Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beyond horizontal gene transfer: the role of plasmids in bacterial evolution

Abstract

Plasmids have a key role in bacterial ecology and evolution because they mobilize accessory genes by horizontal gene transfer. However, recent studies have revealed that the evolutionary impact of plasmids goes above and beyond their being mere gene delivery platforms. Plasmids are usually kept at multiple copies per cell, producing islands of polyploidy in the bacterial genome. As a consequence, the evolution of plasmid-encoded genes is governed by a set of rules different from those affecting chromosomal genes, and these rules are shaped by unusual concepts in bacterial genetics, such as genetic dominance, heteroplasmy or segregational drift. In this Review, we discuss recent advances that underscore the importance of plasmids in bacterial ecology and evolution beyond horizontal gene transfer. We focus on new evidence that suggests that plasmids might accelerate bacterial evolution, mainly by promoting the evolution of plasmid-encoded genes, but also by enhancing the adaptation of their host chromosome. Finally, we integrate the most relevant theoretical and empirical studies providing a global understanding of the forces that govern plasmid-mediated evolution in bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plasmid prevalence and types.
Fig. 2: Evolutionary forces that drive the evolution of plasmid-encoded genes.
Fig. 3: The role of genetic dominance in plasmid evolution.

Similar content being viewed by others

References

  1. Lederberg, J. Cell genetics and hereditary symbiosis. Physiol. Rev. 32, 403–430 (1952). A landmark article in which the term ‘plasmid’ is proposed for the first time.

    CAS  PubMed  Google Scholar 

  2. Lederberg, J. Personal perspective: plasmid (1952-1997). Plasmid 39, 1–9 (1998).

    CAS  PubMed  Google Scholar 

  3. Werren, J. H. Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc. Natl Acad. Sci. USA 108, 10863–10870 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rankin, D. J., Rocha, E. P. C. & Brown, S. P. What traits are carried on mobile genetic elements, and why. Heredity 106, 1–10 (2011).

    CAS  PubMed  Google Scholar 

  5. Hernández-Arriaga, A. M., Chan, W. T., Espinosa, M. & Díaz-Orejas, R. Conditional activation of toxin-antitoxin systems: postsegregational killing and beyond. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.PLAS-0009-2013 (2014).

    Article  PubMed  Google Scholar 

  6. Norman, A., Hansen, L. H. & Sørensen, S. J. Conjugative plasmids: vessels of the communal gene pool. Philos. Trans. R. Soc. B Biol. Sci. 364, 2275–2289 (2009).

    CAS  Google Scholar 

  7. Ramsay, J. P. et al. An updated view of plasmid conjugation and mobilization in Staphylococcus. Mob. Genet. Elem. 6, e1208317 (2016).

    Google Scholar 

  8. Carattoli, A. et al. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63, 219–228 (2005).

    CAS  PubMed  Google Scholar 

  9. Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. C. & de la Cruz, F. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74, 434–452 (2010). A thorough analysis of plasmid mobility that sets the basis for mobility typing.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Douarre, P.-E., Mallet, L., Radomski, N., Felten, A. & Mistou, M.-Y. Analysis of COMPASS, a new comprehensive plasmid database revealed prevalence of multireplicon and extensive diversity of IncF plasmids. Front. Microbiol. 11, 1–15 (2020).

    Google Scholar 

  11. Acman, M., van Dorp, L., Santini, J. M. & Balloux, F. Large-scale network analysis captures biological features of bacterial plasmids. Nat. Commun. 11, 2452 (2020). A comprehensive analysis of plasmid whole-genome sequences using similarity networks that paves the way for novel plasmid classification schemes.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Redondo-Salvo, S. et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 11, 3602 (2020).

    PubMed  PubMed Central  Google Scholar 

  13. Szpirer, C., Top, E., Couturier, M. & Mergeay, M. Retrotransfer or gene capture: a feature of conjugative plasmids, with ecological and evolutionary significance. Microbiology 145, 3321–3329 (1999).

    CAS  PubMed  Google Scholar 

  14. Tock, M. R. & Dryden, D. T. F. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8, 466–472 (2005).

    CAS  PubMed  Google Scholar 

  15. Pinilla-Redondo, R. et al. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res. 48, 2000–2012 (2020).

    CAS  PubMed  Google Scholar 

  16. Ares-Arroyo, M. et al. PCR-based analysis of ColE1 plasmids in clinical isolates and metagenomic samples reveals their importance as gene capture platforms. Front. Microbiol. 9, 469 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. Attéré, S. A., Vincent, A. T., Paccaud, M., Frenette, M. & Charette, S. J. The role for the small cryptic plasmids as moldable vectors for genetic innovation in Aeromonas salmonicida subsp. salmonicida. Front. Genet. 8, 1–11 (2017).

    Google Scholar 

  18. Pilla, G. & Tang, C. M. Going around in circles: Virulence plasmids in enteric pathogens. Nat. Rev. Microbiol. 16, 484–495 (2018).

    CAS  PubMed  Google Scholar 

  19. Carattoli, A. Resistance plasmid families in Enterobacteriaceae. Antimicrob. Agents Chemother. 53, 2227–2238 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brinkmann, H., Göker, M., Koblížek, M., Wagner-Döbler, I. & Petersen, J. Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae. ISME J. 12, 1994–2010 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Manzano-Marıˊn, A. et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 14, 259–273 (2020).

    Google Scholar 

  22. Anda, M. et al. Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome. Proc. Natl Acad. Sci. USA 112, 14343–14347 (2015). An example of an HCP carrying an essential core gene for its bacterial host.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, X. et al. Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution. Lett. Appl. Microbiol. 67, 22–31 (2018).

    CAS  PubMed  Google Scholar 

  24. Soucy, S. M., Huang, J. & Gogarten, J. P. Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16, 472–482 (2015).

    CAS  PubMed  Google Scholar 

  25. Vos, M., Hesselman, M. C., te Beek, T. A., van Passel, M. W. J. & Eyre-Walker, A. Rates of lateral gene transfer in prokaryotes: high but why? Trends Microbiol. 23, 598–605 (2015).

    CAS  PubMed  Google Scholar 

  26. Hall, J. P. J., Williams, D., Paterson, S., Harrison, E. & Brockhurst, M. A. Positive selection inhibits gene mobilization and transfer in soil bacterial communities. Nat. Ecol. Evol. 1, 1348–1353 (2017). An elegant study that highlights the role of HGT in general and transposons in particular in the evolution of bacterial soil communities.

    PubMed  PubMed Central  Google Scholar 

  27. Bethke, J. H. et al. Environmental and genetic determinants of plasmid mobility in pathogenic Escherichia coli. Sci. Adv. 6, (2020).

  28. Sørensen, S. J., Bailey, M., Hansen, L. H., Kroer, N. & Wuertz, S. Studying plasmid horizontal transfer in situ: a critical review. Nat. Rev. Microbiol. 3, 700–710 (2005).

    PubMed  Google Scholar 

  29. Leon-Sampedro, R. et al. Dissemination routes of the carbapenem resistance plasmid pOXA-48 in a hospital setting. Preprint at bioRxiv https://doi.org/10.1101/2020.04.20.050476 (2020).

    Article  Google Scholar 

  30. Gumpert, H. et al. Transfer and persistence of a multi-drug resistance plasmid in situ of the infant gut microbiota in the absence of antibiotic treatment. Front. Microbiol. 8, 1852 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Porse, A. et al. Genome dynamics of Escherichia coli during antibiotic treatment: transfer, loss, and persistence of genetic elements in situ of the infant gut. Front. Cell. Infect. Microbiol. 7, 126 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Munck, C., Sheth, R. U., Freedberg, D. E. & Wang, H. H. Recording mobile DNA in the gut microbiota using an Escherichia coli CRISPR-Cas spacer acquisition platform. Nat. Commun. 11, 1–11 (2020).

    Google Scholar 

  33. Thomas, C. M. & Summers, D. Bacterial plasmids. Encycl. Life Sci. https://doi.org/10.1002/9780470015902.a0000468.pub2 (2008).

    Article  Google Scholar 

  34. Summers, D. K. Plasmid replication and its control. in The Biology of Plasmids 31–64 (Blackwell Publishing Ltd., 2009).

  35. Wong, Ng,J., Chatenay, D., Robert, J. & Poirier, M. G. Plasmid copy number noise in monoclonal populations of bacteria. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 011909 (2010).

    Google Scholar 

  36. Münch, K., Münch, R., Biedendieck, R., Jahn, D. & Müller, J. Evolutionary model for the unequal segregation of high copy plasmids. PLoS Comput. Biol. 15, e1006724 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Nordström, K. Plasmid R1-replication and its control. Plasmid 55, 1–26 (2006).

    PubMed  Google Scholar 

  38. Jahn, M., Vorpahl, C., Hübschmann, T., Harms, H. & Müller, S. Copy number variability of expression plasmids determined by cell sorting and Droplet Digital PCR. Microb. Cell Fact. 15, 211 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Mei, H. et al. A high-resolution view of adaptive event dynamics in a plasmid. Genome Biol. Evol. 11, 3022–3034 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D. & MacLean, R. C. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat. Ecol. Evol. 1, 0010 (2016). The first article to show that plasmids increase evolvability of antibiotic resistance.

    Google Scholar 

  41. Santos-Lopez, A. et al. A naturally occurring SNP in plasmid pB1000 produces a reversible increase in antibiotic resistance. Antimicrob. Agents Chemother. 2, AAC.01735-16 (2016).

    Google Scholar 

  42. San Millan, A. et al. Small-plasmid-mediated antibiotic resistance is enhanced by increases in plasmid copy number and bacterial fitness. Antimicrob. Agents Chemother. 59, 3335–3341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Thompson, M. G. et al. Isolation and characterization of novel mutations in the pSC101 origin that increase copy number. Sci. Rep. 8, 1590 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Cho, H. & Winans, S. C. VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Proc. Natl Acad. Sci. USA 102, 14843–14848 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, H. et al. Increased plasmid copy number is essential for Yersinia T3SS function and virulence. Science 353, 492–495 (2016).

    CAS  PubMed  Google Scholar 

  46. Akasaka, N. et al. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration. J. Biosci. Bioeng. 119, 661–668 (2015).

    CAS  PubMed  Google Scholar 

  47. Sano, E., Maisnier-Patin, S., Aboubechara, J. P., Quiñones-Soto, S. & Roth, J. R. Plasmid copy number underlies adaptive mutability in bacteria. Genetics 198, 919–933 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pappas, K. M. & Winans, S. C. A LuxR-type regulator from Agrobacterium tumefaciens elevates Ti plasmid copy number by activating transcription of plasmid replication genes. Mol. Microbiol. 48, 1059–1073 (2003).

    CAS  PubMed  Google Scholar 

  49. Pecoraro, V., Zerulla, K., Lange, C. & Soppa, J. Quantification of ploidy in proteobacteria revealed the existence of monoploid, (mero-)oligoploid and polyploid species. PLoS ONE 6, e16392 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Klumpp, S. Growth-rate dependence reveals design principles of plasmid copy number control. PLoS ONE 6, e20403 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Atlung, T., Christensen, B. B. & Hansen, F. G. Role of the rom protein in copy number control of plasmid pBR322 at different growth rates in Escherichia coli K-12. Plasmid 41, 110–119 (1999).

    CAS  PubMed  Google Scholar 

  52. San Millan, A. et al. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. 12, 3014–3024 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Park, C. & Zhang, J. High expression hampers horizontal gene transfer. in Genome Biol. Evol. 4, 523–532 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Condon, C., Liveris, D., Squires, C., Schwartz, I. & Squires, C. L. rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J. Bacteriol. 177, 4152–4156 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ikeda, S. et al. Community shifts of soybean stem-associated bacteria responding to different nodulation phenotypes and N levels. ISME J. 4, 315–326 (2010).

    CAS  PubMed  Google Scholar 

  56. Shen, Z. et al. Increased plasmid copy number contributes to the elevated carbapenem resistance in OXA-232-producing Klebsiella pneumoniae. Microb. Drug Resist. https://doi.org/10.1089/mdr.2018.0407 (2019).

    Article  PubMed  Google Scholar 

  57. El-Halfawy, O. M. & Valvano, M. A. Antimicrobial heteroresistance: an emerging field in need of clarity. Clin. Microbiol. Rev. 28, 191–207 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019).

    CAS  PubMed  Google Scholar 

  59. Nicoloff, H., Hjort, K., Levin, B. R. & Andersson, D. I. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat. Microbiol. 4, 504–514 (2019).

    CAS  PubMed  Google Scholar 

  60. Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bayramoglu, B. et al. Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective. Sci. Rep. 7, 42068 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mrak, P., Podlesek, Z., Van Putten, J. P. M. & Žgur-Bertok, D. Heterogeneity in expression of the Escherichia coli colicin K activity gene cka is controlled by the SOS system and stochastic factors. Mol. Genet. Genomics 277, 391–401 (2007).

    CAS  PubMed  Google Scholar 

  63. Tomanek, I. et al. Gene amplification as a form of population-level gene expression regulation. Nat. Ecol. Evol. 4, 612–625 (2020).

    CAS  PubMed  Google Scholar 

  64. Rodríguez-Beltrán, J. et al. High recombinant frequency in extraintestinal pathogenic Escherichia coli strains. Mol. Biol. Evol. 32, 1708–1716 (2015).

    PubMed  Google Scholar 

  65. Niaudet, B., Jannière, L. & Ehrlich, S. D. Recombination between repeated DNA sequences occurs more often in plasmids than in the chromosome of Bacillus subtilis. MGG Mol. Gen. Genet. 197, 46–54 (1984).

    CAS  PubMed  Google Scholar 

  66. Couce, A., Rodríguez-Rojas, A. & Blázquez, J. Bypass of genetic constraints during mutator evolution to antibiotic resistance. Proc. R. Soc. B Biol. Sci. 282, 20142698 (2015).

    Google Scholar 

  67. De Visser, J. A. G. M., Zeyl, C. W., Gerrish, P. J., Blanchard, J. L. & Lenski, R. E. Diminishing returns from mutation supply rate in asexual populations. Science 283, 404–406 (1999).

    PubMed  Google Scholar 

  68. Million-Weaver, S., Alexander, D. L., Allen, J. M. & Camps, M. Quantifying plasmid copy number to investigate plasmid dosage effects associated with directed protein evolution. Methods Mol. Biol. 834, 33–48 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Pesesky, M. W., Tilley, R. & Beck, D. A. C. Mosaic plasmids are abundant and unevenly distributed across prokaryotic taxa. Plasmid 102, 10–18 (2019).

    CAS  PubMed  Google Scholar 

  70. Lanza, V. F., Tedim, A. P., Martínez, J. L., Baquero, F. & Coque, T. M. The Plasmidome of Firmicutes: impact on the emergence and the spread of resistance to antimicrobials. Microbiol. Spectr. 3, PLAS-0039-2014 (2015).

    PubMed  Google Scholar 

  71. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

    CAS  PubMed  Google Scholar 

  72. Roy, D., Huguet, K. T., Grenier, F. & Burrus, V. IncC conjugative plasmids and SXT/R391 elements repair double-strand breaks caused by CRISPR–Cas during conjugation. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa518 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Barlow, M., Fatollahi, J. & Salverda, M. Evidence for recombination among the alleles encoding TEM and SHV β-lactamases. J. Antimicrob. Chemother. 63, 256–259 (2009).

    CAS  PubMed  Google Scholar 

  74. Mroczkowska, J. E. & Barlow, M. Recombination and selection can remove blaTEM alleles from bacterial populations. Antimicrob. Agents Chemother. 52, 3408–3410 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Baquirin, M. H. C. & Barlow, M. Evolution and recombination of the plasmidic qnr alleles. J. Mol. Evol. 67, 103–110 (2008).

    CAS  PubMed  Google Scholar 

  76. Xie, M., Li, R., Liu, Z., Chan, E. W. C. & Chen, S. Recombination of plasmids in a carbapenem-resistant NDM-5-producing clinical Escherichia coli isolate. J. Antimicrob. Chemother. 73, 1230–1234 (2018).

    CAS  PubMed  Google Scholar 

  77. He, D. et al. Emergence of a hybrid plasmid derived from IncN1-F33:A-:B- and mcr-1-bearing plasmids mediated by IS26. J. Antimicrob. Chemother. 74, 3184–3189 (2019).

    CAS  PubMed  Google Scholar 

  78. Li, Y. et al. Evidence of illegitimate recombination between two pasteurellaceae plasmids resulting in a novel multi-resistance replicon, pM3362MDR, in Actinobacillus pleuropneumoniae. Front. Microbiol. 9, 2489 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Desmet, S. et al. Antibiotic resistance plasmids cointegrated into a megaplasmid harboring the bla OXA-427 carbapenemase gene. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01448-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fidelma Boyd, E., Hill, C. W., Rich, S. M. & Hard, D. L. Mosaic structure of plasmids from natural populations of Escherichia coli. Genetics 143, 1091–1100 (1996).

    Google Scholar 

  81. Norberg, P., Bergström, M., Jethava, V., Dubhashi, D. & Hermansson, M. The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat. Commun. 2, 1–11 (2011).

    Google Scholar 

  82. Fernández-López, R. et al. Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol. Rev. 30, 942–966 (2006).

    PubMed  Google Scholar 

  83. Osborn, A. M., da Silva Tatley, F. M., Steyn, L. M., Pickup, R. W. & Saunders, J. R. Mosaic plasmids and mosaic replicons: Evolutionary lessons from the analysis of genetic diversity in IncFII-related replicons. Microbiology 146, 2267–2275 (2000).

    CAS  PubMed  Google Scholar 

  84. Gordon, J. E. & Christie, P. J. The Agrobacterium Ti plasmids. Microbiol. Spectr. 2, PLAS-0010-2013 (2014).

    Google Scholar 

  85. Weisberg, A. J. et al. Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science 368, eaba5256 (2020).

    CAS  PubMed  Google Scholar 

  86. Kuzminov, A. Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc. Natl Acad. Sci. USA 98, 8241–8246 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, X., Deatherage, D. E., Zheng, H., Georgoulis, S. J. & Barrick, J. E. Evolution of satellite plasmids can prolong the maintenance of newly acquired accessory genes in bacteria. Nat. Commun. 10, 1–12 (2019). An elegant study highlighting the role of recombination in plasmid evolution.

    Google Scholar 

  88. Bedhomme, S., Perez Pantoja, D. & Bravo, I. G. Plasmid and clonal interference during post horizontal gene transfer evolution. Mol. Ecol. 26, 1832–1847 (2017). A study describing for the first time the effects of plasmid interference in evolving bacterial populations.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Porse, A., Schønning, K., Munck, C. & Sommer, M. O. A. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts. Mol. Biol. Evol. 33, 2860–2873 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Novick, R. P. Plasmid incompatibility. Microbiol. Rev. 51, 381–395 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ilhan, J. et al. Segregational drift and the interplay between plasmid copy number and evolvability. Mol. Biol. Evol. 36, 472–486 (2019). A study exploring the role of segregational drift in plasmid evolution through a combined experimental and modelling approach.

    CAS  PubMed  Google Scholar 

  92. Szczepanowski, R. et al. Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. J. Biotechnol. 155, 95–103 (2011).

    CAS  PubMed  Google Scholar 

  93. Halleran, A. D., Flores-Bautista, E. & Murray, R. M. Quantitative characterization of random partitioning in the evolution of plasmid-encoded traits. Preprint at bioRxiv https://doi.org/10.1101/594879 (2019).

    Article  Google Scholar 

  94. Santer, M. & Uecker, H. Evolutionary rescue and drug resistance on multicopy plasmids. Genetics https://doi.org/10.1534/genetics.119.303012 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Soskine, M. & Tawfik, D. S. Mutational effects and the evolution of new protein functions. Nat. Rev. Genet. 11, 572–582 (2010).

    CAS  PubMed  Google Scholar 

  96. Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

    PubMed  Google Scholar 

  97. Mroczkowska, J. E. & Barlow, M. Fitness trade-offs in blaTEM evolution. Antimicrob. Agents Chemother. 52, 2340–2345 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rodriguez-Beltran, J. et al. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat. Ecol. Evol. 2, 873–881 (2018). A study exploring the role of plasmids as drivers of evolutionary innovation, highlighting their ability to maintain genetic diversity against strong selective forces.

    PubMed  PubMed Central  Google Scholar 

  99. Doublet, V., Souty-Grosset, C., Bouchon, D., Cordaux, R. & Marcadé, I. A thirty million year-old inherited heteroplasmy. PLoS ONE 3, e2938 (2008).

    PubMed  PubMed Central  Google Scholar 

  100. Haldane, J. B. S. A mathematical theory of natural and artificial selection, part V: selection and mutation. Math. Proc. Camb. Philos. Soc. 23, 838–844 (1927).

    Google Scholar 

  101. Sun, L. et al. Effective polyploidy causes phenotypic delay and influences bacterial evolvability. PLoS Biol. 16, e2004644 (2018).

    PubMed  PubMed Central  Google Scholar 

  102. Rodríguez-Beltrán, J. et al. Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2001240117 (2020). The first article to demonstrate that genetic dominance shapes plasmid evolution and genetic content.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zheng, J. et al. Plasmids are vectors for redundant chromosomal genes in the Bacillus cereus group. BMC Genomics 16, 6 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sheppard, A. E. et al. Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene blakpc. Antimicrob. Agents Chemother. 60, 3767–3778 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Dimitriu, T., Marchant, L., Buckling, A. & Raymond, B. Bacteria from natural populations transfer plasmids mostly towards their kin. Proc. R. Soc. B Biol. Sci. 286, 20191110 (2019).

