Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Drug resistance and tolerance in fungi

An Author Correction to this article was published on 29 June 2020


Systemic fungal infections pose a serious clinical problem. Treatment options are limited, and antifungal drug resistance is increasing. In addition, a substantial proportion of patients do not respond to therapy despite being infected with fungi that are susceptible to the drug. The discordance between overall treatment outcome and low levels of clinical resistance may be attributable to antifungal drug tolerance. In this Review, we define and distinguish resistance and tolerance and discuss the current understanding of the molecular, genetic and physiological mechanisms that contribute to those phenomena. Distinguishing tolerance from resistance might provide important insights into the reasons for treatment failure in some settings.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Phenotypic characteristics and pathways required for antifungal tolerance.


  1. 1.

    Arendrup, M. C. & Patterson, T. F. Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J. Infect. Dis. 216, S445–S451 (2017).

    CAS  PubMed  Google Scholar 

  2. 2.

    Perlin, D. S., Rautemaa-Richardson, R. & Alastruey-Izquierdo, A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect. Dis. 17, e383–e392 (2017).

    PubMed  Google Scholar 

  3. 3.

    Alangaden, G. J. Nosocomial fungal infections: epidemiology, infection control, and prevention. Infect. Dis. Clin. North Am. 25, 201–225 (2011).

    PubMed  Google Scholar 

  4. 4.

    Andes, D. R. et al. The epidemiology and outcomes of invasive Candida infections among organ transplant recipients in the United States: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Transpl. Infect. Dis. 18, 921–931 (2016).

    PubMed  Google Scholar 

  5. 5.

    Krysan, D. J. The unmet clinical need of novel antifungal drugs. Virulence 8, 135–137 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bassetti, M., Carnelutti, A., Castaldo, N. & Peghin, M. Important new therapies for methicillin-resistant Staphylococcus aureus. Expert Opin. Pharmacother. 20, 2317–2334 (2019).

    CAS  PubMed  Google Scholar 

  7. 7.

    Pfaller, M. A., Diekema, D. J., Turnidge, J. D., Castanheira, M. & Jones, R. N. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997–2016. Open Forum Infect. Dis. 6, S79–S94 (2019).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Lepak, A. J. & Andes, D. R. Antifungal pharmacokinetics and pharmacodynamics. Cold Spring Harb. Perspect. Med. 5, a019653 (2014).

    PubMed  Google Scholar 

  9. 9.

    Rosenberg, A. et al. Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nat. Commun. 9, 2470 (2018). This article provides a quantitative characterization of fluconazole tolerance in C. albicans, distinguishing it from resistance and highlighting its phenotypic heterogeneity and association with subpopulation growth, and sensitivity to adjuvant drugs.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016).

    CAS  PubMed  Google Scholar 

  11. 11.

    Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Brauner, A., Shoresh, N., Fridman, O. & Balaban, N. Q. An experimental framework for quantifying bacterial tolerance. Biophys. J. 112, 2664–2671 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Levin-Reisman, I., Fridman, O. & Balaban, N. Q. ScanLag: high-throughput quantification of colony growth and lag time. J. Vis. Exp. (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Wuyts, J., Van Dijck, P. & Holtappels, M. Fungal persister cells: the basis for recalcitrant infections? PLoS Pathog. 14, e1007301 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Astvad, K. M. T., Sanglard, D., Delarze, E., Hare, R. K. & Arendrup, M. C. Implications of the EUCAST trailing phenomenon in Candida tropicalis for the in vivo susceptibility in invertebrate and murine models. Antimicrob. Agents Chemother. 62, e01624–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Marcos-Zambrano, L. J., Escribano, P., Sanchez-Carrillo, C., Bouza, E. & Guinea, J. Scope and frequency of fluconazole trailing assessed using EUCAST in invasive Candida spp. isolates. Med. Mycol. 54, 733–739 (2016).

    CAS  PubMed  Google Scholar 

  17. 17.

    Coenye, T., De Vos, M., Vandenbosch, D. & Nelis, H. Factors influencing the trailing endpoint observed in Candida albicans susceptibility testing using the CLSI procedure. Clin. Microbiol. Infect. 14, 495–497 (2008).

    CAS  PubMed  Google Scholar 

  18. 18.

    Agrawal, D., Patterson, T. F., Rinaldi, M. G. & Revankar, S. G. Trailing end-point phenotype of Candida spp. in antifungal susceptibility testing to fluconazole is eliminated by altering incubation temperature. J. Med. Microbiol. 56, 1003–1004 (2007).

    CAS  PubMed  Google Scholar 

  19. 19.

    Marr, K. A., Rustad, T. R., Rex, J. H. & White, T. C. The trailing end point phenotype in antifungal susceptibility testing is pH dependent. Antimicrob. Agents Chemother. 43, 1383–1386 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Delarze, E. & Sanglard, D. Defining the frontiers between antifungal resistance, tolerance and the concept of persistence. Drug Resist. Updat. 23, 12–19 (2015).

    PubMed  Google Scholar 

  21. 21.

    Marchetti, O., Moreillon, P., Glauser, M. P., Bille, J. & Sanglard, D. Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans. Antimicrob. Agents Chemother. 44, 2373–2381 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Taff, H. T., Mitchell, K. F., Edward, J. A. & Andes, D. R. Mechanisms of Candida biofilm drug resistance. Future Microbiol. 8, 1325–1337 (2013).

    CAS  PubMed  Google Scholar 

  23. 23.

    Pappas, P. G. et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 62, 409–417 (2016).

    PubMed  Google Scholar 

  24. 24.

    Meletiadis, J., Curfs-Breuker, I., Meis, J. F. & Mouton, J. W. In vitro antifungal susceptibility testing of Candida isolates with the EUCAST methodology, a new method for ECOFF determination. Antimicrob. Agents Chemother. 61, e02372–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lockhart, S. R., Ghannoum, M. A. & Alexander, B. D. Establishment and use of epidemiological cutoff values for molds and yeasts by use of the Clinical and Laboratory Standards Institute M57 standard. J. Clin. Microbiol. 55, 1262–1268 (2017). This review provides an important and accessible over-review of the concept of epidemiological cut-off values as well as the methodology that underlies their establishment.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Onyewu, C., Wormley, F. L. Jr., Perfect, J. R. & Heitman, J. The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infect. Immun. 72, 7330–7333 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sanglard, D., Ischer, F., Marchetti, O., Entenza, J. & Bille, J. Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol. Microbiol. 48, 959–976 (2003).

    CAS  PubMed  Google Scholar 

  28. 28.

    Luna-Tapia, A., Tournu, H., Peters, T. L. & Palmer, G. E. Endosomal trafficking defects can induce calcium-dependent azole tolerance in Candida albicans. Antimicrob. Agents Chemother. 60, 7170–7177 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Luna-Tapia, A., Butts, A. & Palmer, G. E. Loss of C-5 sterol desaturase activity in Candida albicans: azole resistance or merely trailing growth? Antimicrob. Agents Chemother. 63, e00129–11 (2019).

    Google Scholar 

  30. 30.

    van der Linden, J. W. et al. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin. Infect. Dis. 57, 513–520 (2013).

    PubMed  Google Scholar 

  31. 31.

    McCarty, T. P. & Pappas, P. G. Invasive candidiasis. Infect. Dis. Clin. North Am. 30, 103–124 (2016).

    PubMed  Google Scholar 

  32. 32.

    Prasad, R., Rawal, M. K. & Shah, A. H. Candida efflux ATPases and antiporters in clinical drug resistance. Adv. Exp. Med. Biol. 892, 351–376 (2016).

    CAS  PubMed  Google Scholar 

  33. 33.

    Sasse, C. et al. The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans. Mol. Microbiol. 86, 539–556 (2012). This article shows that when a strain accumulates multiple resistance mutations that affect different transcription factors, the effects are independent and additive. In addition, these effects, generated by engineered deletion mutations, are associated with reduced fitness in the absence of drug stress. As many resistant isolates do not have obvious fitness defects, it is assumed that they must have acquired compensatory mechanisms in addition to the characterized mechanisms of drug resistance.

    CAS  PubMed  Google Scholar 

  34. 34.

    Holmes, A. R. et al. Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Mol. Microbiol. 62, 170–186 (2006).

    CAS  PubMed  Google Scholar 

  35. 35.

    Munoz, J. F. et al. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat. Commun. 9, 5346 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Flowers, S. A. et al. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot. Cell 11, 1289–1299 (2012). This study establishes that gain-of-function mutations in UPC2, the key regulator of ergosterol biosynthesis gene expression, are a source of clinically important fluconazole resistance. Previously, only transcriptional regulators of efflux pump expression were known to do so.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Xiang, M. J. et al. Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. FEMS Yeast Res. 13, 386–393 (2013).

    CAS  PubMed  Google Scholar 

  38. 38.

    Flowers, S. A., Colon, B., Whaley, S. G., Schuler, M. A. & Rogers, P. D. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob. Agents Chemother. 59, 450–460 (2015).

    PubMed  Google Scholar 

  39. 39.

    Healey, K. R. et al. Limited ERG11 mutations identified in isolates of Candida auris directly contribute to reduced azole susceptibility. Antimicrob Agents Chemother. 62, e01427–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Chowdhary, A. et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother. 73, 891–899 (2018).

    CAS  PubMed  Google Scholar 

  41. 41.

    Lockhart, S. R. et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 64, 134–140 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Satoh, K. et al. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 53, 41–44 (2009).

    CAS  PubMed  Google Scholar 

  43. 43.

    Kordalewska, M. et al. Understanding echinocandin resistance in the emerging pathogen Candida auris. Antimicrob Agents Chemother. 62, e00238–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Selmecki, A., Forche, A. & Berman, J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313, 367–370 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Anderson, M. Z., Saha, A., Haseeb, A. & Bennett, R. J. A chromosome 4 trisomy contributes to increased fluconazole resistance in a clinical isolate of Candida albicans. Microbiology 163, 856–865 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Yang, F. et al. Tolerance to caspofungin in Candida albicans is associated with at least three distinctive mechanisms that govern expression of FKS genes and cell wall remodeling. Antimicrob. Agents Chemother. 61, e00071–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Yang, F., Kravets, A., Bethlendy, G., Welle, S. & Rustchenko, E. Chromosome 5 monosomy of Candida albicans controls susceptibility to various toxic agents, including major antifungals. Antimicrob. Agents Chemother. 57, 5026–5036 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Yang, F. et al. Aneuploidy enables cross-adaptation to unrelated drugs. Mol. Biol. Evol. 36, 1768–1782 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Todd, R. T., Wikoff, T. D., Forche, A. & Selmecki, A. Genome plasticity in Candida albicans is driven by long repeat sequences. eLife. 8, e45954 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Coste, A. et al. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172, 2139–2156 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Selmecki, A. M., Dulmage, K., Cowen, L. E., Anderson, J. B. & Berman, J. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 5, e1000705 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Mount, H. O. et al. Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genet. 14, e1007319 (2018). This article screens a library of C. albicans deletion strains and identifies two genes that affect azole responses, have roles in stress response pathways and functions that are are suppressed by the acquisition of aneuploid chromosomes. Whether the mutations are affecting resistance or tolerance is not clear, but activities of the identified genes (vacuolar retrograde trafficking and a cell wall and polarity GTPase activating protein) suggest that the mechanism is involved in processes that affect tolerance rather than in directly affecting resistance.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Todd, R. T., Forche, A. & Selmecki, A. Ploidy variation in fungi: polyploidy, aneuploidy, and genome evolution. Microbiol. Spectr. 5, (2017).

  54. 54.

    Bennett, R. J., Forche, A. & Berman, J. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb. Perspect. Med. 4, a019604 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Ford, C. B. et al. The evolution of drug resistance in clinical isolates of Candida albicans. eLife 4, e00662 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    White, T. C. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob. Agents Chemother. 41, 1482–1487 (1997). This article presents the first detailed study of the molecular mechanisms underlying the development of fluconazole resistance over time in patients. It is a landmark study because of its patient-based approach and because it yielded strains that are still under study today.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Cowen, L. E. et al. Population genomics of drug resistance in Candida albicans. Proc. Natl Acad. Sci. USA 99, 9284–9289 (2002).

    CAS  PubMed  Google Scholar 

  58. 58.

    Forche, A. et al. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 6, e110 (2008).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Harrison, B. D. et al. A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole. PLoS Biol. 12, e1001815 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Forche, A. et al. Stress alters rates and types of loss of heterozygosity in Candida albicans. mBio 2, e00129–11 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Ene, I. V. et al. Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proc. Natl Acad. Sci. USA 115, E8688–E8697 (2018).

    CAS  PubMed  Google Scholar 

  62. 62.

    Forche, A. et al. Rapid phenotypic and genotypic diversification after exposure to the oral host niche in Candida albicans. Genetics 209, 725–741 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Forche, A., May, G. & Magee, P. T. Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection. Eukaryot. Cell 4, 156–165 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Forche, A., Magee, P. T., Selmecki, A., Berman, J. & May, G. Evolution in Candida albicans populations during a single passage through a mouse host. Genetics 182, 799–811 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Perlin, D. S. Echinocandin resistance in Candida. Clin. Infect. Dis. 61, S612–S617 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Farmakiotis, D., Tarrand, J. J. & Kontoyiannis, D. P. Drug-resistant Candida glabrata infection in cancer patients. Emerg. Infect. Dis. 20, 1833–1840 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Garcia-Effron, G., Lee, S., Park, S., Cleary, J. D. & Perlin, D. S. Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-β-D-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob. Agents Chemother. 53, 3690–3699 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Cowen, L. E., Sanglard, D., Howard, S. J., Rogers, P. D. & Perlin, D. S. Mechanisms of antifungal drug resistance. CSH Perspect. Med. 5, a019752 (2015).

    Google Scholar 

  69. 69.

    Bordallo-Cardona, M. A. et al. MSH2 gene point mutations are not antifungal resistance markers in Candida glabrata. Antimicrob. Agents Chemother. 63, e01876–18 (2019).

    CAS  PubMed  Google Scholar 

  70. 70.

    Singh, A. et al. Absence of azole or echinocandin resistance in Candida glabrata isolates in India despite background prevalence of strains with defects in the DNA mismatch repair pathway. Antimicrob. Agents Chemother. 62, e00195–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Shor, E., Schuyler, J. & Perlin, D. S. A novel, drug resistance-independent, fluorescence-based approach to measure mutation rates in microbial pathogens. mBio 10, e00120–19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Ropars, J. et al. Gene flow contributes to diversification of the major fungal pathogen Candida albicans. Nat. Commun. 9, 2253 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Hickman, M. A. et al. The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature 494, 55–59 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Gao, J. et al. Candida albicans gains azole resistance by altering sphingolipid composition. Nat. Commun. 9, 4495 (2018). This study uses a haploid C. albicans isolate and a transposon mutagenesis system to identify mutants that are able to improve growth in very high fluconazole levels. However, the degree to which the mutants are resistant versus tolerant is not addressed, as drug responses did not include MIC assays. The study provides convincing data showing that alterations in the sphingolipid composition of membranes is associated with the ability to grow and divide in the presence of fluconazole.

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Segal, E. S. et al. Gene essentiality analyzed by in vivo transposon mutagenesis and machine learning in a stable haploid isolate of Candida albicans. mBio 9, e02048–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Walker, L. A., Gow, N. A. & Munro, C. A. Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob. Agents Chemother. 57, 146–154 (2013). This study finds that the ability of Candida species to grow in the presence of sub-MIC levels of caspofungin is associated with increased chitin levels in the cell wall. Pretreatment of cells with CaCl 2 and calcofluor white induces a similar increase in chitin and ability to grow in sub-MIC caspofungin levels. Whether this effect is an alteration in tolerance or resistance levels remains to be determined; higher cell wall chitin levels are induced by reagents, such as CaCl 2 and calcofluor white, and the effect is transient and physiological, thus sharing some features of tolerance.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Lee, K. K. et al. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob. Agents Chemother. 56, 208–217 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Singh-Babak, S. D. et al. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog. 8, e1002718 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Selmecki, A., Forche, A. & Berman, J. Genomic plasticity of the human fungal pathogen Candida albicans. Eukaryot. Cell 9, 991–1008 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Sitterle, E. et al. Within-host genomic diversity of Candida albicans in healthy carriers. Sci. Rep. 9, 2563 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Cowen, L. E. Hsp90 orchestrates stress response signaling governing fungal drug resistance. PLoS Pathog. 5, e1000471 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Cowen, L. E. & Lindquist, S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309, 2185–2189 (2005).

    CAS  PubMed  Google Scholar 

  83. 83.

    Khandelwal, N. K. et al. Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. J. Biol. Chem. 293, 412–432 (2018).

    CAS  PubMed  Google Scholar 

  84. 84.

    Garnaud, C. et al. The Rim pathway mediates antifungal tolerance in Candida albicans through newly identified Rim101 transcriptional targets, including Hsp90 and Ipt1. Antimicrob. Agents Chemother. 62, e01785-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Robbins, N., Caplan, T. & Cowen, L. E. Molecular evolution of antifungal drug resistance. Annu. Rev. Microbiol. 71, 753–775 (2017).

    CAS  PubMed  Google Scholar 

  86. 86.

    Shapiro, R. S., Zaas, A. K., Betancourt-Quiroz, M., Perfect, J. R. & Cowen, L. E. The Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance. PLoS One 7, e44734 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Cowen, L. E. et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc. Natl Acad. Sci. USA 106, 2818–2823 (2009).

    CAS  PubMed  Google Scholar 

  88. 88.

    Olin-Sandoval, V. et al. Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism. Nature 572, 249–253 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Benhamou, R. I. et al. Real-time imaging of the azole class of antifungal drugs in live Candida cells. ACS Chem. Biol. 12, 1769–1777 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Benhamou, R. I., Bibi, M., Berman, J. & Fridman, M. Localizing antifungal drugs to the correct organelle can markedly enhance their efficacy. Angew. Chem. 57, 6230–6235 (2018).

    CAS  Google Scholar 

  91. 91.

    Campbell, K., Herrera-Dominguez, L., Correia-Melo, C., Zelezniak, A. & Ralser, M. Biochemical principles enabling metabolic cooperativity and phenotypic heterogeneity at the single cell level. Curr. Opin. Syst. Biol. 8, 97–108 (2018).

    Google Scholar 

  92. 92.

    Franzmann, T. M. & Alberti, S. Protein phase separation as a stress survival strategy. CSH Perspect. Biol. 11, a034058 (2019).

    CAS  Google Scholar 

  93. 93.

    Delarue, M. et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 174, 338–349.e20 (2018).

    CAS  PubMed  Google Scholar 

  94. 94.

    Roemer, T. & Krysan, D. J. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med. 4, a019703 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Cornet, M. et al. Deletions of endocytic components VPS28 and VPS32 affect growth at alkaline pH and virulence through both RIM101-dependent and RIM101-independent pathways in Candida albicans. Infect. Immun. 73, 7977–7987 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Gerstein, A. C., Rosenberg, A., Hecht, I. & Berman, J. diskImageR: quantification of resistance and tolerance to antimicrobial drugs using disk diffusion assays. Microbiology 162, 1059–1068 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Ben-Ami, R. et al. Heteroresistance to fluconazole is a continuously distributed phenotype among Candida glabrata clinical strains associated with in vivo persistence. mBio 7, e00655–16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Sionov, E., Chang, Y. C., Garraffo, H. M. & Kwon-Chung, K. J. Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob. Agents Chemother. 53, 2804–2815 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Varma, A. & Kwon-Chung, K. J. Heteroresistance of Cryptococcus gattii to fluconazole. Antimicrob. Agents Chemother. 54, 2303–2311 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Sionov, E., Chang, Y. C. & Kwon-Chung, K. J. Azole heteroresistance in Cryptococcus neoformans: emergence of resistant clones with chromosomal disomy in the mouse brain during fluconazole treatment. Antimicrob. Agents Chemother. 57, 5127–5130 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Stone, N. R. et al. Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis. J. Clin. Invest. 129, 999–1014 (2019). This study tracks series of clinical Cryptococcus neoformans isolates from individual patients with HIV from Tanzania and finds that heteroresistance is quite common and is often, but not always, associated with specific chromosomal aneuploidies.

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Desai, J. V., Mitchell, A. P. & Andes, D. R. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb. Perspect. Med. 4, a019729 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Lohse, M. B., Gulati, M., Johnson, A. D. & Nobile, C. J. Development and regulation of single- and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 16, 19–31 (2018).

    CAS  PubMed  Google Scholar 

  104. 104.

    Ramage, G., Vande Walle, K., Wickes, B. L. & Lopez-Ribot, J. L. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob. Agents Chemother. 45, 2475–2479 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Taff, H. T. et al. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog. 8, e1002848 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Li, P., Seneviratne, C. J., Alpi, E., Vizcaino, J. A. & Jin, L. Delicate metabolic control and coordinated stress response critically determine antifungal tolerance of Candida albicans biofilm persisters. Antimicrob. Agents Chemother. 59, 6101–6112 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Denega, I., d’Enfert, C. & Bachellier-Bassi, S. Candida albicans biofilms are generally devoid of persister cells. Antimicrob. Agents Chemother. 63, e01979–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Al-Dhaheri, R. S. & Douglas, L. J. Absence of amphotericin B-tolerant persister cells in biofilms of some Candida species. Antimicrob. Agents Chemother. 52, 1884–1887 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Stevens, D. A., Espiritu, M. & Parmar, R. Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob. Agents Chemother. 48, 3407–3411 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Stevens, D. A., White, T. C., Perlin, D. S. & Selitrennikoff, C. P. Studies of the paradoxical effect of caspofungin at high drug concentrations. Diagn. Microbiol. Infect. Dis. 51, 173–178 (2005).

    CAS  PubMed  Google Scholar 

  111. 111.

    Rueda, C., Cuenca-Estrella, M. & Zaragoza, O. Paradoxical growth of Candida albicans in the presence of caspofungin is associated with multiple cell wall rearrangements and decreased virulence. Antimicrob. Agents Chemother. 58, 1071–1083 (2014). This study presents a detailed assessment of the cellular changes that accompany growth beyond the MIC in caspofungin as well as the effects that those changes have on fitness in mammalian hosts.

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Wagener, J. & Loiko, V. Recent insights into the paradoxical effect of echinocandins. J. Fungi 4, 5 (2017).

    Google Scholar 

  113. 113.

    Rueda, C. et al. Evaluation of the possible influence of trailing and paradoxical effects on the clinical outcome of patients with candidemia. Clin. Microbiol. Infect. 23, 49.e1–49.e8 (2017).

    CAS  Google Scholar 

  114. 114.

    Lee, M. K. et al. Susceptibility and trailing growth of Candida albicans to fluconazole: results of a Korean multicentre study. Mycoses 50, 148–149 (2007).

    CAS  PubMed  Google Scholar 

  115. 115.

    Arthington-Skaggs, B. A. et al. Comparison of visual and spectrophotometric methods of broth microdilution MIC end point determination and evaluation of a sterol quantitation method for in vitro susceptibility testing of fluconazole and itraconazole against trailing and nontrailing Candida isolates. Antimicrob. Agents Chemother. 46, 2477–2481 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Rex, J. H. et al. Optimizing the correlation between results of testing in vitro and therapeutic outcome in vivo for fluconazole by testing critical isolates in a murine model of invasive candidiasis. Antimicrob. Agents Chemother. 42, 129–134 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Colombo, A. L. et al. Prognostic factors and historical trends in the epidemiology of candidemia in critically ill patients: an analysis of five multicenter studies sequentially conducted over a 9-year period. Intensive Care Med. 40, 1489–1498 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Hirakawa, M. P. et al. Genetic and phenotypic intra-species variation in Candida albicans. Genome Res. 25, 413–425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Huang, M. Y., Woolford, C. A., May, G., McManus, C. J. & Mitchell, A. P. Circuit diversification in a biofilm regulatory network (vol 15, e1007787, 2019). PLoS Pathog. 15, e1007787 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Hooper, R. W., Ashcraft, D. S. & Pankey, G. A. In vitro synergy with fluconazole plus doxycycline or tigecycline against clinical Candida glabrata isolates. Med. Mycol. 57, 122–126 (2019).

    CAS  PubMed  Google Scholar 

  121. 121.

    Lu, M. et al. Linezolid in combination with azoles induced synergistic effects against Candida albicans and protected Galleria mellonella against experimental Candidiasis. Front. Microbiol. 9, 3142 (2018).

    PubMed  Google Scholar 

  122. 122.

    da Silva, C. R. et al. Synergistic effects of amiodarone and fluconazole on Candida tropicalis resistant to fluconazole. Antimicrob. Agents Chemother. 57, 1691–1700 (2013).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Li, H. et al. Resistance reversal induced by a combination of fluconazole and tacrolimus (FK506) in Candida glabrata. J. Med. Microbiol. 64, 44–52 (2015).

    CAS  PubMed  Google Scholar 

  124. 124.

    Gu, W., Guo, D., Zhang, L., Xu, D. & Sun, S. The synergistic effect of azoles and fluoxetine against resistant Candida albicans strains is attributed to attenuating fungal virulence. Antimicrob. Agents Chemother. 60, 6179–6188 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Costa-de-Oliveira, S. et al. Ibuprofen potentiates the in vivo antifungal activity of fluconazole against Candida albicans murine infection. Antimicrob. Agents Chemother. 59, 4289–4292 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Uppuluri, P., Nett, J., Heitman, J. & Andes, D. Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob. Agents Chemother. 52, 1127–1132 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Yu, S. J., Chang, Y. L. & Chen, Y. L. Calcineurin signaling: lessons from Candida species. FEMS Yeast Res. 15, fov016 (2015).

    PubMed  Google Scholar 

  128. 128.

    Hubbard, M., Bradley, M., Sullivan, P., Shepherd, M. & Forrester, I. Evidence for the occurrence of calmodulin in the yeasts Candida albicans and Saccharomyces cerevisiae. FEBS Lett. 137, 85–88 (1982).

    CAS  PubMed  Google Scholar 

  129. 129.

    O’Meara, T. R., Robbins, N. & Cowen, L. E. The Hsp90 chaperone network modulates Candida virulence traits. Trends Microbiol. 25, 809–819 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors thank M. Ralser, D. Jarosz and members of the Berman laboratory for helpful comments, and S. Everson, Iuliana Ene, Brown University, Anton Levitan, Tel-Aviv University, Aleeza C. Gerstein, University of Manitoba and M. Hajooj for help with illustrations. Work in the authors’ laboratories was supported by the European Research Council (RAPLODAPT 340087) and the Israel Science Foundation (grant number 997/18) (J.B.), and by the National Institutes of Health (1R01AI125094) (D.J.K.).

Author information




Both authors contributed to all aspects of the article.

Corresponding author

Correspondence to Judith Berman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks J. Morschhauser, D. Perlin and D. Sanglard for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Candida Genome Database:

Supplementary information



Candidaemia is a candidal infection of the blood stream.


Sensitivity to a drug, arresting growth (static drugs) and/or killing cells (cidal drugs).

Fraction of growth

A measure of tolerance based on assays performed on a solid medium. Measured at 48 h, the growth within the zone of inhibition (and thus above the minimum inhibitory concentration) is estimated as a proportion of total growth possible outside the zone of inhibition.

Supra-MIC growth

(SMG). A measure of tolerance based on assays performed in a liquid medium. Growth at concentrations above the minimum inhibitory concentration is estimated as a proportion of the total growth without a drug. SMG provides a quantitative measure of growth similar to some measures of trailing growth.

Phenotypic heterogeneity

The expression of different phenotypes in different cells within an isogenic population of cells. For example, some fungal cells grow whereas other sister cells do not grow (or grow too slowly to be detected) in the presence of an antifungal drug.

Fungistatic drugs

Drugs that inhibit growth but do not necessarily kill a majority of the cell population at concentrations at or above the minimum inhibitory concentration.


A clinical term for isolates that contain small subpopulations of cells (generally <1%) that have the ability to grow at drug concentrations that are at least 8× the minimum inhibitory concentration for the vast majority of susceptible cells in the population.

Trailing growth

Generally defined as reduced but persistent visible growth of Candida spp. at fluconazole concentrations above the minimum inhibitory concentration (MIC). Trailing has also been described as an increase in the MIC during growth beyond 24 h (the standard end point for MIC measurements for Candida spp.) and can be measured as the residual growth in the presence of fluconazole concentrations above the MIC. Trailing was quantified in a recent study as the percentage of residual yeast growth at fluconazole concentrations above the MIC in each well and mean trailing as the geometric mean of trailing observed in all of the wells above the MIC.

Paradoxical growth

Also referred to as the Eagle effect. The ability of a fungal isolate to reconstitute growth in the presence of high drug concentrations, but being fully susceptible at lower concentrations. Paradoxical growth appears with a delay of one to several days, but resembles growth in the absence of the drug. Paradoxical growth has been reported primarily for echinocandins.


A drug that potentiates the effect of an anti-infective, but is not an anti-infective on its own.

Fungicidal activity

Drugs with fungicidal activity reduce a population of cells by >99.9% or 3 log10 units at a concentration equal to or greater than the minimum inhibitory concentration.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berman, J., Krysan, D.J. Drug resistance and tolerance in fungi. Nat Rev Microbiol 18, 319–331 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing