Protein antibiotics: mind your language

This month’s Genome Watch examines how natural language processing and machine learning are being implemented in the hunt for new antimicrobial peptides.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Hamid, M. N. & Friedberg, I. Identifying antimicrobial peptides using word embedding with deep recurrent neural networks. Bioinformatics 35, 2009–2016 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    Hannigan, G. D. et al. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res. 47, e110 (2019).

    CAS  Article  Google Scholar 

  3. 3.

    Kintses, B. et al. Chemical-genetic profiling reveals limited cross-resistance between antimicrobial peptides with different modes of action. Nat. Commun. 10, 5731 (2019).

    CAS  Article  Google Scholar 

  4. 4.

    Tsai, S. T., Kuo, E. J. & Tiwary, P. Learning molecular dynamics with simple language model built upon long short-term memory neural network. Nat. Commun. 11, 5115 (2020).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Annapaula Correia or Aaron Weimann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Correia, A., Weimann, A. Protein antibiotics: mind your language. Nat Rev Microbiol (2020).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing