of carbapenemase-producing bacteria in abdominal septic patients admitted to intensive care unit. PLoS One 11, e0160643 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    MacVane, S. H. & Nolte, F. S. Benefits of adding a rapid PCR-based blood culture identification panel to an established antimicrobial stewardship program. J. Clin. Microbiol. 54, 2455–2463 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Gadsby, N. J. et al. Comparison of Unyvero P55 pneumonia cartridge, in-house PCR and culture for the identification of respiratory pathogens and antibiotic resistance in bronchoalveolar lavage fluids in the critical care setting. Eur. J. Clin. Microbiol. Infect. Dis. 38, 1171–1178 (2019).

    PubMed  Google Scholar 

  92. 92.

    Hischebeth, G. T. et al. Unyvero i60 implant and tissue infection (ITI) multiplex PCR system in diagnosing periprosthetic joint infection. J. Microbiol. Methods 121, 27–32 (2016).

    CAS  PubMed  Google Scholar 

  93. 93.

    Felsenstein, S. et al. Impact of a rapid blood culture assay for Gram-positive identification and detection of resistance markers in a pediatric hospital. Arch. Pathol. Lab. Med. 140, 267–275 (2016).

    PubMed  Google Scholar 

  94. 94.

    Zboromyrska, Y. et al. Rapid detection of β-lactamases directly from positive blood cultures using a loop-mediated isothermal amplification (LAMP)-based assay. Int. J. Antimicrob. Agents 46, 355–356 (2015).

    CAS  PubMed  Google Scholar 

  95. 95.

    Schumacher, S. et al. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip 12, 464–473 (2012).

    CAS  PubMed  Google Scholar 

  96. 96.

    Leopold, S. R., Goering, R. V., Witten, A., Harmsen, D. & Mellmann, A. Bacterial whole-genome sequencing revisited: portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J. Clin. Microbiol. 52, 2365–2370 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Khaledi, A. et al. Transcriptome profiling of antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 60, 4722–4733 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345–353 (2017).

    CAS  PubMed  Google Scholar 

  99. 99.

    Hughes, E. E. et al. Clinical sensitivity of Cystic Fibrosis mutation panels in a diverse population. Hum. Mutat. 37, 201–208 (2016).

    CAS  PubMed  Google Scholar 

  100. 100.

    Su, M., Satola, S. W. & Read, T. D. Genome-based prediction of bacterial antibiotic resistance. J. Clin. Microbiol. 57, e01405–e01418 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Nguyen, M. et al. Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae. Sci. Rep. 8, 421 (2018).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Bertrand, D. et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat. Biotechnol. 37, 937–944 (2019).

    CAS  PubMed  Google Scholar 

  103. 103.

    Khazaei, T., Barlow, J. T., Schoepp, N. G. & Ismagilov, R. F. RNA markers enable phenotypic test of antibiotic susceptibility in Neisseria gonorrhoeae after 10 minutes of ciprofloxacin exposure. Sci. Rep. 8, 11606 (2018).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Bhattacharyya, R. P. et al. Simultaneous detection of genotype and phenotype enables rapid and accurate antibiotic susceptibility determination. Nat. Med. 25, 1858–1864 (2019). Bhattacharyya et al. have published one of the few studies in which phenotypic and genotypic analyses of the resistome are presented and in which the current gold standard methods are seriously challenged.

    CAS  PubMed  Google Scholar 

  105. 105.

    Guérillot, R. et al. Comprehensive antibiotic-linked mutation assessment by resistance mutation sequencing (RM-seq). Genome Med. 10, 63 (2018).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Ellington, M. J. et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin. Microbiol. Infect. 23, 2–22 (2017).

    CAS  PubMed  Google Scholar 

  107. 107.

    Couto, N. et al. Critical steps in clinical shotgun metagenomics for the concomitant detection and typing of microbial pathogens. Sci. Rep. 8, 13767 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Lemon, J. K., Khil, P. P., Frank, K. M. & Dekker, J. P. Rapid nanopore sequencing of plasmids and resistance gene detection in clinical isolates. J. Clin. Microbiol. 55, 3530–3543 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Yang, Y. et al. Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data. Bioinformatics 34, 1666–1671 (2018).

    CAS  PubMed  Google Scholar 

  110. 110.

    Golparian, D. et al. Antimicrobial resistance prediction and phylogenetic analysis of Neisseria gonorrhoeae isolates using the Oxford Nanopore MinION sequencer. Sci. Rep. 8, 17596 (2018).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Rossen, J. W. A., Friedrich, A. W. & Moran-Gilad, J. ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD): practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin. Microbiol. Infect. 24, 355–360 (2018).

    CAS  PubMed  Google Scholar 

  112. 112.

    Westblade, L. F. et al. Role of clinicogenomics in infectious disease diagnostics and public health microbiology. J. Clin. Microbiol. 54, 1686–1693 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Quainoo, S. et al. Whole-genome sequencing of bacterial pathogens: the future of nosocomial outbreak analysis. Clin. Microbiol. Rev. 30, 1015–1063 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Blauwkamp, T. A. et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol. 4, 663–674 (2019).

    CAS  PubMed  Google Scholar 

  115. 115.

    Angaali, N., Vemu, L., Padmasri, C., Mamidi, N. & Teja, V. D. Direct identification and susceptibility testing of Gram-negative bacilli from turbid urine samples using VITEK2. J. Lab. Physicians 10, 299–303 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Campigotto, A., Goneau, L. & Matukas, L. M. Direct identification and antimicrobial susceptibility testing of microorganisms from positive blood cultures following isolation by lysis-centrifugation. Diagn. Microbiol. Infect. Dis. 92, 189–193 (2018).

    CAS  PubMed  Google Scholar 

  117. 117.

    Kang, J. H. et al. An extracorporeal blood-cleansing device for sepsis therapy. Nat. Med. 20, 1211–1216 (2015).

    Google Scholar 

  118. 118.

    Van Belkum, A. & Dunne, W. M. Jr. Next-generation antimicrobial susceptibility testing. J. Clin. Microbiol. 51, 2018–2024 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Pulido, M. R., García-Quintanilla, M., Martín-Peña, R., Cisneros, J. M. & McConnell, M. J. Progress on the development of rapid methods for antimicrobial susceptibility testing. J. Antimicrob. Chemother. 68, 2710–2717 (2013).

    CAS  PubMed  Google Scholar 

  120. 120.

    Behera, B. et al. Emerging technologies for antibiotic susceptibility testing. Biosens. Bioelectron. 142, 111552 (2019). This study provides excellent graphical illustrations of emerging technologies for AST.

    CAS  PubMed  Google Scholar 

  121. 121.

    Hays, J. P. et al. The successful uptake and sustainability of rapid infectious disease and antimicrobial resistance point-of-care testing requires a complex ‘mix-and-match’ implementation package. Eur. J. Clin. Microbiol. Infect. Dis. 38, 1015–1022 (2019).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Warhurst, G. et al. Rapid detection of health-care-associated bloodstream infection in critical care using multipathogen real-time polymerase chain reaction technology: a diagnostic accuracy study and systematic review. Health Technol. Assess. 19, 1–142 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Van Belkum, A. & Rochas, O. Laboratory-based and point-of-care testing for MSSA/MRSA detection in the age of whole genome sequencing. Front. Microbiol. 9, 1437 (2018).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Peretz, A., Pastukh, N. & Nitzan, O. Is one colony enough? J. Clin. Microbiol. 54, 925 (2016). Peretz et al. develop a critical assessment of a long-lasting practical problem with potentially substantial diagnostic and financial consequences.

    Google Scholar 

  125. 125.

    Boulund, F. et al. Computational discovery and functional validation of novel fluoroquinolone resistance genes in public metagenomic data sets. BMC Genomics 18, 682 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Humphries, R. M., Abbott, A. N. & Hindler, J. A. Understanding and addressing CLSI breakpoint revisions: a primer for clinical laboratories. J. Clin. Microbiol. 57, e00203–e00219 (2019). Breakpoints are subject to continuous discussion and evolution, with definitions being modified; the authors clearly describe the rationales for breakpoint management.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Roope, L. S. J. et al. The challenge of antimicrobial resistance: what economics can contribute. Science 364, eaau4679 (2019).

    CAS  PubMed  Google Scholar 

  128. 128.

    Legenza, L. et al. Geographic mapping of Escherichia coli susceptibility to develop a novel clinical decision support tool. Antimicrob. Agents Chemother. 63, e00048–19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Yarygin, K. S. et al. ResistoMap — online visualization of human gut microbiota antibiotic resistome. Bioinformatics 33, 2205–2206 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    McArthur, A. G. et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57, 3348–3357 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Gupta, S. K. et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Kleinheinz, K. A., Joensen, K. G. & Larsen, M. V. Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage 4, e27943 (2014).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Galata, V. et al. Integrating culture-based antibiotic resistance profiles with whole-genome sequencing data for 11,087 clinical isolates. Genomics Proteomics Bioinformatics 17, 169–182 (2019).

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6, 23 (2018).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Keshri, V. et al. An integrative database of β-lactamase enzymes: sequences, structures, functions, and phylogenetic trees. Antimicrob. Agents Chemother. 63, e02319–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Flandrois, J. P., Lina, G. & Dumitrescu, O. MUBII-TB-DB: a database of mutations associated with antibiotic resistance in Mycobacterium tuberculosis. BMC Bioinformatics 15, 107 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Boolchandani, M., D’Souza, A. W. & Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat. Rev. Genet. 20, 356–370 (2019).

    CAS  PubMed  Google Scholar 

  138. 138.

    Clausen, P. T., Zankari, E., Aarestrup, F. M. & Lund, O. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. J. Antimicrob. Chemother. 71, 2484–2488 (2016). This study underscores that bioinformatic pipelines are intrinsically different, with different systems sometimes predicting conflicting genotypes and hence phenotypes.

    CAS  PubMed  Google Scholar 

  139. 139.

    Xavier, B. B. et al. Consolidating and exploring antibiotic resistance gene data resources. J. Clin. Microbiol. 54, 851–859 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    The CRyPTIC Consortium and the 100,000 Genomes Project. Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N. Engl. J. Med. 379, 1403–1415 (2018).

    Google Scholar 

  141. 141.

    Gygli, S. M. et al. Whole-genome sequencing for drug resistance profile prediction in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 63, e02175–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Fowler, P. W. et al. Automated detection of bacterial growth on 96-well plates for high-throughput drug susceptibility testing of Mycobacterium tuberculosis. Microbiology 164, 1522–1530 (2018).

    CAS  PubMed  Google Scholar 

  143. 143.

    Holt, K. E. et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl Acad. Sci. USA 112, E3574–E3581 (2015).

    CAS  PubMed  Google Scholar 

  144. 144.

    Tamma, P. D. et al. Applying rapid whole-genome sequencing to predict phenotypic antimicrobial susceptibility testing results among carbapenem-resistant Klebsiella pneumoniae clinical isolates. Antimicrob. Agents Chemother. 63, e01923–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. 145.

    Peng, J. P. et al. A whole-genome sequencing analysis of Neisseria gonorrhoeae isolates in China: an observational study. EClinicalmedicine 7, P47–P54 (2019).

    Google Scholar 

  146. 146.

    Do Nascimento, V. et al. Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of enteroaggregative Escherichia coli isolated from cases of diarrhoeal disease in England, 2015–16. J. Antimicrob. Chemother. 72, 3288–3297 (2017).

    PubMed  Google Scholar 

  147. 147.

    Sadouki, Z. et al. Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of Shigella sonnei isolated from cases of diarrhoeal disease in England and Wales, 2015. J. Antimicrob. Chemother. 72, 2496–2502 (2017).

    CAS  PubMed  Google Scholar 

  148. 148.

    Kos, V. N. et al. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob. Agents Chemother. 59, 427–436 (2015).

    PubMed  Google Scholar 

  149. 149.

    Van Belkum, A. et al. Phylogenetic distribution of CRISPR–Cas systems in antibiotic-resistant Pseudomonas aeruginosa. MBio 6, e01796–15 (2015).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Jaillard, M. et al. Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 50, 210–218 (2017).

    CAS  PubMed  Google Scholar 

  151. 151.

    Chiu, C. Y. & Miller, S. A. Clinical metagenomics. Nat. Rev. Genet. 20, 341–355 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Asante, J. & Osei Sekyere, J. Understanding antimicrobial discovery and resistance from a metagenomic and metatranscriptomic perspective: advances and applications. Environ. Microbiol. Rep. 11, 62–86 (2019).

    PubMed  Google Scholar 

  153. 153.

    Yan, Q. et al. Evaluation of the CosmosID bioinformatics platform for prosthetic joint-associated sonicate fluid shotgun metagenomic data analysis. J. Clin. Microbiol. 57, e01182–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Lakin, S. M. et al. MEGARes: an antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res. 45, D574–D580 (2017).

    CAS  PubMed  Google Scholar 

  155. 155.

    Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).

    CAS  PubMed  Google Scholar 

  156. 156.

    Rahman, S. F., Olm, M. R., Morowitz, M. J. & Banfield, J. F. Machine learning leveraging genomes from metagenomes identifies influential antibiotic resistance genes in the infant gut microbiome. mSystems 3, e00123–17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Cangelosi, G. A. & Meschke, J. S. Dead or alive: molecular assessment of microbial viability. Appl. Environ. Microbiol. 80, 5884–5891 (2014).

    PubMed  PubMed Central  Google Scholar 

  158. 158.

    Smith, K. P. & Kirby, J. E. The inoculum effect in the era of multidrug resistance: minor differences in inoculum have dramatic effect on MIC determination. Antimicrob. Agents Chemother. 62, e00433–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    van Dorp, L. et al. Rapid phenotypic evolution in multidrug-resistant Klebsiella pneumoniae hospital outbreak strains. Microb. Genom. 5, 263 (2019).

    Google Scholar 

Download references


The authors gratefully acknowledge A. Hemmert (BioFire, Salt Lake City, UT, USA) for his insightful review of the text.

Author information




A.v.B., O.R. and W.M.D. researched data for the article. A.v.B., C.-A.D.B., F.M., O.R. and W.M.D. wrote the article. A.v.B., C.-A.D.B., J.W.A.R., F.M. and W.M.D. substantially contributed to discussion of the content. A.v.B, C.-A.D.B., J.W.A.R. and W.M.D. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Alex van Belkum.

Ethics declarations

Competing interests

A.v.B., F.M. and O.R. are employees at bioMérieux, a company that designs, markets and sells antimicrobial susceptibility testing tools and systems. C.A.B. has received research support from bioMérieux, BioFire, Cepheid, Accelerate Diagnostics, Luminex, Bio-Rad Laboratories, Thermo Fisher and SeLux.

Additional information

Peer review information

Nature Reviews Microbiology thanks R. Cantón, J. O’Grady, M. Fernandez Suarez and M. Sanguinetti for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Comprehensive Antibiotic Resistance Database (CARD):


EUCAST standardized rapid-AST protocols:


Supplementary information


Minimal inhibitory concentration

(MIC). The lowest concentration of an antimicrobial agent that prevents visible growth of a bacterium species or isolate. The MIC is defined by combined activities of the microorganism, the affected patient and the antimicrobial agent itself.

Lag phase

The temporary period in which microorganisms are adapting to a new environment, avoiding threats and metabolizing, and increasing in cell size but not yet actively dividing and multiplying. During this period, cells are synthesizing enzymes and other factors needed for actual cell division under the new environmental conditions.


The microbial ability to resist being killed by antimicrobials. This ability is distinct from (multi)drug resistance and is not caused by mutant microorganisms, but rather by cells existing in a dormant, non-dividing state.

Zone of inhibition

If bacteria are grown as layers on solid growth media and an antibiotic stops the bacteria from growing or kills them, there will be an area around the place where the antibiotic has been positioned (usually in a well or on a paper disc) where the bacteria have not grown enough to be visible. The radius of such a region of growth inhibition is correlated with the level of antibiotic susceptibility of the strain being tested.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Belkum, A., Burnham, CA.D., Rossen, J.W.A. et al. Innovative and rapid antimicrobial susceptibility testing systems. Nat Rev Microbiol 18, 299–311 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing