Ecology of the plastisphere


The plastisphere, which comprises the microbial community on plastic debris, rivals that of the built environment in spanning multiple biomes on Earth. Although human-derived debris has been entering the ocean for thousands of years, microplastics now numerically dominate marine debris and are primarily colonized by microbial and other microscopic life. The realization that this novel substrate in the marine environment can facilitate microbial dispersal and affect all aquatic ecosystems has intensified interest in the microbial ecology and evolution of this biotope. Whether a ‘core’ plastisphere community exists that is specific to plastic is currently a topic of intense investigation. This Review provides an overview of the microbial ecology of the plastisphere in the context of its diversity and function, as well as suggesting areas for further research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: A timeline of plastic innovation, discovery and pollution.
Fig. 2: The lifecycle of plastic litter.
Fig. 3: The plastisphere community.
Fig. 4: Assessing community assembly.
Fig. 5: Vibrio blooms in the plastisphere.
Fig. 6: Degradation of plastic materials.


  1. 1.

    PlasticsEurope. Plastics—The Facts 2018: An Analysis of European Plastics Production, Demand and Waste Data (PlasticsEurope, 2018).

  2. 2.

    Geyer, R., Jambeck, J. & Lavender Law, K. Production use and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    CAS  PubMed  Google Scholar 

  4. 4.

    van Sebille, E. et al. A global inventory of small floating plastic debris. Env. Res. Lett. 10, 124006 (2015).

    Google Scholar 

  5. 5.

    World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company. The new plastics economy — rethinking the future of plastics. (2016).

  6. 6.

    Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the ‘plastisphere’: microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013). This first high-throughput sequencing of the microbial communities on marine plastic (bacterial and eukaryotic) shows differences between polyethylene, polypropylene and seawater and documents the existence of Vibrio species attached to marine plastic.

    CAS  PubMed  Google Scholar 

  7. 7.

    Masó, M., Garcés, E., Pagès, F. & Camp, J. Drifting plastic debris as a potential vector for dispersing Harmful Algal Bloom (HAB) species. Sci. Mar. 67, 107–111 (2003). This report from the Mediterranean Sea is the first to document harmful algal bloom phytoplankton (HABs) on plastic debris, and comments on how the stickiness of cells can have a role in dispersal.

    Google Scholar 

  8. 8.

    Kirstein, I. V., Wichels, A., Gullans, E., Krohne, G. & Gerdts, G. The plastisphere—uncovering tightly attached plastic ‘specific’ microorganisms. PLOS ONE 14, e0215859 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Harrison, J. P. et al. in Freshwater Microplastics Vol. 58 (eds Wagner, M. & Lambert, S.) 181–201 (Springer, Cham, 2018). Harrison et al. compare insights from marine systems with those from less-studied freshwater systems.

  10. 10.

    Mincer, T. J., Zettler, E. R. & Amaral-Zettler, L. A. Biofilms on Plastic Debris and Their Influence on Marine Nutrient Cycling, Productivity, and Hazardous Chemical Mobility, in Hazardous Chemicals Associated with Plastics in the Marine Environment (eds Takada, H. & Karapanagioti, H. K.) 221–233 (Springer International, 2016).

  11. 11.

    Kooi, M., Nes, E. H. V., Scheffer, M. & Koelmans, A. A. Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Lobelle, D. & Cunliffe, M. Early microbial biofilm formation on marine plastic debris. Mar. Pollut. Bull. 62, 197–200 (2011).

    CAS  PubMed  Google Scholar 

  13. 13.

    McCormick, J. M., Van, Es,T., Cooper, K. R., White, L. A. & Haggblom, M. M. Microbially mediated O-methylation of bisphenol A results in metabolites with increased toxicity to the developing zebrafish (Danio rerio) embryo. Environ. Sci. Technol. 45, 6567–6574 (2011).

    CAS  PubMed  Google Scholar 

  14. 14.

    Sieburth, J. M. Microbial Seascapes: A Pictorial Essay on Marine Microorganisms and Their Environments (University Park Press, 1975).

  15. 15.

    De Tender, C. et al. A review of microscopy and comparative molecular-based methods to characterize ‘plastisphere’ communities. Anal. Meth. 9, 2132–2143 (2017).

    Google Scholar 

  16. 16.

    Ogonowski, M. et al. Evidence for selective bacterial community structuring on microplastics. Environ. Microbiol. 20, 2796–2808 (2018).

    CAS  PubMed  Google Scholar 

  17. 17.

    Kettner, M. T., Oberbeckmann, S., Labrenz, M. & Grossart, H. P. The eukaryotic life on microplastics in brackish ecosystems. Front. Microbiol. 10, 538 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bryant, J. A. et al. Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. mSystems 1, e00024-16 (2016). This is the first metagenomic report of plastisphere communities.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Woodall, L. C. et al. Deep-sea anthropogenic macrodebris harbours rich and diverse communities of bacteria and archaea. PLOS ONE 13, e0206220 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Lea-Smith, D. J. et al. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc. Natl Acad. Sci. USA 112, 13591–13596 (2015).

    CAS  PubMed  Google Scholar 

  21. 21.

    Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

    CAS  PubMed  Google Scholar 

  22. 22.

    Jacquin, J. et al. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the ‘plastisphere’. Front. Microbiol. 10, 865 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Krueger, M. C., Harms, H. & Schlosser, D. Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol. 99, 8857–8874 (2015).

    CAS  PubMed  Google Scholar 

  24. 24.

    Restrepo-Flórez, J., Bassi, A. & Thompson, M. Microbial degradation and deterioration of polyethylene – a review. Int. Biodeter. Biodeg. 88, 83–90 (2014).

    Google Scholar 

  25. 25.

    Dussud, C. et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ. Pollut. 236, 807–816 (2018).

    CAS  PubMed  Google Scholar 

  26. 26.

    Amaral-Zettler, L. A. et al. The biogeography of the Plastisphere: implications for policy. Front. Ecol. Environ. 13, 541–546 (2015). This is the first ocean-basin-scale report on the biogeography of the plastisphere, showing differences between the Atlantic and Pacific, as well as patterns of alpha diversity on microplastics following the latitudinal gradient.

    Google Scholar 

  27. 27.

    De Tender, C. A. et al. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ. Sci. Technol. 49, 9629–9638 (2015).

    PubMed  Google Scholar 

  28. 28.

    Frere, L. et al. Microplastic bacterial communities in the Bay of Brest: influence of polymer type and size. Environ. Pollut. 242, 614–625 (2018).

    CAS  PubMed  Google Scholar 

  29. 29.

    Hoellein, T. J. et al. Longitudinal patterns of microplastic concentration and bacterial assemblages in surface and benthic habitats of an urban river. Fresh. Sci. 36, 491–507 (2017).

    Google Scholar 

  30. 30.

    McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J. & Kelly, J. J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 48, 11863–11871 (2014).

    CAS  PubMed  Google Scholar 

  31. 31.

    McCormick, A. R. et al. Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages. Ecosphere 7, e01556 (2016).

    Google Scholar 

  32. 32.

    Flemming, H. C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Costerton, J. W., Lewandowski, Z., Caldwell, D. E. & Korber, D. R. Microbial biofilms. Ann. Rev. Microbiol. 49, 711–745 (1995).

    CAS  Google Scholar 

  34. 34.

    Kirstein, I. V., Wichels, A., Krohne, G. & Gerdts, G. Mature biofilm communities on synthetic polymers in seawater - specific or general? Mar. Environ. Res. 142, 147–154 (2018).

    CAS  PubMed  Google Scholar 

  35. 35.

    Carson, H. S., Nerheim, M. S., Carroll, K. A. & Eriksen, M. The plastic-associated microorganisms of the North Pacific Gyre. Mar. Pollut. Bull. 75, 126–132 (2013).

    CAS  PubMed  Google Scholar 

  36. 36.

    Eich, A., Mildenberger, T., Laforsch, C. & Weber, M. Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: early signs of degradation in the pelagic and benthic zone? PLOS ONE 10, e0137201 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Masó, M., Fortuño, J. M., De Juan, S. & Demestre, M. Microfouling communities from pelagic and benthic marine plastic debris sampled across Mediterranean coastal waters. Sci. Mar. 80, 117–127 (2016).

    Google Scholar 

  38. 38.

    Michels, J., Stippkugel, A., Lenz, M., Wirtz, K. & Engel, A. Rapid aggregation of biofilm-covered microplastics with marine biogenic particles. Proc. Biol. Sci. 285, 20181203 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Oberbeckmann, S., Loeder, M. G., Gerdts, G. & Osborn, A. M. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol. Ecol. 90, 478–492 (2014).

    CAS  PubMed  Google Scholar 

  40. 40.

    Carpenter, E. J. & Smith, K. L. Plastics on the Sargasso Sea surface. Science 175, 1240–1241 (1972). This is the first mention of plastic in the open ocean, describing diatoms and hydroids and pointing out that many plastics have high concentrations of PCB plasticizers.

    CAS  PubMed  Google Scholar 

  41. 41.

    Muthukrishnan, T., Al Khaburi, M. & Abed, R. M. M. Fouling microbial communities on plastics compared with wood and steel: are they substrate- or location-specific? Microb. Ecol. 78, 361–374 (2019). Muthukrishnan et al. place plastic, steel and wood substrates in a marine setting and compare microbial communities, in one of the few marine studies to compare the colonization of different substrates.

    CAS  PubMed  Google Scholar 

  42. 42.

    Decelle, J. et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).

    CAS  PubMed  Google Scholar 

  43. 43.

    Luo, H. & Moran, M. A. Evolutionary ecology of the marine Roseobacter clade. Microbiol. Mol. Biol. Rev. 78, 573–587 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ehrlich, H. L. Inorganic energy sources for chemolithotrophic and mixotrophic bacteria. Geomicrobiol. J. 1, 65–83 (1978).

    CAS  Google Scholar 

  45. 45.

    Eiler, A. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl. Environ. Microbiol. 72, 7431–7437 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Matin, A. Organic nutrition of chemolithotrophic bacteria. Ann. Rev. Microbiol. 32, 433–468 (1978).

    CAS  Google Scholar 

  47. 47.

    Rittenberg, S. C. The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria. Adv. Microb. Phys. 3, 159–196 (1969).

    CAS  Google Scholar 

  48. 48.

    Debroas, D., Mone, A. & Ter Halle, A. Plastics in the North Atlantic garbage patch: a boat-microbe for hitchhikers and plastic degraders. Sci. Total Environ. 599–600, 1222–1232 (2017).

    PubMed  Google Scholar 

  49. 49.

    Yoon, M. G., Jeon, H. J. & Kim, M. N. Biodegradation of polyethylene by a soil bacterium and alkB cloned recombinant cell. J. Bioremed. Biodegrad. 3, 1000145 (2012).

    Google Scholar 

  50. 50.

    Nakamiya, K., Sakasita, G., Ooi, T. & Kinoshita, S. Enzymatic degradation of polystyrene by hydroquinone peroxidase of Azotobacter beijerinckii HM121. J. Ferm. Bioeng. 84, 480–482 (1997).

    CAS  Google Scholar 

  51. 51.

    Harshvardhan, K. & Jha, B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar. Pollut. Bull. 77, 100–106 (2013).

    CAS  PubMed  Google Scholar 

  52. 52.

    Gilan, I. & Sivan, A. Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208. FEMS Microbiol. Lett. 342, 18–23 (2013).

    CAS  PubMed  Google Scholar 

  53. 53.

    Kettner, M. T., Rojas-Jimenez, K., Oberbeckmann, S., Labrenz, M. & Grossart, H. P. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ. Microbiol. 19, 4447–4459 (2017). So far, this is the only report targeting fungal diversity on plastic in aquatic systems.

    CAS  PubMed  Google Scholar 

  54. 54.

    Amend, A. et al. Fungi in the marine environment: open questions and unsolved problems. mBio 10, e01189–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Kobayashi, T., Nakano, N., Muto, T. & Endo, Y. Growth characteristics of Ephelota gigantea a pest to seaweed culture along the Northeastern Coast of Japan. Acta Protozool. 50, 339–343 (2011).

    Google Scholar 

  56. 56.

    Stankovic, A., Borsuk, P., Koper, M. & Weglenski, P. Ephelota-epizoic suctorian found on Antarctic krill. Pol. Biol. 25, 827–832 (2002).

    Google Scholar 

  57. 57.

    Derraik, J. G. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44, 842–852 (2002).

    CAS  PubMed  Google Scholar 

  58. 58.

    Jiang, P., Zhao, S., Zhu, L. & Li, D. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Sci. Total Environ. 624, 48–54 (2018).

    CAS  PubMed  Google Scholar 

  59. 59.

    Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1–8 (2016).

    CAS  PubMed  Google Scholar 

  60. 60.

    Oberbeckmann, S., Osborn, A. M. & Duhaime, M. B. Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLOS ONE 11, e0159289 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Curren, E. & Leong, S. C. Y. Profiles of bacterial assemblages from microplastics of tropical coastal environments. Sci. Total Environ. 655, 313–320 (2019).

    CAS  PubMed  Google Scholar 

  62. 62.

    Lafferty, K. D. et al. Infectious diseases affect marine fisheries and aquaculture economics. Ann. Rev. Mar. Sci. 7, 471–496 (2015).

    PubMed  Google Scholar 

  63. 63.

    Chatterjee, S. & Haldar, S. Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J. Mar. Sci. Res. Dev. s1, 2 (2012).

    Google Scholar 

  64. 64.

    Casabianca, S. et al. Plastic-associated harmful microalgal assemblages in marine environment. Environ. Pollut. 244, 617–626 (2019).

    CAS  PubMed  Google Scholar 

  65. 65.

    Vezzulli, L. et al. Long-term effects of ocean warming on the prokaryotic community: evidence from the Vibrios. ISME J 6, 21–30 (2012).

    PubMed  Google Scholar 

  66. 66.

    Goldstein, M. C., Carson, H. S. & Eriksen, M. Relationship of diversity and habitat area in North Pacific plastic-associated rafting communities. Mar. Biol. 161, 1441–1453 (2014).

    Google Scholar 

  67. 67.

    Lamb, J. B. et al. Plastic waste associated with disease on coral reefs. Science 359, 460–462 (2018). This is one of the first field studies linking plastic directly to disease in a marine ecosystem, demonstrating that the likelihood of disease increases dramatically for corals in contact with plastic.

    CAS  PubMed  Google Scholar 

  68. 68.

    Virsek, M. K., Lovsin, M. N., Koren, S., Krzan, A. & Peterlin, M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar. Pollut. Bull. 125, 301–309 (2017).

    CAS  PubMed  Google Scholar 

  69. 69.

    Harrison, J. P., Schratzberger, M., Sapp, M. & Osborn, A. M. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol. 14, 232–247 (2014). This study applies SEM, CARD-FISH and qPCR and T-RFLP in order to characterize microbial communities in coastal sediment microcosms and shows that plastic colonization occurs within hours.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Dussud, C. et al. Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Front. Microbiol. 9, 1571 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Miao, L. et al. Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci. Total Environ. 650, 2395–2402 (2019).

    CAS  PubMed  Google Scholar 

  72. 72.

    Parrish, K. & Fahrenfeld, N. L. Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class. Environ. Sci. Water Res. Technol. 5, 495–505 (2019).

    CAS  Google Scholar 

  73. 73.

    Oberbeckmann, S., Kreikemeyer, B. & Labrenz, M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front. Microbiol. 8, 2709 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Arciola, C. R., Campoccia, D. & Montanaro, L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 16, 397–409 (2018).

    CAS  PubMed  Google Scholar 

  75. 75.

    Catto, C., Villa, F. & Cappitelli, F. Recent progress in bio-inspired biofilm-resistant polymeric surfaces. Crit. Rev. Microbiol. 44, 633–652 (2018).

    CAS  PubMed  Google Scholar 

  76. 76.

    Fusetani, N. Antifouling marine natural products. Nat. Prod. Rep. 28, 400–410 (2011).

    CAS  PubMed  Google Scholar 

  77. 77.

    Zobell, C. E. The effect of solid surfaces upon bacterial activity. J. Bacteriol. 46, 39–56 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Foulon, V. et al. Colonization of polystyrene microparticles by Vibrio crassostreae: light and electron microscopic investigation. Environ. Sci. Technol. 50, 10988–10996 (2016).

    CAS  PubMed  Google Scholar 

  79. 79.

    Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52, 79–92 (2005).

    CAS  PubMed  Google Scholar 

  81. 81.

    Royer, S. J., Ferron, S., Wilson, S. T. & Karl, D. M. Production of methane and ethylene from plastic in the environment. PLOS ONE 13, e0200574 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Romera-Castillo, C., Pinto, M., Langer, T. M., Alvarez-Salgado, X. A. & Herndl, G. J. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat. Commun. 9, 1430 (2018). This study documented that plastic in aquatic systems generates smaller compounds that are microbially bioavailable.

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Pandey, G. & Jain, R. K. Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl. Environ. Microbiol. 68, 5789–5795 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Thompson, S. E. M. & Coates, J. C. Surface sensing and stress-signalling in Ulva and fouling diatoms — potential targets for antifouling: a review. Biofouling 33, 410–432 (2017).

    PubMed  Google Scholar 

  85. 85.

    Arias-Andres, M., Klumper, U., Rojas-Jimenez, K. & Grossart, H. P. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ. Pollut. 237, 253–261 (2018). This study demonstrated increased transfer of a plasmid conferring antibiotic resistance in bacteria on microplastics versus free-living bacteria and those associated with natural aggregates, showing increased gene exchange.

    CAS  PubMed  Google Scholar 

  86. 86.

    Hsu, L. C., Fang, J., Borca-Tasciuc, D. A., Worobo, R. W. & Moraru, C. I. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl. Environ. Microbiol. 79, 2703–2712 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Prunier, J. et al. Trace metals in polyethylene debris from the North Atlantic subtropical gyre. Environ. Pollut. 245, 371–379 (2019).

    CAS  PubMed  Google Scholar 

  88. 88.

    Balasubramanian, V. et al. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett. Appl. Microbiol. 51, 205–211 (2010).

    CAS  PubMed  Google Scholar 

  89. 89.

    Bonhomme, S. et al. Environmental biodegradation of polyethylene. Pol. Deg. Stab. 81, 441–452 (2003).

    CAS  Google Scholar 

  90. 90.

    Orr, I. G., Hadar, Y. & Sivan, A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl. Microbiol. Biotechnol. 65, 97–104 (2004).

    PubMed  Google Scholar 

  91. 91.

    Sudhakar, M. et al. Biofouling and biodegradation of polyolefins in ocean waters. Pol. Deg. Stab 92, 1743–1752 (2007).

    CAS  Google Scholar 

  92. 92.

    Syranidou, E. et al. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLOS ONE 12, e0183984 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    CAS  PubMed  Google Scholar 

  94. 94.

    Danso, D. et al. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl. Environ. Microbiol. 84, e02773-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Hussain, N., Jaitley, V. & Florence, A. T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev. 50, 107–142 (2001).

    CAS  PubMed  Google Scholar 

  96. 96.

    Albertsson, A. C. The shape of the biodegradation curve for low and high-density polyethenes in prolonged series of experiments. Europ. Polym. J. 16, 623–630 (1980).

    CAS  Google Scholar 

  97. 97.

    Artham, T. et al. Biofouling and stability of synthetic polymers in sea water. Int. Biodet. Biodegrad. 63, 884–890 (2009).

    CAS  Google Scholar 

  98. 98.

    Gladfelter, A. S., James, T. Y. & Amend, A. S. Marine fungi. Curr. Biol. 29, R191–R195 (2019).

    CAS  PubMed  Google Scholar 

  99. 99.

    Hibbett, D. S. & Binder, M. B. Evolution of marine mushrooms. Biol. Bull. 201, 319–322 (2001).

    CAS  PubMed  Google Scholar 

  100. 100.

    Shimao, M. Biodegradation of plastics. Curr. Opinion. Biotech. 12, 242–247 (2001).

    CAS  Google Scholar 

  101. 101.

    Harrison, J. P., Boardman, C., O’Callaghan, K., Delort, A. M. & Song, J. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. R. Soc. Open. Sci 5, 171792 (2018).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Zumstein, M. T. et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4, eaas9024 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Harrison, R. M. & Hester, R. E. Plastics and the Environment (Royal Society of Chemistry, 2019).

  104. 104.

    Baekeland, L. H. The synthesis, constitution, and uses of bakelite. Ind. Eng. Chem. 1, 149–161 (1909).

    CAS  Google Scholar 

  105. 105.

    Crossland, B., Bett, K. E., Ford, H. & Gardner, A. K. Review of some of the major engineering developments in the high-pressure polyethylene process 1933–1983. Proc. Inst. Mech. Eng. A 200, 237–253 (1986).

    Google Scholar 

  106. 106.

    Carothers, W. H. Linear polyamides and their production. US Patent 2,130,523 (1938).

  107. 107.

    Whinfield, J. R. & Dickson, J. T. Improvements relating to the manufacture of highly polymeric substances. UK Patent 578,079 (1946).

  108. 108.

    McIntyre, O. R. Method of making and storing compositions comprising thermoplastic resins and normally gaseous solvents . US Patent 2,515,250 (1950).

  109. 109.

    Life Magazine. Throwaway living: disposable items cut down household chores. Life 39, 43–44 (1955).

    Google Scholar 

  110. 110.

    Hogan, J. P. & Banks, R. L. in History of Polyolefins, Vol. 7 (eds. Seymour, R. B. & Cheng, T.) (Springer, 1986).

  111. 111.

    Lattimer, D. All We Did Was Fly to the Moon (Whispering Eagle Press, 1985).

  112. 112.

    Cancio, L. V., Fitzsimmons, J. N., Mortellite, R. M., & Wu, P. C. Linear low density polyethylene film and method of making. US Patent 4,626,574 (1986).

  113. 113.

    International Maritime Orgnaization. Prevention of Pollution by Garbage from Ships. (2019).

  114. 114.

    Hrabak, O. Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol. Rev. 9, 251–255 (1992).

    Google Scholar 

  115. 115.

    European Parliament. Parliament seals ban on throwaway plastics by 2021. (2019).

  116. 116.

    Akutsu, Y., Nakajima-Kambe, T., Nomura, N. & Nakahara, T. Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl. Environ. Microbiol. 64, 62–67 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Yoon, M. G., Jeon, H. J. & Kim, M. N. Biodegradation of polyethylene by a soil bacterium and alkB cloned recombinant cell. J. Bioremed. Biodegrad. 3, 145 (2012).

    CAS  Google Scholar 

  118. 118.

    Shah, A. A., Hasan, F., Hameed, A. & Ahmed, S. Biological degradation of plastics: a comprehensive review. Biotechnol. Adv. 26, 246–265 (2008).

    CAS  PubMed  Google Scholar 

Download references


We acknowledge the support of the US National Science Foundation (NSF) (OCE-1155671) and funds from the Florida Atlantic University (FAU) Harbor Branch World Class Faculty and Scholar Program and the FAU Honors College Biology to T.J.M. The work was also supported by NSF collaborative grants to L.A.A.-Z. (OCE-1155571) and E.R.Z. (OCE-1155379).

Author information




L.A.A.-Z., E.R.Z. and T.J.M. researched data for the article, substantially contributed to discussion of the content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Linda A. Amaral-Zettler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Microbiology thanks H.-C. Flemming, M. Labrenz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Related links

Visual Analysis of Microbial Population Structures (VAMPS):

Supplementary Information



Generally, plastic particles smaller than 5 mm in size.


Physically breaking an item into smaller pieces.


The physical, chemical or biological breakdown of a substrate (synthetic polymers, biomass) into smaller units.

Carrying capacity

The number of organisms that can be sustained in a given environment.

Species richness

The total number of different species in a community.


A diversity index that refers to how equally abundant the different members of a given community are.

Beta diversity

A measure of the variation in species composition between two different environments.


Organisms that harness light energy and convert it into chemical energy.


Organisms that kill and ingest other organisms for nutrition.


Organisms that live with another organism, where both derive benefits from the arrangement.


Types of organisms that use organic compounds as a carbon and energy source for biosynthesis.


Organisms that ingest organisms or parts of organisms for nutrition.


Organisms that feed on the organic matter of decaying organisms.


Symbionts that live attached to the outside of another organism.


Organisms that derive nutrients and energy from larger organisms while causing harm to their ‘host’.


Marine agriculture.

Manta trawls

Nets resembling the shape of a manta ray, used for sampling plankton and plastic at the surface of the ocean.

Redfield ratio

The consistent stoichiometric carbon:nitrogen:phosphorus ratio in marine phytoplankton, typically 106:16:1.


The biological breakdown of a carbon-based product into water and carbon dioxide or methane.


Generally, plastic pieces smaller than 1 µm.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amaral-Zettler, L.A., Zettler, E.R. & Mincer, T.J. Ecology of the plastisphere. Nat Rev Microbiol 18, 139–151 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing