Abstract
Intense genome sequencing of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) airways has shown inefficient eradication of the infecting bacteria, as well as previously undocumented patient-to-patient transmission of adapted clones. However, genome sequencing has limited potential as a predictor of chronic infection and of the adaptive state during infection, and thus there is increasing interest in linking phenotypic traits to the genome sequences. Phenotypic information ranges from genome-wide transcriptomic analysis of patient samples to determination of more specific traits associated with metabolic changes, stress responses, antibiotic resistance and tolerance, biofilm formation and slow growth. Environmental conditions in the CF lung shape both genetic and phenotypic changes of P. aeruginosa during infection. In this Review, we discuss the adaptive and evolutionary trajectories that lead to early diversification and late convergence, which enable P. aeruginosa to succeed in this niche, and we point out how knowledge of these biological features may be used to guide diagnosis and therapy.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ratjen, F. & Döring, G. Cystic fibrosis. Lancet 361, 681–689 (2003).
Marvig, R. L., Sommer, L. M., Molin, S. & Johansen, H. K. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat. Genet. 47, 57–64 (2015). This paper presents the comprehensive genomic analysis of a collection of longitudinal P. aeruginosa isolates from several patients with early-stage infections, used to define a set of pathoadaptive genes.
Marvig, R. L., Johansen, H. K., Molin, S. & Jelsbak, L. Genome analysis of a transmissible lineage of Pseudomonas aeruginosa reveals pathoadaptive mutations and distinct evolutionary paths of hypermutators. PLoS Genet. 9, e1003741 (2013).
Williams, D. et al. Divergent, coexisting Pseudomonas aeruginosa lineages in chronic cystic fibrosis lung infections. Am. J. Respir. Crit. Care Med. 191, 775–785 (2015).
Cramer, N. et al. Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs. Environ. Microbiol. 13, 1690–1704 (2011).
Marvig, R. L. et al. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. mBio 5, e00966–e01014 (2014).
Klockgether, J., Cramer, N., Fischer, S., Wiehlmann, L. & Tümmler, B. Long-term microevolution of Pseudomonas aeruginosa differs between mildly and severely affected cystic fibrosis lungs. Am. J. Respir. Cell Mol. Biol. 59, 246–256 (2018).
Fischer, S. et al. Multilocus amplicon sequencing of Pseudomonas aeruginosa cystic fibrosis airways isolates collected prior to and after early antipseudomonal chemotherapy. J. Cyst. Fibros. 16, 346–352 (2016).
Oliver, A., Cantón, R., Campo, P., Baquero, F. & Blázquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1253 (2000). This paper is the first to describe the high prevalence of hyper-mutator strains of P. aeruginosa in CF lung samples.
Boulant, T. et al. A 2.5-years within-patient evolution of a Pseudomonas aeruginosa with in vivo acquisition of ceftolozane–tazobactam and ceftazidime–avibactam resistance upon treatment. Antimicrob. Agents Chemother. 63, e01637-19 (2019).
Tueffers, L. et al. Pseudomonas aeruginosa populations in the cystic fibrosis lung lose susceptibility to newly applied β-lactams within 3 days. J. Antimicrob. Chemother. 74, 2916–2925 (2019).
Gabrielaite, M., Johansen, H. K., Molin, S., Nielsen, F. C. & Marvig, R. L. Gene loss and acquisition in lineages of bacteria evolving in a human host environment. mBio 11, e02359-20 (2020).
Rau, M. H., Marvig, R. L., Ehrlich, G. D., Molin, S. & Jelsbak, L. Deletion and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment. Environ. Microbiol. 14, 2200–2211 (2012).
Hocquet, D. et al. Pyomelanin-producing Pseudomonas aeruginosa selected during chronic infections have a large chromosomal deletion which confers resistance to pyocins: intraspecific competition and pathogen evolution. Environ. Microbiol. 18, 3482–3493 (2016).
Hwang, W. & Yoon, S. S. Virulence characteristics and an action mode of antibiotic resistance in multidrug-resistant Pseudomonas aeruginosa. Sci. Rep. 9, 487 (2019).
Brown-Jaque, M. et al. Detection of bacteriophage particles containing antibiotic resistance genes in the sputum of cystic fibrosis patients. Front. Microbiol. 9, 856 (2018).
Winstanley, C. et al. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res. 19, 12–23 (2008).
Chung, J. C. S. et al. Genomic variation among contemporary Pseudomonas aeruginosa isolates from chronically infected cystic fibrosis patients. J. Bacteriol. 194, 4857–4866 (2012).
Weiser, R. et al. Not all Pseudomonas aeruginosa are equal: strains from industrial sources possess uniquely large multireplicon genomes. Microb. Genom. 5, e000276 (2019).
Lee, D. G. et al. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol. 7, R90 (2006).
Rossi, E., Falcone, M., Molin, S. & Johansen, H. K. High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs. Nat. Commun. 9, 3459 (2018). This metatranscriptomic investigation of P. aeruginosa representing global gene expression in the CF lung shows that the expression profile reflects the lung environment with only minor influence from the bacterial genotype.
Cornforth, D. M. et al. Pseudomonas aeruginosa transcriptome during human infection. Proc. Natl Acad. Sci. USA 115, 201717525 (2018).
Kordes, A. et al. Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat. Commun. 10, 3397 (2019).
Wu, X. et al. In vivo proteome of Pseudomonas aeruginosa in airways of cystic fibrosis patients. J. Proteome. Res.18, 2601–2612 (2019).
Yang, L. et al. Evolutionary dynamics of bacteria in a human host environment. Proc. Natl Acad. Sci. USA 108, 7481–7486 (2011).
Stressmann, F. A. et al. Long-term cultivation-independent microbial diversity analysis demonstrates that bacterial communities infecting the adult cystic fibrosis lung show stability and resilience. Thorax 67, 867–873 (2012).
Smith, D. J. et al. Pyrosequencing reveals transient cystic fibrosis lung microbiome changes with intravenous antibiotics. Eur. Respir. J. 44, 922–930 (2014).
Daniels, T. W. V. et al. Impact of antibiotic treatment for pulmonary exacerbations on bacterial diversity in cystic fibrosis. J. Cyst. Fibros. 12, 22–28 (2013).
Bartell, J. A. et al. Evolutionary highways to persistent bacterial infection. Nat. Commun. 10, 629 (2019). This comprehensive phenotypic analysis of a collection of longitudinal P. aeruginosa isolates from several patients with CF with early-stage infections shows both diversity generation and convergence of specific traits.
Folkesson, A. et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat. Rev. Microbiol. 10, 841–851 (2012).
Schick, A. & Kassen, R. Rapid diversification of Pseudomonas aeruginosa in cystic fibrosis lung-like conditions. Proc. Natl Acad. Sci. USA 115, 201721270 (2018).
Markussen, T. et al. Environmental heterogeneity drives within-host diversification and evolution of Pseudomonas aeruginosa. mBio 5, e01592–e01614 (2014).
Clark, S. T., Guttman, D. S. & Hwang, D. M. Diversification of Pseudomonas aeruginosa within the cystic fibrosis lung and its effects on antibiotic resistance. FEMS Microbiol. Lett. 365, fny026 (2018).
Jorth, P. et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe 18, 307–319 (2015). This dissection of explanted CF lungs documents adaptive radiation as a main cause of population diversity in the CF lung.
Alvarez-Ortega, C. & Harwood, C. S. Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol. Microbiol. 65, 153–165 (2007).
Wauven, C. V., Piérard, A., Kley-Raymann, M. & Haas, D. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J. Bacteriol. 160, 928–934 (1984).
Eschbach, M. et al. Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. J. Bacteriol. 186, 4596–4604 (2004).
Schreiber, K. et al. Anaerobic survival of Pseudomonas aeruginosa by pyruvate fermentation requires an Usp-type stress protein. J. Bacteriol. 188, 659–668 (2006).
Alonso, A., Rojo, F. & Martinez, J. L. Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ. Microbiol. 1, 421–430 (1999).
Palmer, K. L., Aye, L. M. & Whiteley, M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189, 8079–8087 (2007).
La Rosa, R., Johansen, H. K. & Molin, S. Convergent metabolic specialization through distinct evolutionary paths in Pseudomonas aeruginosa. mBio 9, e00269–e00318 (2018).
La Rosa, R., Johansen, H. K. & Molin, S. Adapting to the airways: metabolic requirements of Pseudomonas aeruginosa during the infection of cystic fibrosis patients. Metabolites 9, 234 (2019).
Crabbé, A., Jensen, P. Ø., Bjarnsholt, T. & Coenye, T. Antimicrobial tolerance and metabolic adaptations in microbial biofilms. Trends Microbiol. 27, 850–863 (2019).
Stokes, J. M., Lopatkin, A. J., Lobritz, M. A. & Collins, J. J. Bacterial metabolism and antibiotic efficacy. Cell Metab. 30, 251–259 (2019).
Singh, P. K. et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764 (2000).
Bjarnsholt, T. et al. The in vivo biofilm. Trends Microbiol. 21, 466–474 (2013).
Goodman, A. L. et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell 7, 745–754 (2004).
Waters, V. J. et al. Reconciling antimicrobial susceptibility testing and clinical response in antimicrobial treatment of chronic cystic fibrosis lung infections. Clin. Infect. Dis. 69, 1812–1816 (2019).
Botelho, J., Grosso, F. & Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa — mechanisms, epidemiology and evolution. Drug Resist. Updat. 44, 100640 (2019).
Hooper, D. C. & Jacoby, G. A. Mechanisms of drug resistance: quinolone resistance. Ann. N. Y. Acad. Sci. 1354, 12–31 (2017).
Halfon, Y. et al. Structure of Pseudomonas aeruginosa ribosomes from an aminoglycoside-resistant clinical isolate. Proc. Natl Acad. Sci. USA 116, 22275–22281 (2019).
Jochumsen, N. et al. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions. Nat. Commun. 7, 13002 (2016).
Jorth, P. et al. Evolved aztreonam resistance is multifactorial and can produce hypervirulence in Pseudomonas aeruginosa. mBio 8, e00517–e00517 (2017).
López-Causapé, C. et al. Evolution of the Pseudomonas aeruginosa mutational resistome in an international cystic fibrosis clone. Sci. Rep. 7, 5555 (2017).
López-Causapé, C., Cabot, G., Barrio-Tofiño, E. D. & Oliver, A. The versatile mutational resistome of Pseudomonas aeruginosa. Front. Microbiol. 9, 685 (2018).
Frimodt-Møller, J. et al. Mutations causing low level antibiotic resistance ensure bacterial survival in antibiotic-treated hosts. Sci. Rep. 8, 12512 (2018).
Ciofu, O. & Tolker-Nielsen, T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—how P. aeruginosa can escape antibiotics. Front. Microbiol. 10, 913 (2019).
Secor, P. R., Michaels, L. A., Ratjen, A., Jennings, L. K. & Singh, P. K. Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 115, 10780–10785 (2018).
Jennings, L. K. et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc. Natl Acad. Sci. USA 112, 11353–11358 (2015).
Burgener, E. B. et al. Filamentous bacteriophages are associated with chronic Pseudomonas lung infections and antibiotic resistance in cystic fibrosis. Sci. Transl Med. 11, eaau9748 (2019).
Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019). This review of the literature describes the phenomenon of persisters — surviving subpopulations of bacteria treated with antibiotics — and clarifies the biology and experimental conditions for monitoring persister development in bacterial populations.
Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019). This review of a novel mechanism, heteroresistance, adds to survival of antibiotic treatment in bacterial populations.
Mulcahy, L. R., Burns, J. L., Lory, S. & Lewis, K. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J. Bacteriol. 192, 6191–6199 (2010).
Bartell, J. et al. Bacterial persisters in long-term infection: emergence and fitness in a complex host environment. Preprint at bioRxiv https://doi.org/10.1101/561589 (2019).
Nicoloff, H., Hjort, K., Levin, B. R. & Andersson, D. I. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat. Microbiol. 4, 504–514 (2019).
Hermes, D. M. et al. Evaluation of heteroresistance to polymyxin B among carbapenem-susceptible and -resistant Pseudomonas aeruginosa. J. Med. Microbiol. 62, 1184–1189 (2013).
Mei, S., Gao, Y., Zhu, C., Dong, C. & Chen, Y. Research of the heteroresistance of Pseudomonas aeruginosa to imipenem. Int. J. Clin. Exp. Med. 8, 6129–6132 (2015).
He, J. et al. Heteroresistance to carbapenems in invasive Pseudomonas aeruginosa infections. Int. J. Antimicrob. Agents 51, 413–421 (2017).
Pournaras, S. et al. Characterization of clinical isolates of Pseudomonas aeruginosa heterogeneously resistant to carbapenems. J. Med. Microbiol. 56, 66–70 (2007).
Juhász, E., Iván, M., Pintér, E., Pongrácz, J. & Kristóf, K. Colistin resistance among blood culture isolates at a tertiary care centre in Hungary. J. Glob. Antimicrob. Resist 11, 167–170 (2017).
Imlay, J. & Linn, S. DNA damage and oxygen radical toxicity. Science 240, 1302–1309 (1988).
Imlay, J. A. Iron–sulphur clusters and the problem with oxygen. Mol. Microbiol. 59, 1073–1082 (2006).
Ernst, R. K. et al. The Pseudomonas aeruginosa lipid A deacylase: selection for expression and loss within the cystic fibrosis airway. J. Bacteriol. 188, 191–201 (2006).
Ernst, R. K. et al. Unique lipid A modifications in Pseudomonas aeruginosa isolated from the airways of patients with cystic fibrosis. J. Infect. Dis. 196, 1088–1092 (2007).
Hancock, R. E. et al. Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect. Immun. 42, 170–177 (1983).
Kim, S. et al. Bacterial ornithine lipid, a surrogate membrane lipid under phosphate-limiting conditions, plays important roles in bacterial persistence and interaction with host. Environ. Microbiol. 20, 3992–4008 (2018).
Jia, J., Wang, Y., Zhou, L. & Jin, S. Expression of Pseudomonas aeruginosa toxin ExoS effectively induces apoptosis in host cells. Infect. Immun. 74, 6557–6570 (2006).
Broquet, A. & Asehnoune, K. Apoptosis induced by Pseudomonas aeruginosa: a lonely killer? Microb. Biotechnol. 8, 49–51 (2014).
Burstein, D. et al. Novel type III effectors in Pseudomonas aeruginosa. mBio 6, e00161–e00215 (2015).
Malhotra, S., Limoli, D. H., English, A. E., Parsek, M. R. & Wozniak, D. J. Mixed communities of mucoid and nonmucoid Pseudomonas aeruginosa exhibit enhanced resistance to host antimicrobials. mBio 9, e00275–e00318 (2018).
Leid, J. G. et al. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. J. Immunol. 175, 7512–7518 (2005).
Pier, G. B., Coleman, F., Grout, M., Franklin, M. & Ohman, D. E. Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect. Immun. 69, 1895–1901 (2001).
Pestrak, M. J. et al. Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments. PLoS Pathog. 14, e1006842 (2018).
Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019).
Fothergill, J. L., Mowat, E., Ledson, M. J., Walshaw, M. J. & Winstanley, C. Fluctuations in phenotypes and genotypes within populations of Pseudomonas aeruginosa in the cystic fibrosis lung during pulmonary exacerbations. J. Med. Microbiol. 59, 472–481 (2010).
Mowat, E. et al. Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am. J. Respir. Crit. Care Med. 183, 1674–1679 (2011).
Jiricny, N. et al. Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis. PLoS ONE 9, e83124 (2014).
Andersen, S. B., Marvig, R. L., Molin, S., Johansen, H. K. & Griffin, A. S. Long-term social dynamics drive loss of function in pathogenic bacteria. Proc. Natl Acad. Sci. USA 112, 10756–10761 (2015).
Winstanley, C., O’Brien, S. & Brockhurst, M. A. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 24, 327–337 (2016).
Andersen, S. B. et al. Privatisation rescues function following loss of cooperation. eLife 7, e38594 (2018).
Khaledi, A. et al. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Mol. Med. 12, e10264 (2020).
Moradali, M. F., Ghods, S. & Rehm, B. H. A. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front. Cell Infect. Microbiol. 7, 39 (2017).
Crone, S. et al. The environmental occurrence of Pseudomonas aeruginosa. APMIS 128, 220–231 (2019).
Silby, M. W., Winstanley, C., Godfrey, S. A. C., Levy, S. B. & Jackson, R. W. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 35, 652–680 (2011).
Freschi, L. et al. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol. Evol. 11, 109–120 (2018).
Turner, K. H., Wessel, A. K., Palmer, G. C., Murray, J. L. & Whiteley, M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc. Natl Acad. Sci. USA 112, 4110–4115 (2015).
Klockgether, J., Cramer, N., Wiehlmann, L., Davenport, C. F. & Tümmler, B. Pseudomonas aeruginosa genomic structure and diversity. Front. Microbiol. 2, 150 (2011). This paper presents a thorough characterization and profiling of the P. aeruginosa genome and its insertions and plasmids.
Stewart, L. et al. Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny. Pathog. Dis. 71, 20–25 (2013).
Walker, T. S. et al. Pseudomonas aeruginosa–plant root interactions. pathogenicity, biofilm formation, and root exudation. Plant Physiol. 134, 320–331 (2003).
Mushin, R. & Ziv, G. An epidemiological study of Pseudomonas aeruginosa in cattle and other animals by pyocine typing. J. Hyg. 71, 113–122 (1973).
Haenni, M. et al. Population structure and antimicrobial susceptibility of Pseudomonas aeruginosa from animal infections in France. BMC Vet. Res. 11, 9 (2015).
Eklöf, J. et al. Pseudomonas aeruginosa and risk of death and exacerbations in patients with chronic obstructive pulmonary disease: an observational cohort study of 22,053 patients. Clin. Microbiol. Infec. 26, 227–234 (2019).
Barbier, F., Andremont, A., Wolff, M. & Bouadma, L. Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management. Curr. Opin. Pulm. Med. 19, 216–228 (2013).
Kerr, K. G. & Snelling, A. M. Pseudomonas aeruginosa: a formidable and ever-present adversary. J. Hosp. Infect. 73, 338–344 (2009).
Horcajada, J. P. et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin. Microbiol. Rev. 32, e00031–e00119 (2019).
Pendleton, J. N., Gorman, S. P. & Gilmore, B. F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti Infect. Ther. 11, 297–308 (2013).
Scotet, V., L’Hostis, C. & Férec, C. The changing epidemiology of cystic fibrosis: incidence, survival and impact of the CFTR gene discovery. Genes 11, 589 (2020).
Bell, S. C. et al. The future of cystic fibrosis care: a global perspective. Lancet Respir. Med. 8, 65–124 (2019).
Johansen, H. K. et al. Antibody response to Pseudomonas aeruginosa in cystic fibrosis patients: a marker of therapeutic success?—A 30-year cohort study of survival in Danish CF patients after onset of chronic P. aeruginosa lung infection. Pediatr. Pulm. 37, 427–432 (2004).
Chaudary, N. Triplet CFTR modulators: future prospects for treatment of cystic fibrosis. Ther. Clin. Risk Manag. 14, 2375–2383 (2018).
Frost, F. J., Nazareth, D. S., Charman, S. C., Winstanley, C. & Walshaw, M. J. Ivacaftor is associated with reduced lung infection by key cystic fibrosis pathogens. A cohort study using national registry data. Ann. Am. Thorac. Soc. 16, 1375–1382 (2019).
Frimmersdorf, E., Horatzek, S., Pelnikevich, A., Wiehlmann, L. & Schomburg, D. How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ. Microbiol. 12, 1734–1747 (2010).
Nikel, P. I., Martínez-García, E. & Lorenzo, V. de. Biotechnological domestication of pseudomonads using synthetic biology. Nat. Rev. Microbiol. 12, 368–379 (2014).
Dolan, S. K. et al. Contextual flexibility in Pseudomonas aeruginosa central carbon metabolism during growth in single carbon sources. mBio 11, e02684–e02719 (2020).
Perinbam, K., Chacko, J. V., Kannan, A., Digman, M. A. & Siryaporn, A. A shift in central metabolism accompanies virulence activation in Pseudomonas aeruginosa. mBio 11, e02730–e02818 (2020).
May, T. B. & Chakrabarty, A. M. Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbiol. 2, 151–157 (1994).
Chubukov, V., Gerosa, L., Kochanowski, K. & Sauer, U. Coordination of microbial metabolism. Nat. Rev. Microbiol. 12, 327–340 (2014).
Singh, R., Mailloux, R. J., Puiseux-Dao, S. & Appanna, V. D. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J. Bacteriol. 189, 6665–6675 (2007).
Bartell, J. A. et al. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nat. Commun. 8, ncomms14631 (2017).
Costerton, J. W. et al. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41, 435–464 (1987). This classical review paper underscores the importance of bacterial biofilms in natural environments as well as in disease.
Jensen, P. Ø., Givskov, M., Bjarnsholt, T. & Moser, C. The immune system vs. Pseudomonas aeruginosa biofilms. Pathog. Dis. 59, 292 305 (2010).
Pedersen, S. S. Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS Suppl. 28, 1–79 (1992).
Acknowledgements
This research was funded by the Cystic Fibrosis Foundation (CFF) (grant number MOLIN18G0), the Cystic Fibrosis Trust (grant number Strategic Research Centre Award — 2019 — SRC 017), the Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark and The Novo Nordisk Foundation (NNF) (grant number NNF10CC1016517). J.A.B was funded by a postdoctoral fellowship from the Whitaker Foundation. H.K.J. was supported by NNF as a clinical research stipend (NNF12OC1015920), Rigshospitalets Rammebevilling 2015–17 (R88-A3537), Lundbeckfonden (R167-2013-15229), NNF (NNF15OC0017444), RegionH Rammebevilling (R144-A5287), Independent Research Fund Denmark/Medical and Health Sciences (FTP-4183-00051) and ‘Savværksejer Jeppe Juhl og Hustru Ovita Juhls mindelegat’.
Author information
Authors and Affiliations
Contributions
All authors contributed to the text of the article. E.R., S.M. and H.K.J. wrote the final version and performed all of the necessary editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Microbiology thanks Antonio Oliver and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Clone type
-
Isolates of the same species that differ in their genomes by fewer than 10,000 single-nucleotide polymorphisms.
- Hypermutator phenotype
-
A phenotype that shows an up to a 1,000-fold increased mutation rate compared with that of wild-type strains.
- Expectorates
-
Cough or spit-out materials from the lower airways.
- Bronchoalveolar lavage
-
A minimally invasive procedure that involves instillation of sterile saline into a segment of the lung, followed by suction and collection of the instillation for analysis. This procedure is typically facilitated by the introduction of a flexible bronchoscope into a segment of the lung.
- Chronic obstructive pulmonary disease
-
A progressive lung disease that worsens over time, characterized by long-term breathing problems and poor airflow. The most common cause of chronic obstructive pulmonary disease is tobacco smoking, with a smaller number of cases due to factors such as air pollution and genetics.
- Exacerbations
-
Worsening of chronic airway disease symptoms caused by a lung infection leading to increased production of secretion.
- High-persister
-
A phenotype describing a substantial increase in the size of the surviving subpopulation during intensive antibiotic treatment without being resistant.
- Tandem amplification
-
A process that occurs in DNA when a sequence of nucleotides is repeated and the repetitions are directly adjacent to each other. Changes in gene copy number are among the most frequent mutational events in all genomes.
Rights and permissions
About this article
Cite this article
Rossi, E., La Rosa, R., Bartell, J.A. et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 19, 331–342 (2021). https://doi.org/10.1038/s41579-020-00477-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41579-020-00477-5
This article is cited by
-
Biofilms and exopolysaccharides in Pseudomonas aeruginosa: pathogenesis, immune evasion, and lung–brain signaling during pneumonia
Signal Transduction and Targeted Therapy (2024)
-
A role for the stringent response in ciprofloxacin resistance in Pseudomonas aeruginosa
Scientific Reports (2024)
-
Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model
Nature Microbiology (2024)
-
A ‘rich-get-richer’ mechanism drives patchy dynamics and resistance evolution in antibiotic-treated bacteria
Molecular Systems Biology (2024)
-
Protein profiling and immunoinformatic analysis of the secretome of a metal-resistant environmental isolate Pseudomonas aeruginosa S-8
Folia Microbiologica (2024)