Microorganisms in the reproductive tissues of arthropods


Microorganisms that reside within or transmit through arthropod reproductive tissues have profound impacts on host reproduction, health and evolution. In this Review, we discuss select principles of the biology of microorganisms in arthropod reproductive tissues, including bacteria, viruses, protists and fungi. We review models of specific symbionts, routes of transmission, and the physiological and evolutionary outcomes for both hosts and microorganisms. We also identify areas in need of continuing research, to answer the fundamental questions that remain in fields within and beyond arthropod–microorganism associations. New opportunities for research in this area will drive a broader understanding of major concepts as well as the biodiversity, mechanisms and translational applications of microorganisms that interact with host reproductive tissues.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Example microorganisms associated with arthropod reproductive tissues.
Fig. 2: Transmission routes of microorganisms in the reproductive tract in arthropods.
Fig. 3: Effects on the genomes and transcriptomes of hosts and microorganisms.


  1. 1.

    Oulhen, N., Schulz, B. J. & Carrier, T. J. English translation of Heinrich Anton de Bary’s 1878 speech, ‘Die Erscheinung der Symbiose’ (‘De la symbiose’). Symbiosis 69, 131–139 (2016).

  2. 2.

    De Bary, A. Die Erscheinung der Symbiose. Vortrag auf der Versammlung der Naturforscher und Aertze zu Cassel (Trubner, 1879).

  3. 3.

    Pierantoni, U. L’origine di alcuni organi d’Icerya purchasi e la simbiosi ereditaria. Boll. Soc. Nat. Napoli 23, 147–150 (1909).

  4. 4.

    Sapp, J. Paul Buchner (1886–1978) and hereditary symbiosis in insects. Int. Microbiol 5, 145–150 (2002).

  5. 5.

    Funkhouser, L. J. & Bordenstein, S. R. Mom knows best: the universality of maternal microbial transmission. PLOS Biol. 11, e1001631 (2013).

  6. 6.

    Taylor, M. J., Bordenstein, S. R. & Slatko, B. Microbe profile: Wolbachia: a sex selector, a viral protector and a target to treat filarial nematodes. Microbiology 164, 1345–1347 (2018).

  7. 7.

    Chen, X., Li, S. & Aksoy, S. Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J. Mol. Evol. 48, 49–58 (1999).

  8. 8.

    Douglas, A. E. Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).

  9. 9.

    Segata, N. et al. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender-and swarm-enriched microbial biomarkers. Sci. Rep. 6, 24207 (2016).

  10. 10.

    Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. B 275, 293–299 (2008).

  11. 11.

    Jia, D. et al. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission. Nat. Microbiol. 2, 17025 (2017). This study demonstrates that binding between a viral plant pathogen and an insect bacterial symbiont assists vertical transmission of the virus through the insect.

  12. 12.

    Toh, H. et al. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 16, 149–156 (2006).

  13. 13.

    Sabree, Z. L., Kambhampati, S. & Moran, N. A. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl Acad. Sci. USA 106, 19521–19526 (2009).

  14. 14.

    Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008). This review describes fundamental principles of symbiont transmission, genome evolution and the functions of symbiont–host interactions.

  15. 15.

    Gibson, C. M. & Hunter, M. S. Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol. Lett. 13, 223–234 (2010). This review covers the biological principles of fungal symbionts of insects.

  16. 16.

    Knell, R. J. & Webberley, K. M. Sexually transmitted diseases of insects: distribution, evolution, ecology and host behaviour. Biol. Rev. Camb. Philos. Soc. 79, 557–581 (2004).

  17. 17.

    Cooley, J. R., Marshall, D. C. & Hill, K. B. A specialized fungal parasite (Massospora cicadina) hijacks the sexual signals of periodical cicadas (Hemiptera: Cicadidae: Magicicada). Sci. Rep. 8, 1432 (2018). This report demonstrates that Massospora fungi manipulate infected cicada males to exhibit female signals that in turn attract uninfected males, resulting in transmission between males during copulation attempts.

  18. 18.

    Gibson, C. M. & Hunter, M. S. Inherited fungal and bacterial endosymbionts of a parasitic wasp and its cockroach host. Microb. Ecol. 57, 542 (2009).

  19. 19.

    Boldbaatar, D. et al. Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite. Biochem. Cell Biol. 86, 331–344 (2008).

  20. 20.

    Bordenstein, S. R. & Bordenstein, S. R. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 7, 13155 (2016). This study reveals that large genomic modules in the endosymbiont prophage WO are composed of genes derived from animal–phage gene transfers or that interact with animal biology.

  21. 21.

    van der Wilk, F., Dullemans, A. M., Verbeek, M. & van den Heuvel, J. F. Isolation and characterization of APSE-1, a bacteriophage infecting the secondary endosymbiont of Acyrthosiphon pisum. Virology 262, 104–113 (1999).

  22. 22.

    Wei, J. et al. Vector development and vitellogenin determine the transovarial transmission of begomoviruses. Proc. Natl Acad. Sci. USA 114, 6746–6751 (2017).

  23. 23.

    Hurst, G. D. & Frost, C. L. Reproductive parasitism: maternally inherited symbionts in a biparental world. CSH Perspect. Biol. 7, a017699 (2015).

  24. 24.

    Chevalier, F. et al. Feminizing Wolbachia: a transcriptomics approach with insights on the immune response genes in Armadillidium vulgare. BMC Microbiol. 12, S1 (2012).

  25. 25.

    Haine, E. R., Motreuil, S. & Rigaud, T. Infection by a vertically-transmitted microsporidian parasite is associated with a female-biased sex ratio and survival advantage in the amphipod Gammarus roeseli. Parasitology 134, 1363–1367 (2007).

  26. 26.

    Zeh, D. W., Zeh, J. A. & Bonilla, M. M. Wolbachia, sex ratio bias and apparent male killing in the harlequin beetle riding pseudoscorpion. Heredity 95, 41–49 (2005).

  27. 27.

    Gotoh, T., Noda, H. & Ito, S. Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98, 13–20 (2007).

  28. 28.

    Kageyama, D., Yoshimura, K., Sugimoto, T. N., Katoh, T. K. & Watada, M. Maternally transmitted non-bacterial male killer in Drosophila biauraria. Biol. Lett. 13, 20170476 (2017).

  29. 29.

    Ironside, J. E. et al. Two species of feminizing microsporidian parasite coexist in populations of Gammarus duebeni. J. Evol. Biol. 16, 467–473 (2003).

  30. 30.

    Bandi, C., Dunn, A. M., Hurst, G. D. & Rigaud, T. Inherited microorganisms, sex-specific virulence and reproductive parasitism. Trends Parasitol. 17, 88–94 (2001).

  31. 31.

    Perilla-Henao, L. M. & Casteel, C. L. Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Front. Plant. Sci. 7, 1163 (2016).

  32. 32.

    Gray, S. M. & Banerjee, N. Mechanisms of arthropod transmission of plant and animal viruses. Microbiol. Mol. Biol. Rev. 63, 128–148 (1999).

  33. 33.

    Hogenhout, S. A., Ammar, E.-D., Whitfield, A. E. & Redinbaugh, M. G. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 46, 327–359 (2008).

  34. 34.

    Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).

  35. 35.

    Xie, J., Butler, S., Sanchez, G. & Mateos, M. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity 112, 399 (2014).

  36. 36.

    Brownlie, J. C. & Johnson, K. N. Symbiont-mediated protection in insect hosts. Trends Microbiol. 17, 348–354 (2009).

  37. 37.

    Degnan, P. H. & Moran, N. A. Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Mol. Ecol. 17, 916–929 (2008).

  38. 38.

    Kellner, R. L. Molecular identification of an endosymbiotic bacterium associated with pederin biosynthesis in Paederus sabaeus (Coleoptera: Staphylinidae). Insect Biochem. Molec. Biol. 32, 389–395 (2002).

  39. 39.

    Feldhaar, H. et al. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol. 5, 48 (2007).

  40. 40.

    Rock, D. I. et al. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol. Ecol. 27, 2039–2056 (2018).

  41. 41.

    Zhu, L.-Y. et al. Wolbachia strengthens Cardinium-induced cytoplasmic incompatibility in the spider mite Tetranychus piercei McGregor. Curr. Microbiol. 65, 516–523 (2012).

  42. 42.

    White, J. A., Kelly, S. E., Perlman, S. J. & Hunter, M. S. Cytoplasmic incompatibility in the parasitic wasp Encarsia inaron: disentangling the roles of Cardinium and Wolbachia symbionts. Heredity 102, 483 (2009).

  43. 43.

    Hughes, G. L. et al. Native microbiome impedes vertical transmission of Wolbachia in anopheles mosquitoes. Proc. Natl Acad. Sci. USA 111, 12498–12503 (2014).

  44. 44.

    Bellinvia, S., Johnston, P. R., Reinhardt, K. & Otti, O. Bacterial communities of the reproductive organs of virgin and mated common bedbugs, Cimex lectularius. Ecol. Entomol. https://doi.org/10.1111/een.12784 (2019).

  45. 45.

    Kondo, N., Shimada, M. & Fukatsu, T. Infection density of Wolbachia endosymbiont affected by co-infection and host genotype. Biol. Lett. 1, 488–491 (2005).

  46. 46.

    Skaljac, M., Zanic, K., Ban, S. G., Kontsedalov, S. & Ghanim, M. Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiol. 10, 142 (2010).

  47. 47.

    Toju, H. & Fukatsu, T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol. Ecol. 20, 853–868 (2011).

  48. 48.

    Tokura, M., Ohkuma, M. & Kudo, T. Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol. Ecol. 33, 233–240 (2000).

  49. 49.

    Nimrat, S., Bart, A. N., Keatsaksit, A. & Vuthiphandchai, V. Microbial flora of spermatophores from black tiger shrimp (Penaeus monodon) declines over long-term cryostorage. Aquaculture 274, 247–253 (2008).

  50. 50.

    Benhalima, K. & Moriyasu, M. Prevalence of bacteria in the spermathecae of female snow crab, Chionoecetes opilio (Brachyura: Majidae). Hydrobiologia 449, 261–266 (2001).

  51. 51.

    Duron, O., Hurst, G. D., Hornett, E. A., Josling, J. A. & Engelstädter, J. High incidence of the maternally inherited bacterium Cardinium in spiders. Mol. Ecol. 17, 1427–1437 (2008).

  52. 52.

    Vala, F., Egas, M., Breeuwer, J. & Sabelis, M. Wolbachia affects oviposition and mating behaviour of its spider mite host. J. Evol. Biol. 17, 692–700 (2004).

  53. 53.

    Martin, O. Y. & Goodacre, S. L. Widespread infections by the bacterial endosymbiont Cardinium in arachnids. J. Arachnol. 37, 106–109 (2009).

  54. 54.

    Vanthournout, B., Vandomme, V. & Hendrickx, F. Sex ratio bias caused by endosymbiont infection in the dwarf spider Oedothorax retusus. J. Arachnol. 42, 24–33 (2014).

  55. 55.

    Gaci, N., Borrel, G., Tottey, W., O’Toole, P. W. & Brugère, J.-F. Archaea and the human gut: new beginning of an old story. World J. Gastroenterol. 20, 16062 (2014).

  56. 56.

    Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

  57. 57.

    Turner, T. R., James, E. K. & Poole, P. S. The plant microbiome. Genome Biol. 14, 209 (2013).

  58. 58.

    Bright, M. & Bulgheresi, S. A complex journey: transmission of microbial symbionts. Nat. Rev. Microbiol. 8, 218 (2010).

  59. 59.

    Newton, I. L., Savytskyy, O. & Sheehan, K. B. Wolbachia utilize host actin for efficient maternal transmission in Drosophila melanogaster. PLOS Pathog. 11, e1004798 (2015).

  60. 60.

    Brumin, M., Levy, M. & Ghanim, M. Transovarial transmission of Rickettsia spp. and organ-specific infection of the whitefly Bemisia tabaci. Appl. Environ. Microbiol. 78, 5565–5574 (2012).

  61. 61.

    Herren, J. K., Paredes, J. C., Schüpfer, F. & Lemaitre, B. Vertical transmission of a Drosophila endosymbiont via cooption of the yolk transport and internalization machinery. MBio 4, e00532–00512 (2013).

  62. 62.

    Wilkinson, T., Fukatsu, T. & Ishikawa, H. Transmission of symbiotic bacteria Buchnera to parthenogenetic embryos in the aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Arthropod Struct. Dev. 32, 241–245 (2003).

  63. 63.

    Dykstra, H. R. et al. Factors limiting the spread of the protective symbiont Hamiltonella defensa in aphis craccivora aphids. Appl. Environ. Microbiol. 80, 5818–5827 (2014).

  64. 64.

    Cheng, D. & Hou, R. Histological observations on transovarial transmission of a yeast-like symbiote in Nilaparvata lugens Stal (Homoptera, Delphacidae). Tissue Cell 33, 273–279 (2001).

  65. 65.

    Solter, L. F. Transmission as a predictor of ecological host specificity with a focus on vertical transmission of microsporidia. J. Invert. Pathol. 92, 132–140 (2006).

  66. 66.

    Huo, Y. et al. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector. PLOS Pathog. 10, e1003949 (2014).

  67. 67.

    Fast, E. M. et al. Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche. Science 334, 990–992 (2011).

  68. 68.

    Ferree, P. M. et al. Wolbachia utilizes host microtubules and Dynein for anterior localization in the Drosophila oocyte. PLOS Pathog. 1, e14 (2005).

  69. 69.

    Koga, R., Meng, X.-Y., Tsuchida, T. & Fukatsu, T. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. Proc. Natl Acad. Sci. USA 109, E1230–E1237 (2012).

  70. 70.

    Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc. R. Soc. B 282, 20142957 (2015).

  71. 71.

    Kikuchi, Y. et al. Host–symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol. 7, 2 (2009).

  72. 72.

    Salem, H. et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531.e1513 (2017). In this report, the authors describe a nutritional symbiosis between a pectin-degrading bacterial symbiont and its pectin-eating beetle host, including characteristics of the microbial genome as well as its transmission.

  73. 73.

    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

  74. 74.

    Kaiwa, N. et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr. Biol. 24, 2465–2470 (2014).

  75. 75.

    Shukla, S. P., Vogel, H., Heckel, D. G., Vilcinskas, A. & Kaltenpoth, M. Burying beetles regulate the microbiome of carcasses and use it to transmit a core microbiota to their offspring. Mol. Ecol. 27, 1980–1991 (2017).

  76. 76.

    Pais, R., Lohs, C., Wu, Y., Wang, J. & Aksoy, S. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl. Environ. Microbiol. 74, 5965–5974 (2008).

  77. 77.

    Nadal-Jimenez, P. et al. Genetic manipulation allows in vivo tracking of the life cycle of the son-killer symbiont, Arsenophonus nasoniae, and reveals patterns of host invasion, tropism and pathology. Environ. Microbiol. 21, 3172–3182 (2019). This study uses microscopy to in vivo track a case of symbiont-mediated vertical transmission, whereby the symbiont enters offspring via larval feeding and progresses to the ovipositor in female pupae to aid transmission to the next generation.

  78. 78.

    Gottlieb, Y. et al. The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J. Virol. 84, 9310–9317 (2010).

  79. 79.

    van den Heuvel, J. F., Verbeek, M. & van der Wilk, F. Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. J. Gen. Virol. 75, 2559–2565 (1994).

  80. 80.

    Touret, F., Guiguen, F. & Terzian, C. Wolbachia influences the maternal transmission of the gypsy endogenous retrovirus in Drosophila melanogaster. mBio 5, e01529–01514 (2014).

  81. 81.

    Dutra, H. L. et al. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe 19, 771–774 (2016).

  82. 82.

    Hegde, S., Rasgon, J. L. & Hughes, G. L. The microbiome modulates arbovirus transmission in mosquitoes. Curr. Opin. Virol. 15, 97–102 (2015).

  83. 83.

    Watanabe, K., Yukuhiro, F., Matsuura, Y., Fukatsu, T. & Noda, H. Intrasperm vertical symbiont transmission. Proc. Natl Acad. Sci. USA 111, 7433–7437 (2014). This study details the vertical transmission of a Rickettsia bacterial insect symbiont via inclusion within the sperm heads of its leafhopper host.

  84. 84.

    Damiani, C. et al. Paternal transmission of symbiotic bacteria in malaria vectors. Curr. Biol. 18, R1087–R1088 (2008).

  85. 85.

    De Vooght, L., Caljon, G., Van Hees, J. & Van Den Abbeele, J. Paternal transmission of a secondary symbiont during mating in the viviparous tsetse fly. Mol. Biol. Evol. 32, 1977–1980 (2015).

  86. 86.

    Longdon, B. & Jiggins, F. M. Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone? Proc. R. Soc. B 279, 3889–3898 (2012).

  87. 87.

    Longdon, B. & Jiggins, F. M. Paternally transmitted parasites. Curr. Biol. 20, R695–R696 (2010).

  88. 88.

    Engelstädter, J. & Hurst, G. D. What use are male hosts? The dynamics of maternally inherited bacteria showing sexual transmission or male killing. Am. Nat. 173, E159–E170 (2009).

  89. 89.

    Ironside, J. E., Smith, J. E., Hatcher, M. J. & Dunn, A. M. Should sex-ratio distorting parasites abandon horizontal transmission? BMC Evol. Biol. 11, 370 (2011).

  90. 90.

    Otti, O. Genitalia-associated microbes in insects. Insect Sci. 22, 325–339 (2015).

  91. 91.

    Gauthier, L. et al. Viruses associated with ovarian degeneration in Apis mellifera L. queens. PLOS ONE 6, e16217 (2011).

  92. 92.

    Burand, J. P. The sexually transmitted insect virus, Hz-2V. Virol. Sin. 24, 428 (2009).

  93. 93.

    Himler, A. G. et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332, 254–256 (2011).

  94. 94.

    Weeks, A. R., Turelli, M., Harcombe, W. R., Reynolds, K. T. & Hoffmann, A. A. From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLOS Biol. 5, e114 (2007).

  95. 95.

    Patot, S., Lepetit, D., Charif, D., Varaldi, J. & Fleury, F. Molecular detection, penetrance, and transmission of an inherited virus responsible for behavioral manipulation of an insect parasitoid. Appl. Environ. Microbiol. 75, 703–710 (2009).

  96. 96.

    Pannebakker, B. A., Loppin, B., Elemans, C. P., Humblot, L. & Vavre, F. Parasitic inhibition of cell death facilitates symbiosis. Proc. Natl Acad. Sci. USA 104, 213–215 (2007).

  97. 97.

    Zchori-Fein, E., Borad, C. & Harari, A. R. Oogenesis in the date stone beetle, coccotrypes dactyliperda, depends on symbiotic bacteria. Physiol. Entomol. 31, 164–169 (2006).

  98. 98.

    Snook, R. R., Cleland, S. Y., Wolfner, M. F. & Karr, T. L. Offsetting effects of Wolbachia infection and heat shock on sperm production in Drosophila simulans: analyses of fecundity, fertility and accessory gland proteins. Genetics 155, 167–178 (2000).

  99. 99.

    Ebbert, M. A., Marlowe, J. L. & Burkholder, J. J. Protozoan and intracellular fungal gut endosymbionts in Drosophila: prevalence and fitness effects of single and dual infections. J. Invert. Pathol. 83, 37–45 (2003).

  100. 100.

    Gibson, C. M. & Hunter, M. S. Negative fitness consequences and transmission dynamics of a heritable fungal symbiont of a parasitic wasp. Appl. Environ. Microbiol. 75, 3115–3119 (2009).

  101. 101.

    Yixin, H. Y., Woolfit, M., Rancès, E., O’Neill, S. L. & McGraw, E. A. Wolbachia-associated bacterial protection in the mosquito Aedes aegypti. PLOS Negl. Trop. Dis. 7, e2362 (2013).

  102. 102.

    Braquart-Varnier, C. et al. The mutualistic side of Wolbachia–isopod interactions: Wolbachia mediated protection against pathogenic intracellular bacteria. Front. Microbiol. 6, 1388 (2015).

  103. 103.

    Nikoh, N. et al. Genomic insight into symbiosis-induced insect color change by a facultative bacterial endosymbiont, ‘Candidatus Rickettsiella viridis’. mBio 9, e00890–18 (2018).

  104. 104.

    Funkhouser-Jones, L. J., van Opstal, E. J., Sharma, A. & Bordenstein, S. R. The maternal effect gene Wds controls Wolbachia titer in Nasonia. Curr. Biol. 28, 1692–1702.e1696 (2018).

  105. 105.

    Zhong, W. et al. Immune anticipation of mating in Drosophila: Turandot M promotes immunity against sexually transmitted fungal infections. Proc. Biol. Sci. 280, 20132018 (2013).

  106. 106.

    Moriyama, M. et al. Comparative transcriptomics of the bacteriome and the spermalege of the bedbug Cimex lectularius (Hemiptera: Cimicidae). Appl. Entomol. Zool. 47, 233–243 (2012).

  107. 107.

    Stutt, A. D. & Siva-Jothy, M. T. Traumatic insemination and sexual conflict in the bed bug Cimex lectularius. Proc. Natl Acad. Sci. USA 98, 5683–5687 (2001).

  108. 108.

    Reinhardt, K., Naylor, R. & Siva–Jothy, M. T. Reducing a cost of traumatic insemination: female bedbugs evolve a unique organ. Proc. R. Soc. B 270, 2371–2375 (2003).

  109. 109.

    Büchner, P. Studien an intracellularen Symbionten. IV-Die Bakteriensymbiose der Bettwanze. Arch. Protistenk 46, 225–263 (1923).

  110. 110.

    Buchner, P. Endosymbiosis of Animals with Plant Microorganisms (Wiley, 1965).

  111. 111.

    Marshall, J. L. Rapid evolution of spermathecal duct length in the Allonemobius socius complex of crickets: species, population and Wolbachia effects. PLOS ONE 2, e720 (2007).

  112. 112.

    Duron, O. et al. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol. 6, 27 (2008).

  113. 113.

    Dunn, A. M. & Smith, J. E. Microsporidian life cycles and diversity: the relationship between virulence and transmission. Microbes Infect. 3, 381–388 (2001).

  114. 114.

    Wang, F. et al. A novel negative-stranded RNA virus mediates sex ratio in its parasitoid host. PLOS Pathog. 13, e1006201 (2017).

  115. 115.

    Juchault, P., Louis, C., Martin, G. & Noulin, G. Masculinization of female isopods (Crustacea) correlated with non-Mendelian inheritance of cytoplasmic viruses. Proc. Natl Acad. Sci. USA 88, 10460–10464 (1991).

  116. 116.

    Nakanishi, K., Hoshino, M., Nakai, M., Kunimi, Y. & Novel, R. N. A. Sequences associated with late male killing in Homona magnanima. Proc. R. Soc. B 275, 1249–1254 (2008).

  117. 117.

    Dedeine, F., Bouletreau, M. & Vavre, F. Wolbachia requirement for oogenesis: occurrence within the genus Asobara (Hymenoptera, Braconidae) and evidence for intraspecific variation in A. tabida. Heredity 95, 394 (2005).

  118. 118.

    Leclercq, S. et al. Birth of a W sex chromosome by horizontal transfer of Wolbachia bacterial symbiont genome. Proc. Natl Acad. Sci. USA 113, 15036–15041 (2016). This report demonstrates that pillbugs have a 3 Mb genome insert from the endosymbiont Wolbachia that appears to function as a novel female-determining sex chromosomal region.

  119. 119.

    Stouthamer, R., Russell, J. E., Vavre, F. & Nunney, L. Intragenomic conflict in populations infected by parthenogenesis inducing Wolbachia ends with irreversible loss of sexual reproduction. BMC Evol. Biol. 10, 229 (2010).

  120. 120.

    Becking, T. et al. Sex chromosomes control vertical transmission of feminizing Wolbachia symbionts in an isopod. PLOS Biol. 17, e3000438 (2019).

  121. 121.

    Kageyama, D., Narita, S. & Watanabe, M. Insect sex determination manipulated by their endosymbionts: incidences, mechanisms and implications. Insects 3, 161–199 (2012).

  122. 122.

    Morimoto, S., Nakai, M., Ono, A. & Kunimi, Y. Late male-killing phenomenon found in a Japanese population of the oriental tea tortrix, Homona magnanima (Lepidoptera: Tortricidae). Heredity 87, 435 (2001).

  123. 123.

    Duron, O. et al. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Mol. Ecol. 23, 2105–2117 (2014).

  124. 124.

    Hosokawa, T., Kikuchi, Y., Shimada, M. & Fukatsu, T. Obligate symbiont involved in pest status of host insect. Proc. R. Soc. B 274, 1979–1984 (2007).

  125. 125.

    Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).

  126. 126.

    Morse, S., Dick, C. W., Patterson, B. D. & Dittmar, K. Some like it hot: evolution and ecology of novel endosymbionts in bat flies of cave-roosting bats (Hippoboscoidea, Nycterophiliinae). Appl. Environ. Microbiol. 78, 02455–02412 (2012).

  127. 127.

    Brumin, M., Kontsedalov, S. & Ghanim, M. Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci. 18, 57–66 (2011).

  128. 128.

    Truitt, A. M., Kapun, M., Kaur, R. & Miller, W. J. Wolbachia modifies thermal preference in Drosophila melanogaster. Environ. Microbiol. 21, 3259–3268 (2018).

  129. 129.

    Corbin, C., Heyworth, E. R., Ferrari, J. & Hurst, G. D. Heritable symbionts in a world of varying temperature. Heredity 118, 10 (2017).

  130. 130.

    Baião, G. C., Schneider, D. I., Miller, W. J. & Klasson, L. The effect of Wolbachia on gene expression in Drosophila paulistorum and its implications for symbiont-induced host speciation. BMC Genomics 20, 465 (2019).

  131. 131.

    Zheng, Y. et al. Differentially expressed profiles in the larval testes of Wolbachia infected and uninfected Drosophila. BMC Genomics 12, 595 (2011).

  132. 132.

    Kupper, M., Stigloher, C., Feldhaar, H. & Gross, R. Distribution of the obligate endosymbiont Blochmannia floridanus and expression analysis of putative immune genes in ovaries of the carpenter ant Camponotus floridanus. Arthopod Struct. Dev. 45, 475–487 (2016).

  133. 133.

    Negri, I. et al. Unravelling the Wolbachia evolutionary role: the reprogramming of the host genomic imprinting. Proc. R. Soc. B 276, 2485–2491 (2009).

  134. 134.

    Wang, J. & Aksoy, S. PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse’s offspring. Proc. Natl Acad. Sci. USA 109, 10552–10557 (2012).

  135. 135.

    Papafotiou, G., Oehler, S., Savakis, C. & Bourtzis, K. Regulation of Wolbachia ankyrin domain encoding genes in Drosophila gonads. Res. Microbiol. 162, 764–772 (2011).

  136. 136.

    Yixin, H. Y. et al. Infection with a virulent strain of Wolbachia disrupts genome wide-patterns of cytosine methylation in the mosquito Aedes aegypti. PLOS ONE 8, e66482 (2013).

  137. 137.

    Bhattacharya, T., Newton, I. L. & Hardy, R. W. Wolbachia elevates host methyltransferase expression to block an RNA virus early during infection. PLOS Pathog. 13, e1006427 (2017).

  138. 138.

    Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81 (2000).

  139. 139.

    Husnik, F. & McCutcheon, J. P. Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 16, 67 (2018).

  140. 140.

    Moran, N. A. & Jarvik, T. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328, 624–627 (2010).

  141. 141.

    Verster, K. I. et al. Horizontal transfer of bacterial cytolethal distending toxin B genes to insects. Mol. Biol. Evol. 36, 2105–2110 (2019).

  142. 142.

    Metcalf, J. A., Funkhouser-Jones, L. J., Brileya, K., Reysenbach, A. L. & Bordenstein, S. R. Antibacterial gene transfer across the tree of life. eLife 3, e04266 (2014).

  143. 143.

    Funkhouser-Jones, L. J. et al. Wolbachia co-infection in a hybrid zone: discovery of horizontal gene transfers from two Wolbachia supergroups into an animal genome. PeerJ 3, e1479 (2015).

  144. 144.

    Hotopp, J. C. D. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317, 1753–1756 (2007).

  145. 145.

    Wybouw, N. et al. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. ELife 3, e02365 (2014).

  146. 146.

    Blondel, L., Jones, T. E. & Extavour, C. G. Bacterial contribution to genesis of the novel germ line determinant oskar. Preprint at https://doi.org/10.1101/453514 (2018).

  147. 147.

    Selman, M. et al. Acquisition of an animal gene by microsporidian intracellular parasites. Curr. Biol. 21, R576–R577 (2011).

  148. 148.

    Hughes, A. L. & Friedman, R. Genome-wide survey for genes horizontally transferred from cellular organisms to baculoviruses. Mol. Biol. Evol. 20, 979–987 (2003).

  149. 149.

    LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243–247 (2017).

  150. 150.

    Beckmann, J. F., Ronau, J. A. & Hochstrasser, M. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat. Microbiol. 2, 17007 (2017).

  151. 151.

    Perlmutter, J. I. et al. The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLOS Pathog. 15, e1007936 (2019).

  152. 152.

    Shropshire, J. D., On, J., Layton, E. M., Zhou, H. & Bordenstein, S. R. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 115, 4987–4991 (2018).

  153. 153.

    Hurst, G. D. & Jiggins, F. M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc. R. Soc. B 272, 1525–1534 (2005).

  154. 154.

    Jiggins, F. M. & Tinsley, M. C. An ancient mitochondrial polymorphism in Adalia bipunctata linked to a sex-ratio-distorting bacterium. Genetics 171, 1115–1124 (2005).

  155. 155.

    Ironside, J. E., Dunn, A., Rollinson, D. & Smith, J. Association with host mitochondrial haplotypes suggests that feminizing microsporidia lack horizontal transmission. J. Evol. Biol. 16, 1077–1083 (2003).

  156. 156.

    Charlat, S. et al. The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina. BMC Evol. Biol. 9, 64 (2009).

  157. 157.

    Cariou, M., Duret, L. & Charlat, S. The global impact of Wolbachia on mitochondrial diversity and evolution. J. Evol. Biol. 30, 2204–2210 (2017).

  158. 158.

    Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).

  159. 159.

    Kapantaidaki, D. E. et al. Low levels of mitochondrial DNA and symbiont diversity in the worldwide agricultural pest, the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). J. Heredity 106, 80–92 (2014).

  160. 160.

    Beninati, T. et al. A novel alpha-Proteobacterium resides in the mitochondria of ovarian cells of the tick Ixodes ricinus. Appl. Environ. Microbiol. 70, 2596–2602 (2004).

  161. 161.

    Van Ham, R. C. et al. Reductive genome evolution in Buchnera aphidicola. Proc. Natl Acad. Sci. USA 100, 581–586 (2003).

  162. 162.

    Funk, D. J., Wernegreen, J. J. & Moran, N. A. Intraspecific variation in symbiont genomes: bottlenecks and the aphid–Buchnera association. Genetics 157, 477–489 (2001).

  163. 163.

    Abbot, P. & Moran, N. A. Extremely low levels of genetic polymorphism in endosymbionts (Buchnera) of aphids (Pemphigus). Mol. Ecol. 11, 2649–2660 (2002).

  164. 164.

    Moran, N. A. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc. Natl Acad. Sci. USA 93, 2873–2878 (1996).

  165. 165.

    Charlat, S. et al. Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity. Curr. Biol. 17, 273–277 (2007).

  166. 166.

    Jaenike, J., Dyer, K. A., Cornish, C. & Minhas, M. S. Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLOS Biol. 4, e325 (2006).

  167. 167.

    Jiggins, F. M., Hurst, G. D. & Majerus, M. E. Sex-ratio-distorting Wolbachia causes sex-role reversal in its butterfly host. Proc. R. Soc. B 267, 69–73 (2000).

  168. 168.

    Burand, J. P., Tan, W., Kim, W., Nojima, S. & Roelofs, W. Infection with the insect virus Hz-2v alters mating behavior and pheromone production in female Helicoverpa zea moths. J. Insect Sci. 5, 6 (2005).

  169. 169.

    Brucker, R. M. & Bordenstein, S. R. Speciation by symbiosis. Trends Ecol. Evol. 27, 443–451 (2012).

  170. 170.

    Miller, W. J., Ehrman, L. & Schneider, D. Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLOS Pathog. 6, e1001214 (2010).

  171. 171.

    Krueger, C. M., Degrugillier, M. E. & Narang, S. K. Size difference among 16S rRNA genes from endosymbiontic bacteria found in testes of Heliothis virescens, H. subflexa (Lepidoptera: Noctuidae), and backcross sterile male moths. Fla. Entomol. 76, 382–390 (1993).

  172. 172.

    Bordenstein, S. R., O’Hara, F. P. & Werren, J. H. Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409, 707–710 (2001).

  173. 173.

    Gebiola, M., Kelly, S. E., Hammerstein, P., Giorgini, M. & Hunter, M. S. ‘Darwin’s corollary’ and cytoplasmic incompatibility induced by Cardinium may contribute to speciation in Encarsia wasps (Hymenoptera: Aphelinidae). Evolution 70, 2447–2458 (2016).

  174. 174.

    O’Neill, S. L. et al. Scaled deployment of Wolbachia to protect the community from dengue and other Aedes transmitted arboviruses. Gates Open Res. 2, 36 (2018).

  175. 175.

    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579 (2017).

  176. 176.

    Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143 (2018).

  177. 177.

    van Oppen, M. J. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).

  178. 178.

    Gibson, J. et al. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. Proc. Natl Acad. Sci. USA 111, 8007–8012 (2014).

  179. 179.

    Degli Esposti, M. & Romero, E. M. The functional microbiome of arthropods. PLOS ONE 12, e0176573 (2017).

  180. 180.

    Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z. & Welch, J. J. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B 282, 20150249 (2015).

  181. 181.

    Mann, R. S., Pelz-Stelinski, K., Hermann, S. L., Tiwari, S. & Stelinski, L. L. Sexual transmission of a plant pathogenic bacterium, Candidatus Liberibacter asiaticus, between conspecific insect vectors during mating. PLOS ONE 6, e29197 (2011).

  182. 182.

    Bolling, B. G., Olea-Popelka, F. J., Eisen, L., Moore, C. G. & Blair, C. D. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus. Virology 427, 90–97 (2012).

  183. 183.

    Moran, N. A. & Dunbar, H. E. Sexual acquisition of beneficial symbionts in aphids. Proc. Natl Acad. Sci. USA 103, 12803–12806 (2006).

  184. 184.

    Sookar, P., Bhagwant, S. & Allymamod, M. Effect of Metarhizium anisopliae on the fertility and fecundity of two species of fruit flies and horizontal transmission of mycotic infection. J. Insect Sci. 14, 100 (2014).

  185. 185.

    Adamo, S. A., Kovalko, I., Easy, R. H. & Stoltz, D. A viral aphrodisiac in the cricket Gryllus texensis. J. Exp. Biol. 217, 1970–1976 (2014).

  186. 186.

    García-Munguía, A. M., Garza-Hernández, J. A., Rebollar-Tellez, E. A., Rodríguez-Pérez, M. A. & Reyes-Villanueva, F. Transmission of Beauveria bassiana from male to female Aedes aegypti mosquitoes. Parasites Vectors 4, 24 (2011).

  187. 187.

    Lung, O., Kuo, L. & Wolfner, M. F. Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. J. Insect Physiol. 47, 617–622 (2001).

  188. 188.

    Esteves, E. et al. Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: cellular localization and temporal expression of microplusin during oogenesis and embryogenesis. Dev. Comp. Immunol. 33, 913–919 (2009).

  189. 189.

    Kaya, M. et al. New chitin, chitosan, and O-carboxymethyl chitosan sources from resting eggs of Daphnia longispina (Crustacea); with physicochemical characterization, and antimicrobial and antioxidant activities. Biotechnol. Bioproc. E 19, 58–69 (2014).

  190. 190.

    Peng, Y., Grassl, J., Millar, A. H. & Baer, B. Seminal fluid of honeybees contains multiple mechanisms to combat infections of the sexually transmitted pathogen Nosema apis. Proc. R. Soc. B 283, 20151785 (2016).

  191. 191.

    Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108, 4680–4687 (2011).

  192. 192.

    Bradford, L. L. & Ravel, J. The vaginal mycobiome: a contemporary perspective on fungi in women’s health and diseases. Virulence 8, 342–351 (2017).

  193. 193.

    Wylie, K. M. et al. The vaginal eukaryotic DNA virome and preterm birth. Am. J. Obstet. Gynecol. 219, 189.e1–189.e12 (2018).

  194. 194.

    Aagaard, K. et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLOS ONE 7, e36466 (2012).

  195. 195.

    Zhang, R. et al. Qualitative and semiquantitative analysis of Lactobacillus species in the vaginas of healthy fertile and postmenopausal Chinese women. J. Med. Microbiol. 61, 729–739 (2012).

  196. 196.

    Shiraishi, T. et al. Influence of menstruation on the microbiota of healthy women’s labia minora as analyzed using a 16S rRNA gene-based clone library method. Jpn. J. Infect. Dis. 64, 76–80 (2011).

  197. 197.

    Noyes, N., Cho, K.-C., Ravel, J., Forney, L. J. & Abdo, Z. Associations between sexual habits, menstrual hygiene practices, demographics and the vaginal microbiome as revealed by Bayesian network analysis. PLOS ONE 13, e0191625 (2018).

  198. 198.

    Hunt, K. M. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLOS ONE 6, e21313 (2011).

  199. 199.

    Hochreiter, W. W., Duncan, J. L. & Schaeffer, A. J. Evaluation of the bacterial flora of the prostate using a 16S rRNA gene based polymerase chain reaction. J. Urol. 163, 127–130 (2000).

  200. 200.

    Porter, C. M., Shrestha, E., Peiffer, L. B. & Sfanos, K. S. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis. 21, 345–354 (2018).

  201. 201.

    Liu, C. M. et al. Male circumcision significantly reduces prevalence and load of genital anaerobic bacteria. mBio 4, e00076 (2013).

  202. 202.

    Nelson, D. E. et al. Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLOS ONE 7, e36298 (2012).

  203. 203.

    Mändar, R. et al. Seminal microbiome in men with and without prostatitis. Int. J. Urol. 24, 211–216 (2017).

  204. 204.

    Pellati, D. et al. Genital tract infections and infertility. Eur. J. Obstet. Gynecol. Reprod. Biol. 140, 3–11 (2008).

  205. 205.

    Payne, M. S. & Bayatibojakhi, S. Exploring preterm birth as a polymicrobial disease: an overview of the uterine microbiome. Front. Immunol. 5, 595 (2014).

  206. 206.

    Onderdonk, A. B., Delaney, M. L. & Fichorova, R. N. The human microbiome during bacterial vaginosis. Clin. Microbiol. Rev. 29, 223–238 (2016).

  207. 207.

    Weng, S. L. et al. Bacterial communities in semen from men of infertile couples: metagenomic sequencing reveals relationships of seminal microbiota to semen quality. PLOS ONE 9, e110152 (2014).

  208. 208.

    Sastry, K. S. Seed-Borne Plant Virus Diseases (Springer, 2013).

  209. 209.

    Saikkonen, K., Faeth, S. H., Helander, M. & Sullivan, T. Fungal endophytes: a continuum of interactions with host plants. Annu. Rev. Ecol. Evol. S. 29, 319–343 (1998).

  210. 210.

    Gao, F.-K., Dai, C.-C. & Liu, X.-Z. Mechanisms of fungal endophytes in plant protection against pathogens. Afr. J. Microbiol. Res. 4, 1346–1351 (2010).

  211. 211.

    Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ. Microbiol. 7, 40–50 (2014).

  212. 212.

    Cankar, K., Kraigher, H., Ravnikar, M. & Rupnik, M. Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol. Lett. 244, 341–345 (2005).

  213. 213.

    Compant, S., Mitter, B., Colli-Mull, J. G., Gangl, H. & Sessitsch, A. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb. Ecol. 62, 188–197 (2011).

  214. 214.

    Kaga, H. et al. Rice seeds as sources of endophytic bacteria. Microbes Environ. 24, 154–162 (2009).

  215. 215.

    Lopez-Lopez, A., Rogel, M. A., Ormeno-Orrillo, E., Martinez-Romero, J. & Martinez-Romero, E. Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst. Appl. Microbiol. 33, 322–327 (2010).

  216. 216.

    Mundt, J. O. & Hinkle, N. F. Bacteria within ovules and seeds. Appl. Environ. Microbiol. 32, 694–698 (1976).

  217. 217.

    Mano, H. et al. Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ. 21, 86–100 (2006).

  218. 218.

    Shade, A., McManus, P. S. & Handelsman, J. Unexpected diversity during community succession in the apple flower microbiome. mBio 4, e00602–e00612 (2013).

  219. 219.

    Obersteiner, A. et al. Pollen-associated microbiome correlates with pollution parameters and the allergenicity of pollen. PLOS ONE 11, e0149545 (2016).

  220. 220.

    Ambika Manirajan, B. et al. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environ. Microbiol. 18, 5161–5174 (2016).

  221. 221.

    Manirajan, B. A. et al. Diversity, specificity, co-occurrence and hub taxa of the bacterial–fungal pollen microbiome. FEMS Microbiol. Ecol. 94, fiy112 (2018).

  222. 222.

    Sugio, A. et al. Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu. Rev. Phytopathol. 49, 175–195 (2011).

  223. 223.

    MacLean, A. M. et al. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLOS Biol. 12, e1001835 (2014). This report presents a case in which a phytoplasma bacterial pathogen of Arabidopsis directly manipulates plant reproduction via production of the SAP54 transcription factor that degrades host proteins critical to reproductive tissue development. This converts plant reproductive structures into leaves that better attract insect hosts for oviposition and infection, thus spreading the infection.

  224. 224.

    Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M. & Hogenhout, S. A. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl Acad. Sci. USA 108, E1254–E1263 (2011).

  225. 225.

    Puente, M. E., Li, C. Y. & Bashan, Y. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ. Exp. Bot. 66, 402–408 (2009).

  226. 226.

    Puente, M. E., Li, C. Y. & Bashan, Y. Rock-degrading endophytic bacteria in cacti. Environ. Exp. Bot. 66, 389–401 (2009).

  227. 227.

    Sánchez-López, A. S. et al. Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues. Plant Soil 422, 51–66 (2018).

  228. 228.

    Carlier, A. L. & Eberl, L. The eroded genome of a Psychotria leaf symbiont: hypotheses about lifestyle and interactions with its plant host. Environ. Microbiol. 14, 2757–2769 (2012).

  229. 229.

    Partida-Martinez, L. P. & Hertweck, C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437, 884 (2005).

Download references


The authors thank M. I. Hood-Pishchany, K. Ngo, B. Leigh and the journal editorial team for constructive comments. Work in the authors’ laboratory was supported by awards from the National Institutes of Health (NIH; R21 AI133522) and the Vanderbilt Microbiome Initiative to S.R.B, as well as by NIH grant F31 AI143152 to J.I.P.

Author information

S.R.B. and J.I.P. wrote the article, reviewed and edited the manuscript before submission. J.I.P initially drafted the article and researched data for the article.

Correspondence to Jessamyn I. Perlmutter or Seth R. Bordenstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks G. Hurst, I. Newton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Or mycetocytes. Specialized fat cells found in some insects that contain endosymbiotic organisms, especially bacteria (or fungi), that provide essential nutrients or functions for their hosts. Bacteriocytes or mycetocytes together form bacteriomes or mycetomes, which are specialized organs in some insects that house the symbionts.


Hollow spheres of cells surrounding a cavity of fluid, comprising the early stages in the development of embryos.


The tube-like organ at the bottom of the abdomen that female arthropods use to lay eggs.


An organ in the female reproductive tract in insects that is used to store sperm post-mating.


The exclusively female line of descent from a female ancestor to a female descendant.


The genome of a holobiont, which is the host and all its microbial symbionts. The hologenome includes the genomes of the host and its microorganisms.

Vas deferens

A muscular tube in the human male reproductive tract that carries sperm to the ejaculatory duct.

Coronal sulcus

The indented groove at the base of the human penis head.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perlmutter, J.I., Bordenstein, S.R. Microorganisms in the reproductive tissues of arthropods. Nat Rev Microbiol 18, 97–111 (2020). https://doi.org/10.1038/s41579-019-0309-z

Download citation

Further reading