    CAS  Google Scholar 

  106. Baharoglu, Z., Bikard, D. & Mazel, D. Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. PLoS Genet. 6, e1001165 (2010). A study that elegantly demonstrates that the SOS system is induced in response to plasmid conjugative transfer and how this leads to genomic rearrangements.

    PubMed  PubMed Central  Google Scholar 

  107. Maslowska, K. H., Makiela-Dzbenska, K. & Fijalkowska, I. J. The SOS system: a complex and tightly regulated response to DNA damage. Environ. Mol. Mutagen. 60, 368–384 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Howarth, S. Resistance to the bactericidal effect of ultraviolet radiation conferred on Enterobacteria by the colicine factor coli. J. Gen. Microbiol. 40, 43–55 (1965).

    CAS  PubMed  Google Scholar 

  109. Strike, P. & Lodwick, D. Plasmid genes affecting DNA repair and mutation. J. Cell Sci. 1987 (Suppl. 6), 303–321 (1987).

    Google Scholar 

  110. Woodgate, R. & Sedgwick, S. G. Mutagenesis induced by bacterial UmuDC proteins and their plasmid homologues. Mol. Microbiol. 6, 2213–2218 (1992).

    CAS  PubMed  Google Scholar 

  111. Remigi, P. et al. Transient hypermutagenesis accelerates the evolution of legume endosymbionts following horizontal gene transfer. PLoS Biol. 12, e1001942 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. Nguyen, A., Maisnier-Patin, S., Yamayoshi, I., Kofoid, E. & Roth, J. R. Selective inbreeding: genetic crosses drive apparent adaptive mutation in the cairns-foster system of Escherichia coli. Genetics 214, 333–354 (2020).

    CAS  PubMed  Google Scholar 

  113. Silva, R. F. et al. Pervasive sign epistasis between conjugative plasmids and drug-resistance chromosomal mutations. PLoS Genet. 7, e1002181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Loftie-Eaton, W. et al. Evolutionary paths that expand plasmid host-range: implications for spread of antibiotic resistance. Mol. Biol. Evol. 33, 885–897 (2016).

    CAS  PubMed  Google Scholar 

  115. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cooper, V. S., Vohr, S. H., Wrocklage, S. C. & Hatcher, P. J. Why genes evolve faster on secondary chromosomes in bacteria. PLoS Comput. Biol. 6, e1000732 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Eberhard, W. G. Evolution in bacterial plasmids and levels of selection. Q. Rev. Biol. 65, 3–22 (1990).

    CAS  PubMed  Google Scholar 

  118. Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 1–6 (2016).

    Google Scholar 

  119. Galata, V., Fehlmann, T., Backes, C. & Keller, A. PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res. 47, D195–D202 (2019).

    CAS  PubMed  Google Scholar 

  120. San Millan, A. & MacLean, R. C. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MTBP-0016-2017 (2017).

    Article  PubMed  Google Scholar 

  121. Vogwill, T. & Maclean, R. C. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol. Appl. 8, 284–295 (2015).

    PubMed  Google Scholar 

  122. Salje, J. Plasmid segregation: how to survive as an extra piece of DNA. Crit. Rev. Biochem. Mol. Biol. 45, 296–317 (2010).

    CAS  PubMed  Google Scholar 

  123. Harrison, E. & Brockhurst, M. A. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 20, 262–267 (2012).

    CAS  PubMed  Google Scholar 

  124. Stewart, F. M. & Levin, B. R. The population biology of bacterial plasmids: a priori conditions for the existence of conjugationally transmitted factors. Genetics 87, (1977).

  125. San Millan, A., Heilbron, K. & MacLean, R. C. Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations. ISME J. 8, 601–612 (2014).

    CAS  PubMed  Google Scholar 

  126. Bouma, J. E. & Lenski, R. E. Evolution of a bacteria/plasmid association. Nature 335, 351–352 (1988). The first demonstration of compensatory evolution in a bacterial–plasmid association.

    CAS  PubMed  Google Scholar 

  127. Harrison, E., Guymer, D., Spiers, A. J., Paterson, S. & Brockhurst, M. A. Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum. Curr. Biol. 25, 2034–2039 (2015).

    CAS  PubMed  Google Scholar 

  128. Wein, T., Hülter, N. F., Mizrahi, I. & Dagan, T. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat. Commun. 10, 1–13 (2019).

    CAS  Google Scholar 

  129. San Millan, A. et al. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat. Commun. 5, 5208 (2014).

    CAS  PubMed  Google Scholar 

  130. Bottery, M. J., Wood, A. J. & Brockhurst, M. A. Adaptive modulation of antibiotic resistance through intragenomic coevolution. Nat. Ecol. Evol. 1, 1364–1369 (2017).

    PubMed  PubMed Central  Google Scholar 

  131. Li, L. et al. Plasmids persist in a microbial community by providing fitness benefit to multiple phylotypes. ISME J. 14, 1170–1181 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Alonso-del Valle, A. et al. The distribution of plasmid fitness effects explains plasmid persistence in bacterial. Preprint at bioRxiv https://doi.org/10.1101/2020.08.01.230672 (2020).

    Article  Google Scholar 

  133. Jordt, H. et al. Coevolution of host–plasmid pairs facilitates the emergence of novel multidrug resistance. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1170-1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hall, J. P. J., Wood, A. J., Harrison, E. & Brockhurst, M. A. Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc. Natl Acad. Sci. USA 113, 8260–8265 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Stalder, T. et al. Evolving populations in biofilms contain more persistent plasmids. Mol. Biol. Evol. 37, 1563–1576 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ridenhour, B. J. et al. Persistence of antibiotic resistance plasmids in bacterial biofilms. Evol. Appl. 10, 640–647 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lopatkin, A. J. et al. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat. Commun. 8, 1689 (2017).

    PubMed  PubMed Central  Google Scholar 

  138. Taddei, F. et al. Role of mutator alleles in adaptive evolution. Nature 387, 700–702 (1997).

    CAS  PubMed  Google Scholar 

  139. San Millan, A. Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends Microbiol. 26, 978–985 (2018).

    CAS  PubMed  Google Scholar 

  140. Arredondo-Alonso, S. et al. Plasmids shaped the recent emergence of the major nosocomial pathogen Enterococcus faecium. mBio 11, (2020).

  141. Ramsay, J. P. & Firth, N. Diverse mobilization strategies facilitate transfer of non-conjugative mobile genetic elements. Curr. Opin. Microbiol. 38, 1–9 (2017).

    CAS  PubMed  Google Scholar 

  142. Barry, K. E. et al. Don’t overlook the little guy: an evaluation of the frequency of small plasmids co-conjugating with larger carbapenemase gene containing plasmids. Plasmid 103, 1–8 (2019).

    CAS  PubMed  Google Scholar 

  143. Peña-Miller, R., Rodríguez-González, R., Maclean, R. C. & San Millan, A. Evaluating the effect of horizontal transmission on the stability of plasmids under different selection regimes. Mob. Genet. Elem. 5, 29–33 (2015).

    Google Scholar 

  144. Clark, A. J. & Warren, G. J. Conjugal transmission of plasmids. Annu. Rev. Genet. 13, 99–125 (1979).

    CAS  PubMed  Google Scholar 

  145. Chen, J. et al. Genome hypermobility by lateral transduction. Science 362, 207–212 (2018).

    CAS  PubMed  Google Scholar 

  146. Halary, S., Leigh, J. W., Cheaib, B., Lopez, P. & Bapteste, E. Network analyses structure genetic diversity in independent genetic worlds. Proc. Natl Acad. Sci. USA 107, 127–132 (2010).

    CAS  PubMed  Google Scholar 

  147. Erdmann, S., Tschitschko, B., Zhong, L., Raftery, M. J. & Cavicchioli, R. A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells. Nat. Microbiol. 2, 1446–1455 (2017).

    CAS  PubMed  Google Scholar 

  148. Abe, K., Nomura, N. & Suzuki, S. Biofilms: Hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiaa031 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Dubey, G. P. & Ben-Yehuda, S. Intercellular nanotubes mediate bacterial communication. Cell 144, 590–600 (2011).

    CAS  PubMed  Google Scholar 

  150. Porse, A., Schou, T. S., Munck, C., Ellabaan, M. M. H. & Sommer, M. O. A. Biochemical mechanisms determine the functional compatibility of heterologous genes. Nat. Commun. 9, 522 (2018).

    PubMed  PubMed Central  Google Scholar 

  151. Sánchez-Osuna, M., Cortés, P., Barbé, J. & Erill, I. Origin of the mobile di-hydro-pteroate synthase gene determining sulfonamide resistance in clinical isolates. Front. Microbiol. 10, (2019).

  152. Guo, Q. et al. Glutathione-S-transferase FosA6 of Klebsiella pneumoniae origin conferring fosfomycin resistance in ESBL-producing Escherichia coli. J. Antimicrob. Chemother. 71, 2460–2465 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Kirby, R. Evolutionary origin of the class A and class C β-lactamases. J. Mol. Evol. 34, 345–350 (1992).

    CAS  PubMed  Google Scholar 

  154. Woodford, N. & Ellington, M. J. The emergence of antibiotic resistance by mutation. Clin. Microbiol. Infect. 13, 5–18 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC grant agreement 757440-PLASREVOLUTION) and by the Instituto de Salud Carlos III (grant PI16-00860) co-funded by European Regional Development Fund “A way to achieve Europe”. Á.S.M. is supported by a Miguel Servet Fellowship (MS15-00012). J.R.-B. is a recipient of a Juan de la Cierva-Incorporación Fellowship (IJC2018-035146-I) co-funded by Agencia Estatal de Investigación del Ministerio de Ciencia e Innovación. R.C.M. is supported by a Wellcome Trust grant (106918/Z/15/Z). Á.S.M, J.R.-B. and R.L.-S. are members of the Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the conceptualization and writing of the manuscript, which was originally conceived and drafted by J.R.-B. and Á.S.M.

Corresponding authors

Correspondence to Jerónimo Rodríguez-Beltrán or Álvaro San Millán.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks T. Dagan, E. Koonin, and E. Top, who co-reviewed with S. Castaneda Barba and C. Elg, for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Horizontal gene transfer

(HGT). Transfer of genetic material between cells that do not share an ancestor–descendant relationship.

Postsegregational killing systems

Genetic systems that ensure plasmid maintenance. They typically rely on the production of a long-lasting toxin and a short-lived antitoxin. If the plasmid is lost in a daughter cell, the antitoxin is rapidly degraded and the stable toxin kills the plasmid-free cell.

Compensatory evolution

Process by which the fitness cost produced by the acquisition of a plasmid is ameliorated through mutations in the chromosome and/or the plasmid.

Second-order selection

Process by which evolution, while directly selecting for adaptive genetic variability, indirectly selects for the system that created that variability.

Type IV CRISPR–Cas systems

Recently characterized CRISPR–Cas systems found predominantly on plasmids and that primarily target other plasmids. Type IV CRISPR–Cas systems are thus believed to have a role in mediating interplasmid competition.

Plasmid segregation

Physical separation of plasmid molecules to be inherited by daughter cells during cell division.

Gene dosage effects

Effect by which the phenotype of a given mutation is proportional to the cumulative number of mutant alleles present in the cell.

Tandem genetic duplications

Duplication of a region of DNA adjacent to the original one.

Bet-hedging

Stochastic process by which some individuals in a community are better suited to tackle environmental perturbations, usually at the price of a reduced growth rate in the short term.

Recombination

Exchange of genetic information between two distinct DNA molecules.

Mutator strains

Strains that permanently show unusually high mutation rates due to a malfunction of a DNA repair mechanism.

Transposable elements

DNA sequences that can move within genomes by a cut-and-paste mechanism.

Heteroplasmy

Coexistence of two different plasmids sharing the same nucleotide sequences for all regions involved in the replication and maintenance system within the same cell. Cells carrying plasmids under heteroplasmy are dubbed ‘heteroplasmid cells’, whereas cells carrying a unique version of a plasmid are termed ‘homoplasmid cells’.

Genetic drift

Change in allele frequency in a population due to random sampling.

Clonal interference

Competition between cellular lineages in a population arising from different beneficial mutations in asexually reproducing organisms.

Standing genetic variation

The presence of more than one allele at a locus in a population before environmental change.

Trade-offs

In evolution, trade-offs are negative correlations between ancestral and novel traits.

SOS stress response

Coordinated cellular response to genotoxic stress that involves the expression of more than 40 genes whose main function is to repair damaged DNA.

Integron

Genetic element composed by an integrase gene and a recombination site in which gene cassettes can be directionally integrated or excised by integrase-mediated site-specific recombination.

Epistatic interactions

Phenomenon by which the phenotypic contribution of a gene varies depending on the presence or absence of another gene. The phenotypic effect of both genes in combination is thus different from the effect expected according to the phenotypes they conferred separately.

Purifying selection

Selective pressure that eliminates deleterious alleles from populations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R. et al. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev Microbiol 19, 347–359 (2021). https://doi.org/10.1038/s41579-020-00497-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-020-00497-1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology