Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microorganisms in the reproductive tissues of arthropods

Abstract

Microorganisms that reside within or transmit through arthropod reproductive tissues have profound impacts on host reproduction, health and evolution. In this Review, we discuss select principles of the biology of microorganisms in arthropod reproductive tissues, including bacteria, viruses, protists and fungi. We review models of specific symbionts, routes of transmission, and the physiological and evolutionary outcomes for both hosts and microorganisms. We also identify areas in need of continuing research, to answer the fundamental questions that remain in fields within and beyond arthropod–microorganism associations. New opportunities for research in this area will drive a broader understanding of major concepts as well as the biodiversity, mechanisms and translational applications of microorganisms that interact with host reproductive tissues.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Example microorganisms associated with arthropod reproductive tissues.
Fig. 2: Transmission routes of microorganisms in the reproductive tract in arthropods.
Fig. 3: Effects on the genomes and transcriptomes of hosts and microorganisms.

References

  1. 1.

    Oulhen, N., Schulz, B. J. & Carrier, T. J. English translation of Heinrich Anton de Bary’s 1878 speech, ‘Die Erscheinung der Symbiose’ (‘De la symbiose’). Symbiosis 69, 131–139 (2016).

    Google Scholar 

  2. 2.

    De Bary, A. Die Erscheinung der Symbiose. Vortrag auf der Versammlung der Naturforscher und Aertze zu Cassel (Trubner, 1879).

  3. 3.

    Pierantoni, U. L’origine di alcuni organi d’Icerya purchasi e la simbiosi ereditaria. Boll. Soc. Nat. Napoli 23, 147–150 (1909).

    Google Scholar 

  4. 4.

    Sapp, J. Paul Buchner (1886–1978) and hereditary symbiosis in insects. Int. Microbiol 5, 145–150 (2002).

    PubMed  Google Scholar 

  5. 5.

    Funkhouser, L. J. & Bordenstein, S. R. Mom knows best: the universality of maternal microbial transmission. PLOS Biol. 11, e1001631 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Taylor, M. J., Bordenstein, S. R. & Slatko, B. Microbe profile: Wolbachia: a sex selector, a viral protector and a target to treat filarial nematodes. Microbiology 164, 1345–1347 (2018).

    CAS  PubMed  Google Scholar 

  7. 7.

    Chen, X., Li, S. & Aksoy, S. Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J. Mol. Evol. 48, 49–58 (1999).

    CAS  PubMed  Google Scholar 

  8. 8.

    Douglas, A. E. Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).

    CAS  PubMed  Google Scholar 

  9. 9.

    Segata, N. et al. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender-and swarm-enriched microbial biomarkers. Sci. Rep. 6, 24207 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. B 275, 293–299 (2008).

    PubMed  Google Scholar 

  11. 11.

    Jia, D. et al. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission. Nat. Microbiol. 2, 17025 (2017). This study demonstrates that binding between a viral plant pathogen and an insect bacterial symbiont assists vertical transmission of the virus through the insect.

    PubMed  Google Scholar 

  12. 12.

    Toh, H. et al. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 16, 149–156 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Sabree, Z. L., Kambhampati, S. & Moran, N. A. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl Acad. Sci. USA 106, 19521–19526 (2009).

    CAS  PubMed  Google Scholar 

  14. 14.

    Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008). This review describes fundamental principles of symbiont transmission, genome evolution and the functions of symbiont–host interactions.

    CAS  PubMed  Google Scholar 

  15. 15.

    Gibson, C. M. & Hunter, M. S. Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol. Lett. 13, 223–234 (2010). This review covers the biological principles of fungal symbionts of insects.

    PubMed  Google Scholar 

  16. 16.

    Knell, R. J. & Webberley, K. M. Sexually transmitted diseases of insects: distribution, evolution, ecology and host behaviour. Biol. Rev. Camb. Philos. Soc. 79, 557–581 (2004).

    PubMed  Google Scholar 

  17. 17.

    Cooley, J. R., Marshall, D. C. & Hill, K. B. A specialized fungal parasite (Massospora cicadina) hijacks the sexual signals of periodical cicadas (Hemiptera: Cicadidae: Magicicada). Sci. Rep. 8, 1432 (2018). This report demonstrates that Massospora fungi manipulate infected cicada males to exhibit female signals that in turn attract uninfected males, resulting in transmission between males during copulation attempts.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Gibson, C. M. & Hunter, M. S. Inherited fungal and bacterial endosymbionts of a parasitic wasp and its cockroach host. Microb. Ecol. 57, 542 (2009).

    PubMed  Google Scholar 

  19. 19.

    Boldbaatar, D. et al. Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite. Biochem. Cell Biol. 86, 331–344 (2008).

    CAS  PubMed  Google Scholar 

  20. 20.

    Bordenstein, S. R. & Bordenstein, S. R. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 7, 13155 (2016). This study reveals that large genomic modules in the endosymbiont prophage WO are composed of genes derived from animal–phage gene transfers or that interact with animal biology.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    van der Wilk, F., Dullemans, A. M., Verbeek, M. & van den Heuvel, J. F. Isolation and characterization of APSE-1, a bacteriophage infecting the secondary endosymbiont of Acyrthosiphon pisum. Virology 262, 104–113 (1999).

    PubMed  Google Scholar 

  22. 22.

    Wei, J. et al. Vector development and vitellogenin determine the transovarial transmission of begomoviruses. Proc. Natl Acad. Sci. USA 114, 6746–6751 (2017).

    CAS  PubMed  Google Scholar 

  23. 23.

    Hurst, G. D. & Frost, C. L. Reproductive parasitism: maternally inherited symbionts in a biparental world. CSH Perspect. Biol. 7, a017699 (2015).

    Google Scholar 

  24. 24.

    Chevalier, F. et al. Feminizing Wolbachia: a transcriptomics approach with insights on the immune response genes in Armadillidium vulgare. BMC Microbiol. 12, S1 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Haine, E. R., Motreuil, S. & Rigaud, T. Infection by a vertically-transmitted microsporidian parasite is associated with a female-biased sex ratio and survival advantage in the amphipod Gammarus roeseli. Parasitology 134, 1363–1367 (2007).

    CAS  PubMed  Google Scholar 

  26. 26.

