Mechanomicrobiology: how bacteria sense and respond to forces


Microorganisms have evolved to thrive in virtually any terrestrial and marine environment, exposing them to various mechanical cues mainly generated by fluid flow and pressure as well as surface contact. Cellular components enable bacteria to sense and respond to physical cues to optimize their function, ultimately improving bacterial fitness. Owing to newly developed biophysical techniques, we are now starting to appreciate the breadth of bacterial phenotypes influenced by mechanical inputs: adhesion, motility, biofilm formation and pathogenicity. In this Review, we discuss how microbiology and biophysics are converging to advance our understanding of the mechanobiology of microorganisms. We first review the various physical forces that bacteria experience in their natural environments and describe the structures that transmit these forces to a cell. We then discuss how forces can provide feedback to enhance adhesion and motility and how they can be transduced by dedicated cellular machinery to regulate diverse phenotypes. Finally, we provide a perspective on how mechanics influence biofilm spatial organization and homeostasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Forces on bacteria.
Fig. 2: Bacterial structures experiencing external forces.
Fig. 3: Force-induced feedback on motility and adhesion.
Fig. 4: Bacteria use mechanotransduction to regulate various phenotypes in response to forces.


  1. 1.

    Zhu, T. F. & Szostak, J. W. Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131, 5705–5713 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  PubMed  Google Scholar 

  3. 3.

    Persat, A. et al. The mechanical world of bacteria. Cell 161, 988–997 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bartlett, D. H. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595, 367–381 (2002).

    CAS  PubMed  Google Scholar 

  5. 5.

    Berne, C., Ellison, C. K., Ducret, A. & Brun, Y. V. Bacterial adhesion at the single-cell level. Nat. Rev. Microbiol. 16, 616–627 (2018).

    CAS  PubMed  Google Scholar 

  6. 6.

    Auer, G. K. & Weibel, D. B. Bacterial cell mechanics. Biochemistry 56, 3710–3724 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rojas, E. R. et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 559, 617–621 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Chen, Y., Norde, W., van der Mei, H. C. & Busscher, H. J. Bacterial cell surface deformation under external loading. MBio (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Li, J. et al. Residence-time dependent cell wall deformation of different Staphylococcus aureus strains on gold measured using surface-enhanced-fluorescence. Soft Matter 10, 7638–7646 (2014).

    CAS  PubMed  Google Scholar 

  10. 10.

    Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009). A thorough review on the fluid mechanics involved in swimming motility.

    Google Scholar 

  11. 11.

    Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).

    Google Scholar 

  12. 12.

    Subramanian, S. & Kearns, D. B. Functional regulators of bacterial flagella. Annu. Rev. Microbiol. 73, 225–246 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Lele, P. P., Hosu, B. G. & Berg, H. C. Dynamics of mechanosensing in the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 110, 11839–11844 (2013). This paper demonstrates how the E. coli flagellum motor adapts its rotation rate upon changes in torque load by recruiting stator units.

    CAS  PubMed  Google Scholar 

  14. 14.

    Tipping, M. J., Delalez, N. J., Lim, R., Berry, R. M. & Armitage, J. P. Load-dependent assembly of the bacterial flagellar motor. MBio (2013). This paper shows that increasing loads on the flagellum motor increase torque generation by recruiting stator units.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Wadhwa, N., Phillips, R. & Berg, H. C. Torque-dependent remodeling of the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 116, 11764–11769 (2019). This study combines biophysical experimentation and theory to understand how load changes drive the assembly/disassembly of the flagellum motor.

    CAS  PubMed  Google Scholar 

  16. 16.

    Nord, A. L. et al. Catch bond drives stator mechanosensitivity in the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 114, 12952–12957 (2017). A demonstration that a catch bond mechanism drives the torque-dependent recruitment of additional flagellum stators.

    CAS  PubMed  Google Scholar 

  17. 17.

    Darnton, N. C. & Berg, H. C. Force-extension measurements on bacterial flagella: triggering polymorphic transformations. Biophys. J. 92, 2230–2236 (2007).

    CAS  PubMed  Google Scholar 

  18. 18.

    Kühn, M. J., Schmidt, F. K., Eckhardt, B. & Thormann, K. M. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps. Proc. Natl Acad. Sci. USA 114, 6340–6345 (2017).

    PubMed  Google Scholar 

  19. 19.

    Kühn, M. J. et al. Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments. Nat. Commun. 9, 5369 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Toutain, C. M., Zegans, M. E. & O’Toole, G. A. Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. J. Bacteriol. 187, 771–777 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Doyle, T. B., Hawkins, A. C. & McCarter, L. L. The complex flagellar torque generator of Pseudomonas aeruginosa. J. Bacteriol. 186, 6341–6350 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Belas, R. Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol. 22, 517–527 (2014).

    CAS  PubMed  Google Scholar 

  23. 23.

    Alexandre, G., Rohr, R. & Bally, R. A phase variant of Azospirillum lipoferum lacks a polar flagellum and constitutively expresses mechanosensing lateral flagella. Appl. Environ. Microbiol. 65, 4701–4704 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Khammas, K. M., Ageron, E., Grimont, P. A. D. & Kaiser, P. Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res. Microbiol. 140, 679–693 (1989).

    CAS  PubMed  Google Scholar 

  25. 25.

    Meganathan, R. & Marquis, R. E. Loss of bacterial motility under pressure. Nature 246, 525–527 (1973).

    CAS  PubMed  Google Scholar 

  26. 26.

    Eloe, E. A., Lauro, F. M., Vogel, R. F. & Bartlett, D. H. The deep-sea bacterium Photobacterium profundum ss9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl. Environ. Microbiol. 74, 6298–6305 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Wang, F. et al. Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS One 3, e1937 (2008).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Mattick, J. S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56, 289–314 (2002).

    CAS  PubMed  Google Scholar 

  29. 29.

    Denise, R., Abby, S. S. & Rocha, E. P. C. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol. 17, e3000390 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Burrows, L. L. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu. Rev. Microbiol. 66, 493–520 (2012).

    CAS  PubMed  Google Scholar 

  31. 31.

    Talà, L., Fineberg, A., Kukura, P. & Persat, A. Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements. Nat. Microbiol. 4, 774–780 (2019). A demonstration that P. aeruginosa coordinate T4P retraction with contact of their tip with a surface.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Beaussart, A. et al. Nanoscale adhesion forces of Pseudomonas aeruginosa type IV pili. ACS Nano 8, 10723–10733 (2014). This paper suggests that stretching with AFM can induce conformational changes in T4P.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Biais, N., Higashi, D. L., Brujic, J., So, M. & Sheetz, M. P. Force-dependent polymorphism in type IV pili reveals hidden epitopes. Proc. Natl Acad. Sci. USA 107, 11358–11363 (2010).

    CAS  PubMed  Google Scholar 

  34. 34.

    Ellison, C. K. et al. Obstruction of pilus retraction stimulates bacterial surface sensing. Science 358, 535–538 (2017). This paper demonstrates that C. crescentus pili mechanosense surfaces to regulate deployment of polar adhesins.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ellison, C. K. et al. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat. Microbiol. 3, 773–780 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Adams, D. W., Stutzmann, S., Stoudmann, C. & Blokesch, M. DNA-uptake pili of Vibrio cholerae are required for chitin colonization and capable of kin recognition via sequence-specific self-interaction. Nat. Microbiol. 4, 1545–1557 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Turner, K. H., Everett, J., Trivedi, U., Rumbaugh, K. P. & Whiteley, M. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet. 10, e1004518 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Kang, P. J. et al. Identification of Pseudomonas aeruginosa genes required for epithelial cell injury. Mol. Microbiol. 24, 1249–1262 (1997).

    CAS  PubMed  Google Scholar 

  39. 39.

    Fuente, L. D. L. et al. Assessing adhesion forces of type I and type IV Pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber. Appl. Environ. Microbiol. 73, 2690–2696 (2007).

    Google Scholar 

  40. 40.

    Meng, Y. et al. Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J. Bacteriol. 187, 5560–5567 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Chlebek, J. L. et al. PilT and PilU are homohexameric ATPases that coordinate to retract type IVa pili. PLoS Genet. 15, e1008448 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Faure, L. M. et al. The mechanism of force transmission at bacterial focal adhesion complexes. Nature 539, 530–535 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Pizarro-Cerdá, J. & Cossart, P. Bacterial adhesion and entry into host cells. Cell 124, 715–727 (2006).

    Google Scholar 

  44. 44.

    Müller, D. J., Helenius, J., Alsteens, D. & Dufrêne, Y. F. Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol. 5, 383–390 (2009).

    PubMed  Google Scholar 

  45. 45.

    Marszalek, P. E. & Dufrêne, Y. F. Stretching single polysaccharides and proteins using atomic force microscopy. Chem. Soc. Rev. 41, 3523–3534 (2012).

    CAS  PubMed  Google Scholar 

  46. 46.

    El-Kirat-Chatel, S., Beaussart, A., Boyd, C. D., O’Toole, G. A. & Dufrêne, Y. F. Single-cell and single-molecule analysis deciphers the localization, adhesion, and mechanics of the biofilm adhesin LapA. ACS Chem. Biol. 9, 485–494 (2014).

    CAS  PubMed  Google Scholar 

  47. 47.

    Formosa-Dague, C., Speziale, P., Foster, T. J., Geoghegan, J. A. & Dufrêne, Y. F. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc. Natl Acad. Sci. USA 113, 410–415 (2016).

    CAS  PubMed  Google Scholar 

  48. 48.

    Alsteens, D., Garcia, M. C., Lipke, P. N. & Dufrêne, Y. F. Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proc. Natl Acad. Sci. USA 107, 20744–20749 (2010).

    CAS  PubMed  Google Scholar 

  49. 49.

    Larsen, P. et al. Amyloid adhesins are abundant in natural biofilms. Environ. Microbiol. 9, 3077–3090 (2007).

    CAS  PubMed  Google Scholar 

  50. 50.

    Romero, D., Aguilar, C., Losick, R. & Kolter, R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl Acad. Sci. USA 107, 2230–2234 (2010).

    CAS  PubMed  Google Scholar 

  51. 51.

    Mandlik, A., Swierczynski, A., Das, A. & Ton-That, H. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 16, 33–40 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Kankainen, M. et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl Acad. Sci. USA 106, 17193–17198 (2009).

    CAS  PubMed  Google Scholar 

  53. 53.

    Tripathi, P. et al. Adhesion and nanomechanics of pili from the probiotic Lactobacillus rhamnosus GG. ACS Nano 7, 3685–3697 (2013).

    CAS  PubMed  Google Scholar 

  54. 54.

    Alegre-Cebollada, J., Badilla, C. L. & Fernández, J. M. Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes. J. Biol. Chem. 285, 11235–11242 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Kang, H. J., Coulibaly, F., Clow, F., Proft, T. & Baker, E. N. Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure. Science 318, 1625–1628 (2007). This paper demonstrates that isopeptide covalent bonds promote the extreme stability of pili from Gram-positive bacteria.

    CAS  PubMed  Google Scholar 

  56. 56.

    Thomas, W. Catch bonds in adhesion. Annu. Rev. Biomed. Eng. 10, 39–57 (2008).

    CAS  PubMed  Google Scholar 

  57. 57.

    Thomas, W. E., Vogel, V. & Sokurenko, E. Biophysics of catch bonds. Annu. Rev. Biophys. 37, 399–416 (2008).

    CAS  PubMed  Google Scholar 

  58. 58.

    Thomas, W. E., Trintchina, E., Forero, M., Vogel, V. & Sokurenko, E. V. Bacterial adhesion to target cells enhanced by shear force. Cell 109, 913–923 (2002). Demonstrates that flow increases the binding strength of the FimH E. coli adhesin.

    CAS  PubMed  Google Scholar 

  59. 59.

    Yakovenko, O. et al. FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation. J. Biol. Chem. 283, 11596–11605 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Le Trong, I. et al. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like β sheet twisting. Cell 141, 645–655 (2010).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Kerrigan, S. W. et al. Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro. Arterioscler. Thromb. Vasc. Biol. 28, 335–340 (2008).

    CAS  PubMed  Google Scholar 

  62. 62.

    Milles, L. F., Schulten, K., Gaub, H. E. & Bernardi, R. C. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science 359, 1527–1533 (2018). This paper identifies the structural rearrangement in the SdrG adhesin that drives its ability to withstand nanonewton-range forces.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Herman, P. et al. The binding force of the staphylococcal adhesin SdrG is remarkably strong. Mol. Microbiol. 93, 356–368 (2014).

    CAS  PubMed  Google Scholar 

  64. 64.

    Herman-Bausier, P. et al. Staphylococcus aureus clumping factor A is a force-sensitive molecular switch that activates bacterial adhesion. Proc. Natl Acad. Sci. USA 115, 5564–5569 (2018).

    CAS  PubMed  Google Scholar 

  65. 65.

    Vitry, P. et al. Force-induced strengthening of the interaction between Staphylococcus aureus clumping factor B and loricrin. MBio 8, e01748-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    McDevitt, D. et al. Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur. J. Biochem. 247, 416–424 (1997).

    CAS  PubMed  Google Scholar 

  67. 67.

    Jarvis, C. et al. Antivirulence isoquinolone mannosides: optimization of the biaryl aglycone for FimH lectin binding affinity and efficacy in the treatment of chronic UTI. ChemMedChem 11, 367–373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Spaulding, C. N. et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 546, 528–532 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Persat, A. Bacterial mechanotransduction. Curr. Opin. Microbiol. 36, 1–6 (2017).

    CAS  PubMed  Google Scholar 

  70. 70.

    Gordon, V. D. & Wang, L. Bacterial mechanosensing: the force will be with you, always. J. Cell Sci. 132, jcs227694 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Laventie, B.-J. et al. A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. Cell Host Microbe 25, 140–152.e6 (2019). This paper shows that levels of c-di-GMP rapidly increase upon P. aeruginosa surface contact, promoting the immediate deployment of T4P.

    CAS  PubMed  Google Scholar 

  72. 72.

    Persat, A., Inclan, Y. F., Engel, J. N., Stone, H. A. & Gitai, Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 112, 7563–7568 (2015). A demonstration of the ability of P. aeruginosa to mechanically sense surfaces with T4P and the Chp system to regulate cAMP levels.

    CAS  PubMed  Google Scholar 

  73. 73.

    Wolfgang, M. C., Lee, V. T., Gilmore, M. E. & Lory, S. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev. Cell 4, 253–263 (2003).

    CAS  PubMed  Google Scholar 

  74. 74.

    Chuang, S. K., Vrla, G. D., Fröhlich, K. S. & Gitai, Z. Surface association sensitizes Pseudomonas aeruginosa to quorum sensing. Nat. Commun. 10, 4118 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Inclan, Y. F. et al. A scaffold protein connects type IV pili with the Chp chemosensory system to mediate activation of virulence signaling in Pseudomonas aeruginosa. Mol. Microbiol. 101, 590–605 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Bertrand, J. J., West, J. T. & Engel, J. N. Genetic analysis of the regulation of type IV pilus function by the Chp chemosensory system of Pseudomonas aeruginosa. J. Bacteriol. 192, 994–1010 (2010).

    CAS  PubMed  Google Scholar 

  77. 77.

    Lee, C. K. et al. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. Proc. Natl Acad. Sci. USA 115, 4471–4476 (2018).

    CAS  PubMed  Google Scholar 

  78. 78.

    Rodesney, C. A. et al. Mechanosensing of shear by Pseudomonas aeruginosa leads to increased levels of the cyclic-di-GMP signal initiating biofilm development. Proc. Natl Acad. Sci. USA 114, 5906–5911 (2017). This paper shows that shear forces promote the production of c-di-GMP in P. aeruginosa.

    CAS  PubMed  Google Scholar 

  79. 79.

    Luo, Y. et al. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. MBio (2015). This paper demonstrates that P. aeruginosa use distinct mechanosensitive machineries to successively regulate cAMP and c-di-GMP levels.

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Siryaporn, A., Kuchma, S. L., O’Toole, G. A. & Gitai, Z. Surface attachment induces Pseudomonas aeruginosa virulence. Proc. Natl Acad. Sci. USA 111, 16860–16865 (2014).

    CAS  PubMed  Google Scholar 

  81. 81.

    Kuchma, S. L. et al. Cyclic Di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator. J. Bacteriol. 197, 420–430 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Baker, A. E. et al. Flagellar stators stimulate c-di-GMP production by Pseudomonas aeruginosa. J. Bacteriol. 201, e00741–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Yan, J. et al. Bow-tie signaling in c-di-GMP: machine learning in a simple biochemical network. PLoS Comput. Biol. 13, e1005677 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Sanfilippo, J. E. et al. Microfluidic-based transcriptomics reveal force-independent bacterial rheosensing. Nat. Microbiol. 4, 1274–1281 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Lee, C. K. et al. Evolution of cell size homeostasis and growth rate diversity during initial surface colonization of Shewanella oneidensis. ACS Nano 10, 9183–9192 (2016).

    CAS  PubMed  Google Scholar 

  86. 86.

    Li, G. et al. Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol. Microbiol. 83, 41–51 (2012).

    PubMed  Google Scholar 

  87. 87.

    Hug, I., Deshpande, S., Sprecher, K. S., Pfohl, T. & Jenal, U. Second messenger-mediated tactile response by a bacterial rotary motor. Science 358, 531–534 (2017). This paper shows that the flagellum motor of C. crescentus acts as a mechanosensor to regulate the deployment of its polar adhesin.

    CAS  PubMed  Google Scholar 

  88. 88.

    Nesper, J. et al. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators. eLife 6, e28842 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Persat, A., Stone, H. A. & Gitai, Z. The curved shape of Caulobacter crescentus enhances surface colonization in flow. Nat. Commun. 5, 3824 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Cairns, L. S., Marlow, V. L., Bissett, E., Ostrowski, A. & Stanley-Wall, N. R. A mechanical signal transmitted by the flagellum controls signalling in Bacillus subtilis. Mol. Microbiol. 90, 6–21 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Alsharif, G. et al. Host attachment and fluid shear are integrated into a mechanical signal regulating virulence in Escherichia coli O157:H7. Proc. Natl Acad. Sci. USA 112, 5503–5508 (2015). A demonstration that host cell contact and flow induce virulence of enterohemorrhagic E. coli.

    CAS  PubMed  Google Scholar 

  92. 92.

    Otto, K. & Silhavy, T. J. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc. Natl Acad. Sci. USA 99, 2287–2292 (2002).

    CAS  PubMed  Google Scholar 

  93. 93.

    Shimizu, T., Ichimura, K. & Noda, M. The surface sensor NlpE of enterohemorrhagic Escherichia coli contributes to regulation of the type III secretion system and flagella by the Cpx response to adhesion. Infect. Immun. 84, 537–549 (2015).

    PubMed  Google Scholar 

  94. 94.

    Kimkes, T. E. P. & Heinemann, M. Reassessing the role of the Escherichia coli CpxAR system in sensing surface contact. PLoS One 13, e0207181 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Bruni, G. N., Weekley, R. A., Dodd, B. J. T. & Kralj, J. M. Voltage-gated calcium flux mediates Escherichia coli mechanosensation. Proc. Natl Acad. Sci. USA 114, 9445–9450 (2017). This paper shows that mechanical compression activates membrane-bound ion channels in E. coli.

    CAS  PubMed  Google Scholar 

  96. 96.

    Haswell, E. S., Phillips, R. & Rees, D. C. Mechanosensitive channels: what can they do and how do they do it? Structure 19, 1356–1369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Biol. 9, 696–703 (2002).

    CAS  PubMed  Google Scholar 

  98. 98.

    Abe, F. Dynamic structural changes in microbial membranes in response to high hydrostatic pressure analyzed using time-resolved fluorescence anisotropy measurement. Biophys. Chem. 183, 3–8 (2013).

    CAS  PubMed  Google Scholar 

  99. 99.

    Bartlett, D., Wright, M., Yayanos, A. A. & Silverman, M. Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium. Nature 342, 572–574 (1989).

    CAS  PubMed  Google Scholar 

  100. 100.

    Myka, K. K. et al. in Microbial Ecology of Extreme Environments (eds Chenard, C. & Lauro, F. M.) 51–80 (Springer, 2017).

  101. 101.

    Welch, T. J. & Bartlett, D. H. Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol. Microbiol. 27, 977–985 (1998).

    CAS  PubMed  Google Scholar 

  102. 102.

    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    CAS  PubMed  Google Scholar 

  103. 103.

    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    CAS  PubMed  Google Scholar 

  104. 104.

    Flemming, H.-C. & Wuertz, S. Bacteria and archaea on earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

    CAS  PubMed  Google Scholar 

  105. 105.

    Daniel, I., Oger, P. & Winter, R. Origins of life and biochemistry under high-pressure conditions. Chem. Soc. Rev. 35, 858–875 (2006).

    CAS  PubMed  Google Scholar 

  106. 106.

    Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    CAS  PubMed  Google Scholar 

  107. 107.

    Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    CAS  PubMed  Google Scholar 

  108. 108.

    Battin, T. J., Kaplan, L. A., Denis Newbold, J. & Hansen, C. M. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426, 439–442 (2003).

    CAS  PubMed  Google Scholar 

  109. 109.

    Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263 (2016).

    CAS  Google Scholar 

  110. 110.

    Hooper, L. V. & Gordon, J. I. Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    CAS  PubMed  Google Scholar 

  111. 111.

    De Weirdt, R. & Van de Wiele, T. Micromanagement in the gut: microenvironmental factors govern colon mucosal biofilm structure and functionality. NPJ Biofilms Microbiomes 1, 15026 (2015).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Mah, T. F. & O’Toole, G. A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34–39 (2001).

    CAS  PubMed  Google Scholar 

  113. 113.

    Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    CAS  Google Scholar 

  115. 115.

    Douarche, C., Allain, J.-M. & Raspaud, E. Bacillus subtilis bacteria generate an internal mechanical force within a biofilm. Biophys. J. 109, 2195–2202 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Beroz, F. et al. Verticalization of bacterial biofilms. Nat. Phys. 14, 954–960 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Yan, J. et al. Mechanical instability and interfacial energy drive biofilm morphogenesis. eLife. 8, e43920 (2019).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Chu, E. K., Kilic, O., Cho, H., Groisman, A. & Levchenko, A. Self-induced mechanical stress can trigger biofilm formation in uropathogenic Escherichia coli. Nat. Commun. 9, 4087 (2018). This paper shows that growth-generated mechanical compression can induce the formation of biofilms.

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Delarue, M. et al. Self-driven jamming in growing microbial populations. Nat. Phys. 12, 762–766 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Ewoldt, R. H., Hosoi, A. E. & McKinley, G. H. Nonlinear viscoelastic biomaterials: meaningful characterization and engineering inspiration. Integr. Comp. Biol. 49, 40–50 (2009).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Boudarel, H., Mathias, J.-D., Blaysat, B. & Grédiac, M. Towards standardized mechanical characterization of microbial biofilms: analysis and critical review. NPJ Biofilms Microbiomes 4, 17 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Even, C. et al. Recent advances in studying single bacteria and biofilm mechanics. Adv. Colloid Interface Sci. 247, 573–588 (2017).

    CAS  PubMed  Google Scholar 

  123. 123.

    Heisenberg, C.-P. & Bellaïche, Y. Forces in tissue morphogenesis and patterning. Cell 153, 948–962 (2013).

    CAS  PubMed  Google Scholar 

  124. 124.

    Rivera-Yoshida, N., Arias Del Angel, J. A. & Benítez, M. Microbial multicellular development: mechanical forces in action. Curr. Opin. Genet. Dev. 51, 37–45 (2018).

    CAS  PubMed  Google Scholar 

  125. 125.

    Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199–210 (2008).

    CAS  Google Scholar 

  126. 126.

    Earle, K. A. et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18, 478–488 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome: connecting spatial organization to function. Cell Host Microbe 21, 433–442 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).

    CAS  PubMed  Google Scholar 

  129. 129.

    Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17, 371–382 (2019).

    CAS  PubMed  Google Scholar 

  130. 130.

    Liu, G. et al. Self-driven phase transitions drive Myxococcus xanthus fruiting body formation. Phys. Rev. Lett. 122, 248102 (2019).

    CAS  PubMed  Google Scholar 

  131. 131.

    Kientz, B. et al. Glitter-like iridescence within the bacteroidetes especially cellulophaga spp.: optical properties and correlation with gliding motility. PLoS One 7, e52900 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Drescher, K., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24, 50–55 (2014).

    CAS  PubMed  Google Scholar 

  133. 133.

    Besemer, K. et al. Biophysical controls on community succession in stream biofilms. Appl. Environ. Microbiol. 73, 4966–4974 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Niederdorfer, R., Peter, H. & Battin, T. J. Attached biofilms and suspended aggregates are distinct microbial lifestyles emanating from differing hydraulics. Nat. Microbiol. 1, 16178 (2016).

    CAS  PubMed  Google Scholar 

  135. 135.

    Rossy, T., Nadell, C. D. & Persat, A. Cellular advective-diffusion drives the emergence of bacterial surface colonization patterns and heterogeneity. Nat. Commun. 10, 2471 (2019). This paper shows that fluid flow influences biofilm morphology and spatial organization.

    PubMed  PubMed Central  Google Scholar 

  136. 136.

    Martínez-García, R., Nadell, C. D., Hartmann, R., Drescher, K. & Bonachela, J. A. Cell adhesion and fluid flow jointly initiate genotype spatial distribution in biofilms. PLoS Comput. Biol. 14, e1006094 (2018).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Nadell, C. D., Ricaurte, D., Yan, J., Drescher, K. & Bassler, B. L. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms. eLife 6, e21855 (2017).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Wucher, B. R. et al. Vibrio cholerae filamentation promotes chitin surface attachment at the expense of competition in biofilms. Proc. Natl Acad. Sci. USA 116, 14216–14221 (2019).

    CAS  PubMed  Google Scholar 

  139. 139.

    Hartmann, R. et al. Emergence of three-dimensional order and structure in growing biofilms. Nat. Phys. 15, 251–256 (2019). This paper shows that mechanical cell–cell interactions are the dominant contributor of spatial organization in biofilms.

    CAS  PubMed  Google Scholar 

  140. 140.

    Nadell, C. D., Drescher, K., Wingreen, N. S. & Bassler, B. L. Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME J. 9, 1700–1709 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Seminara, A. et al. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc. Natl Acad. Sci. USA 109, 1116–1121 (2012).

    CAS  PubMed  Google Scholar 

  142. 142.

    Srinivasan, S., Kaplan, C. N. & Mahadevan, L. A multiphase theory for spreading microbial swarms and films. eLife 8, e42697 (2019).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Yan, J., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nat. Commun. 8, 327 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Bjarnsholt, T. et al. The in vivo biofilm. Trends Microbiol. 21, 466–474 (2013).

    CAS  PubMed  Google Scholar 

  145. 145.

    Wagner, C. E., Wheeler, K. M. & Ribbeck, K. Mucins and their role in shaping the functions of mucus barriers. Annu. Rev. Cell Dev. Biol. 34, 189–215 (2018).

    CAS  PubMed  Google Scholar 

  146. 146.

    Johansson, M. E. V. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    CAS  PubMed  Google Scholar 

  147. 147.

    DePas, W. H. et al. Exposing the three-dimensional biogeography and metabolic states of pathogens in cystic fibrosis sputum via hydrogel embedding, clearing, and rRNA labeling. MBio 7, e00796–16, (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Caldara, M. et al. Mucin biopolymers prevent bacterial aggregation by retaining cells in the free-swimming state. Curr. Biol. 22, 2325–2330 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Frenkel, E. S. & Ribbeck, K. Salivary mucins promote the coexistence of competing oral bacterial species. ISME J. 11, 1286–1290 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    CAS  PubMed  Google Scholar 

  151. 151.

    McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A. L. & Foster, K. R. Host selection of microbiota via differential adhesion. Cell Host Microbe 19, 550–559 (2016). This paper provides computational predictions of the dynamics and spatial organisation of mucus-associated biofilms.

    CAS  PubMed  Google Scholar 

  152. 152.

    Frantz, C., Stewart, K. M. & Weaver, V. M. The extracellular matrix at a glance. J. Cell Sci. 123, 4195–4200 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Plotnikov, S. V., Pasapera, A. M., Sabass, B. & Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513–1527 (2012).

    CAS  PubMed  Google Scholar 

  154. 154.

    Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  PubMed  Google Scholar 

  155. 155.

    Baker, B. M. & Chen, C. S. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Ladoux, B. & Mège, R.-M. Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell Biol. 18, 743–757 (2017).

    CAS  PubMed  Google Scholar 

  157. 157.

    Ranade, S. S. et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc. Natl Acad. Sci. USA 111, 10347–10352 (2014).

    CAS  PubMed  Google Scholar 

  158. 158.

    Mathijssen, A. J. T. M., Culver, J., Bhamla, M. S. & Prakash, M. Collective intercellular communication through ultra-fast hydrodynamic trigger waves. Nature 571, 560–564 (2019).

    CAS  PubMed  Google Scholar 

  159. 159.

    Renner, L. D. & Weibel, D. B. Physicochemical regulation of biofilm formation. MRS Bull. 36, 347–355 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    O’Toole, G. A. & Wong, G. C. Sensational biofilms: surface sensing in bacteria. Curr. Opin. Microbiol. 30, 139–146 (2016).

    PubMed  PubMed Central  Google Scholar 

  161. 161.

    Irie, Y. et al. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 109, 20632–20636 (2012).

    CAS  Google Scholar 

  162. 162.

    Kovach, K. et al. Evolutionary adaptations of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide production. NPJ Biofilms Microbiomes 3, 1–9 (2017).

    PubMed  PubMed Central  Google Scholar 

  163. 163.

    Chew, S. C. et al. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides. MBio (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Zorraquino, V. et al. Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose. J. Bacteriol. 195, 417–428 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Murthy, S. E., Dubin, A. E. & Patapoutian, A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 18, 771–783 (2017).

    CAS  PubMed  Google Scholar 

  166. 166.

    Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Wang, L. et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature 573, 225–229 (2019).

    CAS  PubMed  Google Scholar 

  168. 168.

    Lin, Y.-C. et al. Force-induced conformational changes in PIEZO1. Nature 573, 230–234 (2019).

    CAS  PubMed  Google Scholar 

  169. 169.

    Orell, A., Fröls, S. & Albers, S.-V. Archaeal biofilms: the great unexplored. Annu. Rev. Microbiol. 67, 337–354 (2013).

    CAS  PubMed  Google Scholar 

  170. 170.

    Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    CAS  PubMed  Google Scholar 

  171. 171.

    Stocker, R. Marine microbes see a sea of gradients. Science 338, 628–633 (2012).

    CAS  PubMed  Google Scholar 

  172. 172.

    Deng, Y., Sun, M. & Shaevitz, J. W. Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys. Rev. Lett. 107, 158101 (2011).

    PubMed  Google Scholar 

  173. 173.

    Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    PubMed  PubMed Central  Google Scholar 

  174. 174.

    Gennes, P.-G. de & Gennes, P. P.-G. Scaling Concepts in Polymer Physics (Cornell University Press, 1979).

  175. 175.

    Phillips, R., Kondev, J. & Theriot, J. Physical Biology of the Cell (Garland Science, 2013).

  176. 176.

    Jacobs, C. R., Huang, H. & Kwon, R. Y. Introduction to Cell Mechanics and Mechanobiology (Garland Science, 2012).

  177. 177.

    Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    CAS  PubMed  Google Scholar 

  178. 178.

    Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility. Nature 407, 98–102 (2000).

    CAS  PubMed  Google Scholar 

  180. 180.

    Maier, B., Potter, L., So, M., Seifert, H. S. & Sheetz, M. P. Single pilus motor forces exceed 100 pN. Proc. Natl Acad. Sci. USA 99, 16012–16017 (2002).

    CAS  PubMed  Google Scholar 

  181. 181.

    Xiao, J. & Dufrêne, Y. F. Optical and force nanoscopy in microbiology. Nat. Microbiol. 1, 16186 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Biais, N., Higashi, D., So, M. & Ladoux, B. Techniques to measure pilus retraction forces. Methods Mol. Biol. 799, 197–216 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Sabass, B., Koch, M. D., Liu, G., Stone, H. A. & Shaevitz, J. W. Force generation by groups of migrating bacteria. Proc. Natl Acad. Sci. USA 114, 7266–7271 (2017).

    CAS  PubMed  Google Scholar 

  184. 184.

    Duvernoy, M.-C. et al. Asymmetric adhesion of rod-shaped bacteria controls microcolony morphogenesis. Nat. Commun. 9, 1120 (2018).

    PubMed  PubMed Central  Google Scholar 

  185. 185.

    Karampatzakis, A. et al. Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging. NPJ Biofilms Microbiomes 3, 20 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Rusconi, R., Garren, M. & Stocker, R. Microfluidics expanding the frontiers of microbial ecology. Annu. Rev. Biophys. 43, 65–91 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Son, K., Brumley, D. R. & Stocker, R. Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics. Nat. Rev. Microbiol. 13, 761–775 (2015).

    CAS  PubMed  Google Scholar 

  188. 188.

    Lewis, K. J. R. & Anseth, K. S. Hydrogel scaffolds to study cell biology in four dimensions. MRS Bull. 38, 260–268 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Colom, A. et al. A fluorescent membrane tension probe. Nat. Chem. 10, 1118–1125 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Özkale, B. et al. Modular soft robotic microdevices for dexterous biomanipulation. Lab. Chip 19, 778–788 (2019).

    PubMed  PubMed Central  Google Scholar 

  191. 191.

    Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors would like to thank N. Biais and members of the Persat laboratory for useful discussions and feedback. A.P. is supported by the Swiss National Science Foundation Projects Grant 31003A_169377, the Gabriella Giorgi-Cavaglieri Foundation, the Gebert Rüf Stiftung and the Fondation Beytout. Work at UCLouvain was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement n°693630), the FNRS-WELBIO (grant n°WELBIO-CR-2015A-05), the National Fund for Scientific Research (FNRS), and the Research Department of the Communauté française de Belgique (Concerted Research Action).

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Alexandre Persat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks U. Jenal, D. Limoli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Interactions that change the motion or shape of a body.

Hydrostatic pressure

The pressure in a static fluid generated by gravity.

Shear forces

Forces that are applied tangentially to a body’s surface, generally generated by flow.

Mechanical stress

A quantity that expresses the internal forces of a material.


An interaction causing a body to rotate.

Flagellum basal body

A group of proteins that anchors the flagellum to the cell body and includes the flagellum motor.


An extremely sticky substance secreted at the poles of many prosthecate bacteria that enables irreversible attachment.


An optical effect where light reflecting on a surface generates rainbow-like colours by interference.


Highly glycosylated proteins that can form a gel layer at epithelial surfaces upon exocytosis or decorate the surface of mammalian cells.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dufrêne, Y.F., Persat, A. Mechanomicrobiology: how bacteria sense and respond to forces. Nat Rev Microbiol 18, 227–240 (2020).

Download citation

Further reading