    Zeh, D. W., Zeh, J. A. & Bonilla, M. M. Wolbachia, sex ratio bias and apparent male killing in the harlequin beetle riding pseudoscorpion. Heredity 95, 41–49 (2005).

    CAS  PubMed  Google Scholar 

  27. 27.

    Gotoh, T., Noda, H. & Ito, S. Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98, 13–20 (2007).

    CAS  PubMed  Google Scholar 

  28. 28.

    Kageyama, D., Yoshimura, K., Sugimoto, T. N., Katoh, T. K. & Watada, M. Maternally transmitted non-bacterial male killer in Drosophila biauraria. Biol. Lett. 13, 20170476 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Ironside, J. E. et al. Two species of feminizing microsporidian parasite coexist in populations of Gammarus duebeni. J. Evol. Biol. 16, 467–473 (2003).

    CAS  PubMed  Google Scholar 

  30. 30.

    Bandi, C., Dunn, A. M., Hurst, G. D. & Rigaud, T. Inherited microorganisms, sex-specific virulence and reproductive parasitism. Trends Parasitol. 17, 88–94 (2001).

    CAS  PubMed  Google Scholar 

  31. 31.

    Perilla-Henao, L. M. & Casteel, C. L. Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Front. Plant. Sci. 7, 1163 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Gray, S. M. & Banerjee, N. Mechanisms of arthropod transmission of plant and animal viruses. Microbiol. Mol. Biol. Rev. 63, 128–148 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Hogenhout, S. A., Ammar, E.-D., Whitfield, A. E. & Redinbaugh, M. G. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 46, 327–359 (2008).

    CAS  PubMed  Google Scholar 

  34. 34.

    Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).

    CAS  PubMed  Google Scholar 

  35. 35.

    Xie, J., Butler, S., Sanchez, G. & Mateos, M. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity 112, 399 (2014).

    CAS  PubMed  Google Scholar 

  36. 36.

    Brownlie, J. C. & Johnson, K. N. Symbiont-mediated protection in insect hosts. Trends Microbiol. 17, 348–354 (2009).

    CAS  PubMed  Google Scholar 

  37. 37.

    Degnan, P. H. & Moran, N. A. Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Mol. Ecol. 17, 916–929 (2008).

    CAS  PubMed  Google Scholar 

  38. 38.

    Kellner, R. L. Molecular identification of an endosymbiotic bacterium associated with pederin biosynthesis in Paederus sabaeus (Coleoptera: Staphylinidae). Insect Biochem. Molec. Biol. 32, 389–395 (2002).

    CAS  Google Scholar 

  39. 39.

    Feldhaar, H. et al. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol. 5, 48 (2007).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Rock, D. I. et al. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol. Ecol. 27, 2039–2056 (2018).

    PubMed  Google Scholar 

  41. 41.

    Zhu, L.-Y. et al. Wolbachia strengthens Cardinium-induced cytoplasmic incompatibility in the spider mite Tetranychus piercei McGregor. Curr. Microbiol. 65, 516–523 (2012).

    CAS  PubMed  Google Scholar 

  42. 42.

    White, J. A., Kelly, S. E., Perlman, S. J. & Hunter, M. S. Cytoplasmic incompatibility in the parasitic wasp Encarsia inaron: disentangling the roles of Cardinium and Wolbachia symbionts. Heredity 102, 483 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Hughes, G. L. et al. Native microbiome impedes vertical transmission of Wolbachia in anopheles mosquitoes. Proc. Natl Acad. Sci. USA 111, 12498–12503 (2014).

    CAS  PubMed  Google Scholar 

  44. 44.

    Bellinvia, S., Johnston, P. R., Reinhardt, K. & Otti, O. Bacterial communities of the reproductive organs of virgin and mated common bedbugs, Cimex lectularius. Ecol. Entomol. https://doi.org/10.1111/een.12784 (2019).

    Article  Google Scholar 

  45. 45.

    Kondo, N., Shimada, M. & Fukatsu, T. Infection density of Wolbachia endosymbiont affected by co-infection and host genotype. Biol. Lett. 1, 488–491 (2005).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Skaljac, M., Zanic, K., Ban, S. G., Kontsedalov, S. & Ghanim, M. Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiol. 10, 142 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Toju, H. & Fukatsu, T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol. Ecol. 20, 853–868 (2011).

    PubMed  Google Scholar 

  48. 48.

    Tokura, M., Ohkuma, M. & Kudo, T. Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol. Ecol. 33, 233–240 (2000).

    CAS  PubMed  Google Scholar 

  49. 49.

    Nimrat, S., Bart, A. N., Keatsaksit, A. & Vuthiphandchai, V. Microbial flora of spermatophores from black tiger shrimp (Penaeus monodon) declines over long-term cryostorage. Aquaculture 274, 247–253 (2008).

    Google Scholar 

  50. 50.

    Benhalima, K. & Moriyasu, M. Prevalence of bacteria in the spermathecae of female snow crab, Chionoecetes opilio (Brachyura: Majidae). Hydrobiologia 449, 261–266 (2001).

    Google Scholar 

  51. 51.

    Duron, O., Hurst, G. D., Hornett, E. A., Josling, J. A. & Engelstädter, J. High incidence of the maternally inherited bacterium Cardinium in spiders. Mol. Ecol. 17, 1427–1437 (2008).

    CAS  PubMed  Google Scholar 

  52. 52.

    Vala, F., Egas, M., Breeuwer, J. & Sabelis, M. Wolbachia affects oviposition and mating behaviour of its spider mite host. J. Evol. Biol. 17, 692–700 (2004).

    CAS  PubMed  Google Scholar 

  53. 53.

    Martin, O. Y. & Goodacre, S. L. Widespread infections by the bacterial endosymbiont Cardinium in arachnids. J. Arachnol. 37, 106–109 (2009).

    Google Scholar 

  54. 54.

    Vanthournout, B., Vandomme, V. & Hendrickx, F. Sex ratio bias caused by endosymbiont infection in the dwarf spider Oedothorax retusus. J. Arachnol. 42, 24–33 (2014).

    Google Scholar 

  55. 55.

    Gaci, N., Borrel, G., Tottey, W., O’Toole, P. W. & Brugère, J.-F. Archaea and the human gut: new beginning of an old story. World J. Gastroenterol. 20, 16062 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    CAS  PubMed  Google Scholar 

  57. 57.

    Turner, T. R., James, E. K. & Poole, P. S. The plant microbiome. Genome Biol. 14, 209 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Bright, M. & Bulgheresi, S. A complex journey: transmission of microbial symbionts. Nat. Rev. Microbiol. 8, 218 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Newton, I. L., Savytskyy, O. & Sheehan, K. B. Wolbachia utilize host actin for efficient maternal transmission in Drosophila melanogaster. PLOS Pathog. 11, e1004798 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Brumin, M., Levy, M. & Ghanim, M. Transovarial transmission of Rickettsia spp. and organ-specific infection of the whitefly Bemisia tabaci. Appl. Environ. Microbiol. 78, 5565–5574 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Herren, J. K., Paredes, J. C., Schüpfer, F. & Lemaitre, B. Vertical transmission of a Drosophila endosymbiont via cooption of the yolk transport and internalization machinery. MBio 4, e00532–00512 (2013).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Wilkinson, T., Fukatsu, T. & Ishikawa, H. Transmission of symbiotic bacteria Buchnera to parthenogenetic embryos in the aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Arthropod Struct. Dev. 32, 241–245 (2003).

    CAS  PubMed  Google Scholar 

  63. 63.

    Dykstra, H. R. et al. Factors limiting the spread of the protective symbiont Hamiltonella defensa in aphis craccivora aphids. Appl. Environ. Microbiol. 80, 5818–5827 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Cheng, D. & Hou, R. Histological observations on transovarial transmission of a yeast-like symbiote in Nilaparvata lugens Stal (Homoptera, Delphacidae). Tissue Cell 33, 273–279 (2001).

    CAS  PubMed  Google Scholar 

  65. 65.

    Solter, L. F. Transmission as a predictor of ecological host specificity with a focus on vertical transmission of microsporidia. J. Invert. Pathol. 92, 132–140 (2006).

    Google Scholar 

  66. 66.

    Huo, Y. et al. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector. PLOS Pathog. 10, e1003949 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Fast, E. M. et al. Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche. Science 334, 990–992 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ferree, P. M. et al. Wolbachia utilizes host microtubules and Dynein for anterior localization in the Drosophila oocyte. PLOS Pathog. 1, e14 (2005).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Koga, R., Meng, X.-Y., Tsuchida, T. & Fukatsu, T. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. Proc. Natl Acad. Sci. USA 109, E1230–E1237 (2012).

    CAS  PubMed  Google Scholar 

  70. 70.

    Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc. R. Soc. B 282, 20142957 (2015).

    PubMed  Google Scholar 

  71. 71.

    Kikuchi, Y. et al. Host–symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol. 7, 2 (2009).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Salem, H. et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531.e1513 (2017). In this report, the authors describe a nutritional symbiosis between a pectin-degrading bacterial symbiont and its pectin-eating beetle host, including characteristics of the microbial genome as well as its transmission.

    CAS  PubMed  Google Scholar 

  73. 73.

    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    PubMed  Google Scholar 

  74. 74.

    Kaiwa, N. et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr. Biol. 24, 2465–2470 (2014).

    CAS  PubMed  Google Scholar 

  75. 75.

    Shukla, S. P., Vogel, H., Heckel, D. G., Vilcinskas, A. & Kaltenpoth, M. Burying beetles regulate the microbiome of carcasses and use it to transmit a core microbiota to their offspring. Mol. Ecol. 27, 1980–1991 (2017).

    PubMed  Google Scholar 

  76. 76.

    Pais, R., Lohs, C., Wu, Y., Wang, J. & Aksoy, S. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl. Environ. Microbiol. 74, 5965–5974 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Nadal-Jimenez, P. et al. Genetic manipulation allows in vivo tracking of the life cycle of the son-killer symbiont, Arsenophonus nasoniae, and reveals patterns of host invasion, tropism and pathology. Environ. Microbiol. 21, 3172–3182 (2019). This study uses microscopy to in vivo track a case of symbiont-mediated vertical transmission, whereby the symbiont enters offspring via larval feeding and progresses to the ovipositor in female pupae to aid transmission to the next generation.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Gottlieb, Y. et al. The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J. Virol. 84, 9310–9317 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    van den Heuvel, J. F., Verbeek, M. & van der Wilk, F. Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. J. Gen. Virol. 75, 2559–2565 (1994).

    PubMed  Google Scholar 

  80. 80.

    Touret, F., Guiguen, F. & Terzian, C. Wolbachia influences the maternal transmission of the gypsy endogenous retrovirus in Drosophila melanogaster. mBio 5, e01529–01514 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Dutra, H. L. et al. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe 19, 771–774 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Hegde, S., Rasgon, J. L. & Hughes, G. L. The microbiome modulates arbovirus transmission in mosquitoes. Curr. Opin. Virol. 15, 97–102 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Watanabe, K., Yukuhiro, F., Matsuura, Y., Fukatsu, T. & Noda, H. Intrasperm vertical symbiont transmission. Proc. Natl Acad. Sci. USA 111, 7433–7437 (2014). This study details the vertical transmission of a Rickettsia bacterial insect symbiont via inclusion within the sperm heads of its leafhopper host.

    CAS  PubMed  Google Scholar 

  84. 84.

    Damiani, C. et al. Paternal transmission of symbiotic bacteria in malaria vectors. Curr. Biol. 18, R1087–R1088 (2008).

    CAS  PubMed  Google Scholar 

  85. 85.

    De Vooght, L., Caljon, G., Van Hees, J. & Van Den Abbeele, J. Paternal transmission of a secondary symbiont during mating in the viviparous tsetse fly. Mol. Biol. Evol. 32, 1977–1980 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Longdon, B. & Jiggins, F. M. Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone? Proc. R. Soc. B 279, 3889–3898 (2012).

    PubMed  Google Scholar 

  87. 87.

    Longdon, B. & Jiggins, F. M. Paternally transmitted parasites. Curr. Biol. 20, R695–R696 (2010).

    CAS  PubMed  Google Scholar 

  88. 88.

    Engelstädter, J. & Hurst, G. D. What use are male hosts? The dynamics of maternally inherited bacteria showing sexual transmission or male killing. Am. Nat. 173, E159–E170 (2009).

    PubMed  Google Scholar 

  89. 89.

    Ironside, J. E., Smith, J. E., Hatcher, M. J. & Dunn, A. M. Should sex-ratio distorting parasites abandon horizontal transmission? BMC Evol. Biol. 11, 370 (2011).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Otti, O. Genitalia-associated microbes in insects. Insect Sci. 22, 325–339 (2015).

    PubMed  Google Scholar 

  91. 91.

    Gauthier, L. et al. Viruses associated with ovarian degeneration in Apis mellifera L. queens. PLOS ONE 6, e16217 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Burand, J. P. The sexually transmitted insect virus, Hz-2V. Virol. Sin. 24, 428 (2009).

    Google Scholar 

  93. 93.

    Himler, A. G. et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332, 254–256 (2011).

    CAS  PubMed  Google Scholar 

  94. 94.

    Weeks, A. R., Turelli, M., Harcombe, W. R., Reynolds, K. T. & Hoffmann, A. A. From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLOS Biol. 5, e114 (2007).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Patot, S., Lepetit, D., Charif, D., Varaldi, J. & Fleury, F. Molecular detection, penetrance, and transmission of an inherited virus responsible for behavioral manipulation of an insect parasitoid. Appl. Environ. Microbiol. 75, 703–710 (2009).

    CAS  PubMed  Google Scholar 

  96. 96.

    Pannebakker, B. A., Loppin, B., Elemans, C. P., Humblot, L. & Vavre, F. Parasitic inhibition of cell death facilitates symbiosis. Proc. Natl Acad. Sci. USA 104, 213–215 (2007).

    CAS  PubMed  Google Scholar 

  97. 97.

    Zchori-Fein, E., Borad, C. & Harari, A. R. Oogenesis in the date stone beetle, coccotrypes dactyliperda, depends on symbiotic bacteria. Physiol. Entomol. 31, 164–169 (2006).

    Google Scholar 

  98. 98.

    Snook, R. R., Cleland, S. Y., Wolfner, M. F. & Karr, T. L. Offsetting effects of Wolbachia infection and heat shock on sperm production in Drosophila simulans: analyses of fecundity, fertility and accessory gland proteins. Genetics 155, 167–178 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Ebbert, M. A., Marlowe, J. L. & Burkholder, J. J. Protozoan and intracellular fungal gut endosymbionts in Drosophila: prevalence and fitness effects of single and dual infections. J. Invert. Pathol. 83, 37–45 (2003).

    Google Scholar 

  100. 100.

    Gibson, C. M. & Hunter, M. S. Negative fitness consequences and transmission dynamics of a heritable fungal symbiont of a parasitic wasp. Appl. Environ. Microbiol. 75, 3115–3119 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Yixin, H. Y., Woolfit, M., Rancès, E., O’Neill, S. L. & McGraw, E. A. Wolbachia-associated bacterial protection in the mosquito Aedes aegypti. PLOS Negl. Trop. Dis. 7, e2362 (2013).

    Google Scholar 

  102. 102.

    Braquart-Varnier, C. et al. The mutualistic side of Wolbachia–isopod interactions: Wolbachia mediated protection against pathogenic intracellular bacteria. Front. Microbiol. 6, 1388 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Nikoh, N. et al. Genomic insight into symbiosis-induced insect color change by a facultative bacterial endosymbiont, ‘Candidatus Rickettsiella viridis’. mBio 9, e00890–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Funkhouser-Jones, L. J., van Opstal, E. J., Sharma, A. & Bordenstein, S. R. The maternal effect gene Wds controls Wolbachia titer in Nasonia. Curr. Biol. 28, 1692–1702.e1696 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Zhong, W. et al. Immune anticipation of mating in Drosophila: Turandot M promotes immunity against sexually transmitted fungal infections. Proc. Biol. Sci. 280, 20132018 (2013).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Moriyama, M. et al. Comparative transcriptomics of the bacteriome and the spermalege of the bedbug Cimex lectularius (Hemiptera: Cimicidae). Appl. Entomol. Zool. 47, 233–243 (2012).

    CAS  Google Scholar 

  107. 107.

    Stutt, A. D. & Siva-Jothy, M. T. Traumatic insemination and sexual conflict in the bed bug Cimex lectularius. Proc. Natl Acad. Sci. USA 98, 5683–5687 (2001).

    CAS  PubMed  Google Scholar 

  108. 108.

    Reinhardt, K., Naylor, R. & Siva–Jothy, M. T. Reducing a cost of traumatic insemination: female bedbugs evolve a unique organ. Proc. R. Soc. B 270, 2371–2375 (2003).

    PubMed  Google Scholar 

  109. 109.

    Büchner, P. Studien an intracellularen Symbionten. IV-Die Bakteriensymbiose der Bettwanze. Arch. Protistenk 46, 225–263 (1923).

    Google Scholar 

  110. 110.

    Buchner, P. Endosymbiosis of Animals with Plant Microorganisms (Wiley, 1965).

  111. 111.

    Marshall, J. L. Rapid evolution of spermathecal duct length in the Allonemobius socius complex of crickets: species, population and Wolbachia effects. PLOS ONE 2, e720 (2007).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Duron, O. et al. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol. 6, 27 (2008).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Dunn, A. M. & Smith, J. E. Microsporidian life cycles and diversity: the relationship between virulence and transmission. Microbes Infect. 3, 381–388 (2001).

    CAS  PubMed  Google Scholar 

  114. 114.

    Wang, F. et al. A novel negative-stranded RNA virus mediates sex ratio in its parasitoid host. PLOS Pathog. 13, e1006201 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Juchault, P., Louis, C., Martin, G. & Noulin, G. Masculinization of female isopods (Crustacea) correlated with non-Mendelian inheritance of cytoplasmic viruses. Proc. Natl Acad. Sci. USA 88, 10460–10464 (1991).

    CAS  PubMed  Google Scholar 

  116. 116.

    Nakanishi, K., Hoshino, M., Nakai, M., Kunimi, Y. & Novel, R. N. A. Sequences associated with late male killing in Homona magnanima. Proc. R. Soc. B 275, 1249–1254 (2008).

    CAS  PubMed  Google Scholar 

  117. 117.

    Dedeine, F., Bouletreau, M. & Vavre, F. Wolbachia requirement for oogenesis: occurrence within the genus Asobara (Hymenoptera, Braconidae) and evidence for intraspecific variation in A. tabida. Heredity 95, 394 (2005).

    CAS  PubMed  Google Scholar 

  118. 118.

    Leclercq, S. et al. Birth of a W sex chromosome by horizontal transfer of Wolbachia bacterial symbiont genome. Proc. Natl Acad. Sci. USA 113, 15036–15041 (2016). This report demonstrates that pillbugs have a 3 Mb genome insert from the endosymbiont Wolbachia that appears to function as a novel female-determining sex chromosomal region.

    CAS  PubMed  Google Scholar 

  119. 119.

    Stouthamer, R., Russell, J. E., Vavre, F. & Nunney, L. Intragenomic conflict in populations infected by parthenogenesis inducing Wolbachia ends with irreversible loss of sexual reproduction. BMC Evol. Biol. 10, 229 (2010).

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Becking, T. et al. Sex chromosomes control vertical transmission of feminizing Wolbachia symbionts in an isopod. PLOS Biol. 17, e3000438 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Kageyama, D., Narita, S. & Watanabe, M. Insect sex determination manipulated by their endosymbionts: incidences, mechanisms and implications. Insects 3, 161–199 (2012).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Morimoto, S., Nakai, M., Ono, A. & Kunimi, Y. Late male-killing phenomenon found in a Japanese population of the oriental tea tortrix, Homona magnanima (Lepidoptera: Tortricidae). Heredity 87, 435 (2001).

    CAS  PubMed  Google Scholar 

  123. 123.

    Duron, O. et al. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Mol. Ecol. 23, 2105–2117 (2014).

    PubMed  Google Scholar 

  124. 124.

    Hosokawa, T., Kikuchi, Y., Shimada, M. & Fukatsu, T. Obligate symbiont involved in pest status of host insect. Proc. R. Soc. B 274, 1979–1984 (2007).

    CAS  PubMed  Google Scholar 

  125. 125.

    Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).

    CAS  PubMed  Google Scholar 

  126. 126.

    Morse, S., Dick, C. W., Patterson, B. D. & Dittmar, K. Some like it hot: evolution and ecology of novel endosymbionts in bat flies of cave-roosting bats (Hippoboscoidea, Nycterophiliinae). Appl. Environ. Microbiol. 78, 02455–02412 (2012).

    Google Scholar 

  127. 127.

    Brumin, M., Kontsedalov, S. & Ghanim, M. Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci. 18, 57–66 (2011).

    Google Scholar 

  128. 128.

    Truitt, A. M., Kapun, M., Kaur, R. & Miller, W. J. Wolbachia modifies thermal preference in Drosophila melanogaster. Environ. Microbiol. 21, 3259–3268 (2018).

    PubMed Central  Google Scholar 

  129. 129.

    Corbin, C., Heyworth, E. R., Ferrari, J. & Hurst, G. D. Heritable symbionts in a world of varying temperature. Heredity 118, 10 (2017).

    CAS  PubMed  Google Scholar 

  130. 130.

    Baião, G. C., Schneider, D. I., Miller, W. J. & Klasson, L. The effect of Wolbachia on gene expression in Drosophila paulistorum and its implications for symbiont-induced host speciation. BMC Genomics 20, 465 (2019).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Zheng, Y. et al. Differentially expressed profiles in the larval testes of Wolbachia infected and uninfected Drosophila. BMC Genomics 12, 595 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Kupper, M., Stigloher, C., Feldhaar, H. & Gross, R. Distribution of the obligate endosymbiont Blochmannia floridanus and expression analysis of putative immune genes in ovaries of the carpenter ant Camponotus floridanus. Arthopod Struct. Dev. 45, 475–487 (2016).

    Google Scholar 

  133. 133.

    Negri, I. et al. Unravelling the Wolbachia evolutionary role: the reprogramming of the host genomic imprinting. Proc. R. Soc. B 276, 2485–2491 (2009).

    CAS  PubMed  Google Scholar 

  134. 134.

    Wang, J. & Aksoy, S. PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse’s offspring. Proc. Natl Acad. Sci. USA 109, 10552–10557 (2012).

    CAS  PubMed  Google Scholar 

  135. 135.

    Papafotiou, G., Oehler, S., Savakis, C. & Bourtzis, K. Regulation of Wolbachia ankyrin domain encoding genes in Drosophila gonads. Res. Microbiol. 162, 764–772 (2011).

    CAS  PubMed  Google Scholar 

  136. 136.

    Yixin, H. Y. et al. Infection with a virulent strain of Wolbachia disrupts genome wide-patterns of cytosine methylation in the mosquito Aedes aegypti. PLOS ONE 8, e66482 (2013).

    Google Scholar 

  137. 137.

    Bhattacharya, T., Newton, I. L. & Hardy, R. W. Wolbachia elevates host methyltransferase expression to block an RNA virus early during infection. PLOS Pathog. 13, e1006427 (2017).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81 (2000).

    CAS  PubMed  Google Scholar 

  139. 139.

    Husnik, F. & McCutcheon, J. P. Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 16, 67 (2018).

    CAS  PubMed  Google Scholar 

  140. 140.

    Moran, N. A. & Jarvik, T. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328, 624–627 (2010).

    CAS  PubMed  Google Scholar 

  141. 141.

    Verster, K. I. et al. Horizontal transfer of bacterial cytolethal distending toxin B genes to insects. Mol. Biol. Evol. 36, 2105–2110 (2019).

    PubMed  Google Scholar 

  142. 142.

    Metcalf, J. A., Funkhouser-Jones, L. J., Brileya, K., Reysenbach, A. L. & Bordenstein, S. R. Antibacterial gene transfer across the tree of life. eLife 3, e04266 (2014).

    PubMed Central  Google Scholar 

  143. 143.

    Funkhouser-Jones, L. J. et al. Wolbachia co-infection in a hybrid zone: discovery of horizontal gene transfers from two Wolbachia supergroups into an animal genome. PeerJ 3, e1479 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Hotopp, J. C. D. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317, 1753–1756 (2007).

    Google Scholar 

  145. 145.

    Wybouw, N. et al. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. ELife 3, e02365 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. 146.

    Blondel, L., Jones, T. E. & Extavour, C. G. Bacterial contribution to genesis of the novel germ line determinant oskar. Preprint at https://doi.org/10.1101/453514 (2018).

  147. 147.

    Selman, M. et al. Acquisition of an animal gene by microsporidian intracellular parasites. Curr. Biol. 21, R576–R577 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Hughes, A. L. & Friedman, R. Genome-wide survey for genes horizontally transferred from cellular organisms to baculoviruses. Mol. Biol. Evol. 20, 979–987 (2003).

    CAS  PubMed  Google Scholar 

  149. 149.

    LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Beckmann, J. F., Ronau, J. A. & Hochstrasser, M. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat. Microbiol. 2, 17007 (2017).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Perlmutter, J. I. et al. The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLOS Pathog. 15, e1007936 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Shropshire, J. D., On, J., Layton, E. M., Zhou, H. & Bordenstein, S. R. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 115, 4987–4991 (2018).

    CAS  PubMed  Google Scholar 

  153. 153.

    Hurst, G. D. & Jiggins, F. M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc. R. Soc. B 272, 1525–1534 (2005).

    CAS  PubMed  Google Scholar 

  154. 154.

    Jiggins, F. M. & Tinsley, M. C. An ancient mitochondrial polymorphism in Adalia bipunctata linked to a sex-ratio-distorting bacterium. Genetics 171, 1115–1124 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Ironside, J. E., Dunn, A., Rollinson, D. & Smith, J. Association with host mitochondrial haplotypes suggests that feminizing microsporidia lack horizontal transmission. J. Evol. Biol. 16, 1077–1083 (2003).

    CAS  PubMed  Google Scholar 

  156. 156.

    Charlat, S. et al. The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina. BMC Evol. Biol. 9, 64 (2009).

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    Cariou, M., Duret, L. & Charlat, S. The global impact of Wolbachia on mitochondrial diversity and evolution. J. Evol. Biol. 30, 2204–2210 (2017).

    CAS  PubMed  Google Scholar 

  158. 158.

    Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Kapantaidaki, D. E. et al. Low levels of mitochondrial DNA and symbiont diversity in the worldwide agricultural pest, the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). J. Heredity 106, 80–92 (2014).

    Google Scholar 

  160. 160.

    Beninati, T. et al. A novel alpha-Proteobacterium resides in the mitochondria of ovarian cells of the tick Ixodes ricinus. Appl. Environ. Microbiol. 70, 2596–2602 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Van Ham, R. C. et al. Reductive genome evolution in Buchnera aphidicola. Proc. Natl Acad. Sci. USA 100, 581–586 (2003).

    PubMed  Google Scholar 

  162. 162.

    Funk, D. J., Wernegreen, J. J. & Moran, N. A. Intraspecific variation in symbiont genomes: bottlenecks and the aphid–Buchnera association. Genetics 157, 477–489 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Abbot, P. & Moran, N. A. Extremely low levels of genetic polymorphism in endosymbionts (Buchnera) of aphids (Pemphigus). Mol. Ecol. 11, 2649–2660 (2002).

    CAS  PubMed  Google Scholar 

  164. 164.

    Moran, N. A. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc. Natl Acad. Sci. USA 93, 2873–2878 (1996).

    CAS  PubMed  Google Scholar 

  165. 165.

    Charlat, S. et al. Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity. Curr. Biol. 17, 273–277 (2007).

    CAS  PubMed  Google Scholar 

  166. 166.

    Jaenike, J., Dyer, K. A., Cornish, C. & Minhas, M. S. Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLOS Biol. 4, e325 (2006).

    PubMed  PubMed Central  Google Scholar 

  167. 167.

    Jiggins, F. M., Hurst, G. D. & Majerus, M. E. Sex-ratio-distorting Wolbachia causes sex-role reversal in its butterfly host. Proc. R. Soc. B 267, 69–73 (2000).

    CAS  PubMed  Google Scholar 

  168. 168.

    Burand, J. P., Tan, W., Kim, W., Nojima, S. & Roelofs, W. Infection with the insect virus Hz-2v alters mating behavior and pheromone production in female Helicoverpa zea moths. J. Insect Sci. 5, 6 (2005).

    PubMed  PubMed Central  Google Scholar 

  169. 169.

    Brucker, R. M. & Bordenstein, S. R. Speciation by symbiosis. Trends Ecol. Evol. 27, 443–451 (2012).

    PubMed  Google Scholar 

  170. 170.

    Miller, W. J., Ehrman, L. & Schneider, D. Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLOS Pathog. 6, e1001214 (2010).

    PubMed  PubMed Central  Google Scholar 

  171. 171.

    Krueger, C. M., Degrugillier, M. E. & Narang, S. K. Size difference among 16S rRNA genes from endosymbiontic bacteria found in testes of Heliothis virescens, H. subflexa (Lepidoptera: Noctuidae), and backcross sterile male moths. Fla. Entomol. 76, 382–390 (1993).

    CAS  Google Scholar 

  172. 172.

    Bordenstein, S. R., O’Hara, F. P. & Werren, J. H. Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409, 707–710 (2001).

    CAS  PubMed  Google Scholar 

  173. 173.

    Gebiola, M., Kelly, S. E., Hammerstein, P., Giorgini, M. & Hunter, M. S. ‘Darwin’s corollary’ and cytoplasmic incompatibility induced by Cardinium may contribute to speciation in Encarsia wasps (Hymenoptera: Aphelinidae). Evolution 70, 2447–2458 (2016).

    PubMed  Google Scholar 

  174. 174.

    O’Neill, S. L. et al. Scaled deployment of Wolbachia to protect the community from dengue and other Aedes transmitted arboviruses. Gates Open Res. 2, 36 (2018).

    PubMed  Google Scholar 

  175. 175.

    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579 (2017).

    CAS  PubMed  Google Scholar 

  176. 176.

    Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143 (2018).

    CAS  Google Scholar 

  177. 177.

    van Oppen, M. J. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).

    PubMed  Google Scholar 

  178. 178.

    Gibson, J. et al. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. Proc. Natl Acad. Sci. USA 111, 8007–8012 (2014).

    CAS  PubMed  Google Scholar 

  179. 179.

    Degli Esposti, M. & Romero, E. M. The functional microbiome of arthropods. PLOS ONE 12, e0176573 (2017).

    PubMed  PubMed Central  Google Scholar 

  180. 180.

    Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z. & Welch, J. J. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B 282, 20150249 (2015).

    PubMed  Google Scholar 

  181. 181.

    Mann, R. S., Pelz-Stelinski, K., Hermann, S. L., Tiwari, S. & Stelinski, L. L. Sexual transmission of a plant pathogenic bacterium, Candidatus Liberibacter asiaticus, between conspecific insect vectors during mating. PLOS ONE 6, e29197 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Bolling, B. G., Olea-Popelka, F. J., Eisen, L., Moore, C. G. & Blair, C. D. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus. Virology 427, 90–97 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Moran, N. A. & Dunbar, H. E. Sexual acquisition of beneficial symbionts in aphids. Proc. Natl Acad. Sci. USA 103, 12803–12806 (2006).

    CAS  PubMed  Google Scholar 

  184. 184.

    Sookar, P., Bhagwant, S. & Allymamod, M. Effect of Metarhizium anisopliae on the fertility and fecundity of two species of fruit flies and horizontal transmission of mycotic infection. J. Insect Sci. 14, 100 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Adamo, S. A., Kovalko, I., Easy, R. H. & Stoltz, D. A viral aphrodisiac in the cricket Gryllus texensis. J. Exp. Biol. 217, 1970–1976 (2014).

    PubMed  Google Scholar 

  186. 186.

    García-Munguía, A. M., Garza-Hernández, J. A., Rebollar-Tellez, E. A., Rodríguez-Pérez, M. A. & Reyes-Villanueva, F. Transmission of Beauveria bassiana from male to female Aedes aegypti mosquitoes. Parasites Vectors 4, 24 (2011).

    PubMed  PubMed Central  Google Scholar 

  187. 187.

    Lung, O., Kuo, L. & Wolfner, M. F. Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. J. Insect Physiol. 47, 617–622 (2001).

    CAS  PubMed  Google Scholar 

  188. 188.

    Esteves, E. et al. Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: cellular localization and temporal expression of microplusin during oogenesis and embryogenesis. Dev. Comp. Immunol. 33, 913–919 (2009).

    CAS  PubMed  Google Scholar 

  189. 189.

    Kaya, M. et al. New chitin, chitosan, and O-carboxymethyl chitosan sources from resting eggs of Daphnia longispina (Crustacea); with physicochemical characterization, and antimicrobial and antioxidant activities. Biotechnol. Bioproc. E 19, 58–69 (2014).

    CAS  Google Scholar 

  190. 190.

    Peng, Y., Grassl, J., Millar, A. H. & Baer, B. Seminal fluid of honeybees contains multiple mechanisms to combat infections of the sexually transmitted pathogen Nosema apis. Proc. R. Soc. B 283, 20151785 (2016).

    PubMed  Google Scholar 

  191. 191.

    Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108, 4680–4687 (2011).

    CAS  PubMed  Google Scholar 

  192. 192.

    Bradford, L. L. & Ravel, J. The vaginal mycobiome: a contemporary perspective on fungi in women’s health and diseases. Virulence 8, 342–351 (2017).

    PubMed  Google Scholar 

  193. 193.

    Wylie, K. M. et al. The vaginal eukaryotic DNA virome and preterm birth. Am. J. Obstet. Gynecol. 219, 189.e1–189.e12 (2018).

    CAS  Google Scholar 

  194. 194.

    Aagaard, K. et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLOS ONE 7, e36466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Zhang, R. et al. Qualitative and semiquantitative analysis of Lactobacillus species in the vaginas of healthy fertile and postmenopausal Chinese women. J. Med. Microbiol. 61, 729–739 (2012).

    CAS  PubMed  Google Scholar 

  196. 196.

    Shiraishi, T. et al. Influence of menstruation on the microbiota of healthy women’s labia minora as analyzed using a 16S rRNA gene-based clone library method. Jpn. J. Infect. Dis. 64, 76–80 (2011).

    PubMed  Google Scholar 

  197. 197.

    Noyes, N., Cho, K.-C., Ravel, J., Forney, L. J. & Abdo, Z. Associations between sexual habits, menstrual hygiene practices, demographics and the vaginal microbiome as revealed by Bayesian network analysis. PLOS ONE 13, e0191625 (2018).

    PubMed  PubMed Central  Google Scholar 

  198. 198.

    Hunt, K. M. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLOS ONE 6, e21313 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. 199.

    Hochreiter, W. W., Duncan, J. L. & Schaeffer, A. J. Evaluation of the bacterial flora of the prostate using a 16S rRNA gene based polymerase chain reaction. J. Urol. 163, 127–130 (2000).

    CAS  PubMed  Google Scholar 

  200. 200.

    Porter, C. M., Shrestha, E., Peiffer, L. B. & Sfanos, K. S. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis. 21, 345–354 (2018).

    CAS  PubMed  Google Scholar 

  201. 201.

    Liu, C. M. et al. Male circumcision significantly reduces prevalence and load of genital anaerobic bacteria. mBio 4, e00076 (2013).

    PubMed  PubMed Central  Google Scholar 

  202. 202.

    Nelson, D. E. et al. Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLOS ONE 7, e36298 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Mändar, R. et al. Seminal microbiome in men with and without prostatitis. Int. J. Urol. 24, 211–216 (2017).

    PubMed  Google Scholar 

  204. 204.

    Pellati, D. et al. Genital tract infections and infertility. Eur. J. Obstet. Gynecol. Reprod. Biol. 140, 3–11 (2008).

    PubMed  Google Scholar 

  205. 205.

    Payne, M. S. & Bayatibojakhi, S. Exploring preterm birth as a polymicrobial disease: an overview of the uterine microbiome. Front. Immunol. 5, 595 (2014).

    PubMed  PubMed Central  Google Scholar 

  206. 206.

    Onderdonk, A. B., Delaney, M. L. & Fichorova, R. N. The human microbiome during bacterial vaginosis. Clin. Microbiol. Rev. 29, 223–238 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207.

    Weng, S. L. et al. Bacterial communities in semen from men of infertile couples: metagenomic sequencing reveals relationships of seminal microbiota to semen quality. PLOS ONE 9, e110152 (2014).

    PubMed  PubMed Central  Google Scholar 

  208. 208.

    Sastry, K. S. Seed-Borne Plant Virus Diseases (Springer, 2013).

  209. 209.

    Saikkonen, K., Faeth, S. H., Helander, M. & Sullivan, T. Fungal endophytes: a continuum of interactions with host plants. Annu. Rev. Ecol. Evol. S. 29, 319–343 (1998).

    Google Scholar 

  210. 210.

    Gao, F.-K., Dai, C.-C. & Liu, X.-Z. Mechanisms of fungal endophytes in plant protection against pathogens. Afr. J. Microbiol. Res. 4, 1346–1351 (2010).

    Google Scholar 

  211. 211.

    Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ. Microbiol. 7, 40–50 (2014).

    Google Scholar 

  212. 212.

    Cankar, K., Kraigher, H., Ravnikar, M. & Rupnik, M. Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol. Lett. 244, 341–345 (2005).

    CAS  PubMed  Google Scholar 

  213. 213.

    Compant, S., Mitter, B., Colli-Mull, J. G., Gangl, H. & Sessitsch, A. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb. Ecol. 62, 188–197 (2011).

    PubMed  Google Scholar 

  214. 214.

    Kaga, H. et al. Rice seeds as sources of endophytic bacteria. Microbes Environ. 24, 154–162 (2009).

    PubMed  Google Scholar 

  215. 215.

    Lopez-Lopez, A., Rogel, M. A., Ormeno-Orrillo, E., Martinez-Romero, J. & Martinez-Romero, E. Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst. Appl. Microbiol. 33, 322–327 (2010).

    PubMed  Google Scholar 

  216. 216.

    Mundt, J. O. & Hinkle, N. F. Bacteria within ovules and seeds. Appl. Environ. Microbiol. 32, 694–698 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. 217.

    Mano, H. et al. Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ. 21, 86–100 (2006).

    Google Scholar 

  218. 218.

    Shade, A., McManus, P. S. & Handelsman, J. Unexpected diversity during community succession in the apple flower microbiome. mBio 4, e00602–e00612 (2013).

    PubMed  PubMed Central  Google Scholar 

  219. 219.

    Obersteiner, A. et al. Pollen-associated microbiome correlates with pollution parameters and the allergenicity of pollen. PLOS ONE 11, e0149545 (2016).

    PubMed  PubMed Central  Google Scholar 

  220. 220.

    Ambika Manirajan, B. et al. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environ. Microbiol. 18, 5161–5174 (2016).

    PubMed  Google Scholar 

  221. 221.

    Manirajan, B. A. et al. Diversity, specificity, co-occurrence and hub taxa of the bacterial–fungal pollen microbiome. FEMS Microbiol. Ecol. 94, fiy112 (2018).

    CAS  Google Scholar 

  222. 222.

    Sugio, A. et al. Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu. Rev. Phytopathol. 49, 175–195 (2011).

    CAS  PubMed  Google Scholar 

  223. 223.

    MacLean, A. M. et al. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLOS Biol. 12, e1001835 (2014). This report presents a case in which a phytoplasma bacterial pathogen of Arabidopsis directly manipulates plant reproduction via production of the SAP54 transcription factor that degrades host proteins critical to reproductive tissue development. This converts plant reproductive structures into leaves that better attract insect hosts for oviposition and infection, thus spreading the infection.

    PubMed  PubMed Central  Google Scholar 

  224. 224.

    Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M. & Hogenhout, S. A. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl Acad. Sci. USA 108, E1254–E1263 (2011).

    CAS  PubMed  Google Scholar 

  225. 225.

    Puente, M. E., Li, C. Y. & Bashan, Y. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ. Exp. Bot. 66, 402–408 (2009).

    CAS  Google Scholar 

  226. 226.

    Puente, M. E., Li, C. Y. & Bashan, Y. Rock-degrading endophytic bacteria in cacti. Environ. Exp. Bot. 66, 389–401 (2009).

    CAS  Google Scholar 

  227. 227.

    Sánchez-López, A. S. et al. Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues. Plant Soil 422, 51–66 (2018).

    Google Scholar 

  228. 228.

    Carlier, A. L. & Eberl, L. The eroded genome of a Psychotria leaf symbiont: hypotheses about lifestyle and interactions with its plant host. Environ. Microbiol. 14, 2757–2769 (2012).

    CAS  PubMed  Google Scholar 

  229. 229.

    Partida-Martinez, L. P. & Hertweck, C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437, 884 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. I. Hood-Pishchany, K. Ngo, B. Leigh and the journal editorial team for constructive comments. Work in the authors’ laboratory was supported by awards from the National Institutes of Health (NIH; R21 AI133522) and the Vanderbilt Microbiome Initiative to S.R.B, as well as by NIH grant F31 AI143152 to J.I.P.

Author information

Affiliations

Authors

Contributions

S.R.B. and J.I.P. wrote the article, reviewed and edited the manuscript before submission. J.I.P initially drafted the article and researched data for the article.

Corresponding authors

Correspondence to Jessamyn I. Perlmutter or Seth R. Bordenstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks G. Hurst, I. Newton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bacteriocytes

Or mycetocytes. Specialized fat cells found in some insects that contain endosymbiotic organisms, especially bacteria (or fungi), that provide essential nutrients or functions for their hosts. Bacteriocytes or mycetocytes together form bacteriomes or mycetomes, which are specialized organs in some insects that house the symbionts.

Blastulae

Hollow spheres of cells surrounding a cavity of fluid, comprising the early stages in the development of embryos.

Ovipositor

The tube-like organ at the bottom of the abdomen that female arthropods use to lay eggs.

Spermathecae

An organ in the female reproductive tract in insects that is used to store sperm post-mating.

Matriline

The exclusively female line of descent from a female ancestor to a female descendant.

Hologenome

The genome of a holobiont, which is the host and all its microbial symbionts. The hologenome includes the genomes of the host and its microorganisms.

Vas deferens

A muscular tube in the human male reproductive tract that carries sperm to the ejaculatory duct.

Coronal sulcus

The indented groove at the base of the human penis head.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perlmutter, J.I., Bordenstein, S.R. Microorganisms in the reproductive tissues of arthropods. Nat Rev Microbiol 18, 97–111 (2020). https://doi.org/10.1038/s41579-019-0309-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing