Abstract
In all domains of life, genomes contain epigenetic information superimposed over the nucleotide sequence. Epigenetic signals control DNA–protein interactions and can cause phenotypic change in the absence of mutation. A nearly universal mechanism of epigenetic signalling is DNA methylation. In bacteria, DNA methylation has roles in genome defence, chromosome replication and segregation, nucleoid organization, cell cycle control, DNA repair and regulation of transcription. In many bacterial species, DNA methylation controls reversible switching (phase variation) of gene expression, a phenomenon that generates phenotypic cell variants. The formation of epigenetic lineages enables the adaptation of bacterial populations to harsh or changing environments and modulates the interaction of pathogens with their eukaryotic hosts.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Marine DNA methylation patterns are associated with microbial community composition and inform virus-host dynamics
Microbiome Open Access 28 September 2022
-
NT-seq: a chemical-based sequencing method for genomic methylome profiling
Genome Biology Open Access 30 May 2022
-
Metagenomic methylation patterns resolve bacterial genomes of unusual size and structural complexity
The ISME Journal Open Access 22 April 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Holliday, R. Epigenetics: a historical overview. Epigenetics 1, 76–80 (2006).
Henikoff, S. & Greally, J. M. Epigenetics, cellular memory and gene regulation. Curr. Biol. 26, R644–R648 (2016).
Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).
Lawrence, M., Daujat, S. & Schneider, R. Lateral thinking: How histone modifications regulate gene expression. Trends Genet. 32, 42–56 (2016).
Marinus, M. G. Methylation of DNA in Escherichia coli and Salmonella. Cell. Mol. Biol. 782–791 (1996).
Casadesus, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).
Wion, D. & Casadesus, J. N6-methyl-adenine: an epigenetic signal for DNA–protein interactions. Nat. Rev. Microbiol. 4, 183–192 (2006).
Løbner-Olesen, A., Skovgaard, O. & Marinus, M. G. Dam methylation: coordinating cellular processes. Curr. Opin. Microbiol. 8, 154–160 (2005).
Stephens, C., Reisenauer, A., Wright, R. & Shapiro, L. A cell cycle-regulated bacterial DNA methyltransferase is essential for viability. Proc. Natl Acad. Sci. USA 93, 1210–1214 (1996).
Blyn, L. B., Braaten, B. A., White-Ziegler, C. A., Rolfson, D. H. & Low, D. A. Phase-variation of pyelonephritis-associated pili in Escherichia coli: evidence for transcriptional regulation. EMBO J. 8, 613–620 (1989). This study provides the first description of bacterial lineage formation under the control of DNA methylation.
Heithoff, D. M., Sinsheimer, R. L., Low, D. A. & Mahan, M. J. An essential role for DNA adenine methylation in bacterial virulence. Science 284, 967–970 (1999).
Garcia-Del Portillo, F., Pucciarelli, M. G. & Casadesus, J. DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc. Natl Acad. Sci. USA 96, 11578–11583 (1999).
Marinus, M. G. & Casadesus, J. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol. Rev. 33, 488–503 (2009).
Sanchez-Romero, M. A., Cota, I. & Casadesus, J. DNA methylation in bacteria: from the methyl group to the methylome. Curr. Opin. Microbiol. 25, 9–16 (2015).
Casadesus, J. & Low, D. A. Programmed heterogeneity: epigenetic mechanisms in bacteria. J. Biol. Chem. 288, 13929–13935 (2013).
Casadesús, J. & Torreblanca, J. in Epigenetic Mechanisms of Gene Regulation (eds. Russo, V. E. A., Martienssen, R. A. & Riggs, A. D.) 141–153 (Cold Spring Harbor Laboratory, 1996).
Atack, J. M., Tan, A., Bakaletz, L. O., Jennings, M. P. & Seib, K. L. Phasevarions of bacterial pathogens: methylomics sheds new Light on old enemies. Trends Microbiol. 26, 715–726 (2018).
Chen, C. et al. Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes. Proc. Natl Acad. Sci. USA 114, 4501–4506 (2017).
Wang, L., Jiang, S., Deng, Z., Dedon, P. C. & Chen, S. DNA phosphorothioate modification—a new multi-functional epigenetic system in bacteria. FEMS Microbiol. Rev. 43, 109–122 (2019).
Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010).
Fang, G. et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat. Biotechnol. 30, 1232–1239 (2012).
Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).
Beaulaurier, J., Schadt, E. E. & Fang, G. Deciphering bacterial epigenomes using modern sequencing technologies. Nat. Rev. Genet. 20, 157–172 (2019). This review summarizes the technologies for mapping bacterial methylomes.
Blow, M. J. et al. The epigenomic landscape of prokaryotes. PLOS Genet. 12, e1005854 (2016).
Lluch-Senar, M. et al. Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at single-base resolution. PLOS Genet. 9, e1003191 (2013).
Vasu, K. & Nagaraja, V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol. Mol. Biol. Rev. 77, 53–72 (2013).
De Ste Croix, M. et al. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiol. Rev. 41, S3–S15 (2017).
Tan, A., Atack, J. M., Jennings, M. P. & Seib, K. L. The capricious nature of bacterial pathogens: phasevarions and vaccine development. Front. Immunol. 7, 586 (2016).
Thattai, M. & van Oudenaarden, A. Stochastic gene expression in fluctuating environments. Genetics 167, 523–530 (2004).
Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005).
Adhikari, S. & Curtis, P. D. DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol. Rev. 40, 575–591 (2016).
Mouammine, A. & Collier, J. The impact of DNA methylation in Alphaproteobacteria. Mol. Microbiol. 110, 1–10 (2018). This recent article reviews DNA methylation in alphaproteobacteria.
Phillips, Z. N., Husna, A. U., Jennings, M. P., Seib, K. L. & Atack, J. M. Phasevarions of bacterial pathogens-phase-variable epigenetic regulators evolving from restriction-modification systems. Microbiology 165, 917–928 (2019). This recent review covers phasevarions.
Mohapatra, S. S., Fioravanti, A. & Biondi, E. G. DNA methylation in Caulobacter and other Alphaproteobacteria during cell cycle progression. Trends Microbiol. 22, 528–535 (2014).
Jurkowska, R. Z. & Jeltsch, A. Mechanisms and biological roles of DNA methyltransferases and DNA methylation: from past achievements to future challenges. Adv. Exp. Med. Biol. 945, 1–17 (2016).
Cheng, X. Structure and function of DNA methyltransferases. Annu. Rev. Biophys. Biomol. Struct. 24, 293–318 (1995).
Bheemanaik, S., Reddy, Y. V. & Rao, D. N. Structure, function and mechanism of exocyclic DNA methyltransferases. Biochem. J. 399, 177–190 (2006).
Malone, T., Blumenthal, R. M. & Cheng, X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J. Mol. Biol. 253, 618–632 (1995).
Bujnicki, J. M. Sequence permutations in the molecular evolution of DNA methyltransferases. BMC Evol. Biol. 2, 3 (2002).
Ershova, A. S., Rusinov, I. S., Spirin, S. A., Karyagina, A. S. & Alexeevski, A. V. Role of restriction-modification systems in prokaryotic evolution and ecology. Biochem. 80, 1373–1386 (2015).
Oliveira, P. H., Touchon, M. & Rocha, E. P. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res. 42, 10618–10631 (2014).
Nobusato, A., Uchiyama, I. & Kobayashi, I. Diversity of restriction-modification gene homologues in Helicobacter pylori. Gene 259, 89–98 (2000).
Murphy, J., Mahony, J., Ainsworth, S., Nauta, A. & van Sinderen, D. Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl. Env. Microbiol. 79, 7547–7555 (2013).
Broadbent, S. E., Balbontin, R., Casadesus, J., Marinus, M. G. & van der Woude, M. YhdJ, a nonessential CcrM-like DNA methyltransferase of Escherichia coli and Salmonella enterica. J. Bacteriol. 189, 4325–4327 (2007).
Murray, I. A. et al. The non-specific adenine DNA methyltransferase M.EcoGII. Nucleic Acids Res. 46, 840–848 (2018).
Urig, S. et al. The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction. J. Mol. Biol. 319, 1085–1096 (2002).
Albu, R. F., Jurkowski, T. P. & Jeltsch, A. The Caulobacter crescentus DNA-(adenine-N6)-methyltransferase CcrM methylates DNA in a distributive manner. Nucleic Acids Res. 40, 1708–1716 (2012).
Peterson, S. N. & Reich, N. O. GATC flanking sequences regulate Dam activity: evidence for how Dam specificity may influence pap expression. J. Mol. Biol. 355, 459–472 (2006). This study describes DNA sequence elements that influence the processivity of the Dam methyltransferase.
Payelleville, A. et al. DNA adenine methyltransferase (Dam) overexpression impairs Photorhabdus luminescens motility and virulence. Front. Microbiol. 8, 1671 (2017).
Julio, S. M. et al. DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae. Infect. Immun. 69, 7610–7615 (2001).
Robinson, V. L., Oyston, P. C. & Titball, R. W. A dam mutant of Yersinia pestis is attenuated and induces protection against plague. FEMS Microbiol. Lett. 252, 251–256 (2005).
Taylor, V. L., Titball, R. W. & Oyston, P. C. Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. Microbiology 151, 1919–1926 (2005).
Gonzalez, D. & Collier, J. DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus. Mol. Microbiol. 88, 203–218 (2013).
Falker, S., Schilling, J., Schmidt, M. A. & Heusipp, G. Overproduction of DNA adenine methyltransferase alters motility, invasion, and the lipopolysaccharide O-antigen composition of Yersinia enterocolitica. Infect. Immun. 75, 4990–4997 (2007).
Shell, S. S. et al. DNA methylation impacts gene expression and ensures hypoxic survival of Mycobacterium tuberculosis. PLOS Pathog. 9, e1003419 (2013).
Balbontin, R. et al. DNA adenine methylation regulates virulence gene expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 188, 8160–8168 (2006).
Gonzalez, D., Kozdon, J. B., McAdams, H. H., Shapiro, L. & Collier, J. The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach. Nucleic Acids Res. 42, 3720–3735 (2014).
Friso, S., Udali, S., De Santis, D. & Choi, S. W. One-carbon metabolism and epigenetics. Mol. Asp. Med. 54, 28–36 (2017).
Torreblanca, J. & Casadesus, J. DNA adenine methylase mutants of Salmonella typhimurium and a novel Dam-regulated locus. Genetics 144, 15–26 (1996).
Marinus, M. G. Recombination is essential for viability of an Escherichia coli dam (DNA adenine methyltransferase) mutant. J. Bacteriol. 182, 463–468 (2000).
Campellone, K. G. et al. Increased adherence and actin pedestal formation by dam-deficient enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 63, 1468–1481 (2007).
Lopez-Garrido, J. & Casadesus, J. Regulation of Salmonella enterica pathogenicity island 1 by DNA adenine methylation. Genetics 184, 637–649 (2010).
Herman, G. E. & Modrich, P. Escherichia coli dam methylase. Physical and catalytic properties of the homogeneous enzyme. J. Biol. Chem. 257, 2605–2612 (1982).
Boye, E., Marinus, M. G. & Lobner-Olesen, A. Quantitation of Dam methyltransferase in Escherichia coli. J. Bacteriol. 174, 1682–1685 (1992).
Campbell, J. L. & Kleckner, N. The rate of Dam-mediated DNA adenine methylation in Escherichia coli. Gene 74, 189–190 (1988).
Low, D. A. & Casadesus, J. Clocks and switches: bacterial gene regulation by DNA adenine methylation. Curr. Opin. Microbiol. 11, 106–112 (2008).
Peterson, S. N. & Reich, N. O. Competitive Lrp and Dam assembly at the pap regulatory region: implications for mechanisms of epigenetic regulation. J. Mol. Biol. 383, 92–105 (2008).
Horton, J. R., Liebert, K., Bekes, M., Jeltsch, A. & Cheng, X. Structure and substrate recognition of the Escherichia coli DNA adenine methyltransferase. J. Mol. Biol. 358, 559–570 (2006).
van der Woude, M. W., Braaten, B. A. & Low, D. A. Evidence for global regulatory control of pilus expression in Escherichia coli by Lrp and DNA methylation: model building based on analysis of pap. Mol. Microbiol. 6, 2429–2435 (1992).
Wallecha, A., Munster, V., Correnti, J., Chan, T. & van der Woude, M. Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J. Bacteriol. 184, 3338–3347 (2002).
Waldron, D. E., Owen, P. & Dorman, C. J. Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol. Microbiol. 44, 509–520 (2002).
Cota, I. et al. OxyR-dependent formation of DNA methylation patterns in OpvABOFF and OpvABON cell lineages of Salmonella enterica. Nucleic Acids Res. 44, 3595–3609 (2016).
Brunet, Y. R., Bernard, C. S., Gavioli, M., Lloubes, R. & Cascales, E. An epigenetic switch involving overlapping Fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLOS Genet. 7, e1002205 (2011).
Jakomin, M., Chessa, D., Baumler, A. J. & Casadesus, J. Regulation of the Salmonella enterica std fimbrial operon by DNA adenine methylation, SeqA, and HdfR. J. Bacteriol. 190, 7406–7413 (2008).
Garcia-Pastor, L., Sanchez-Romero, M. A., Jakomin, M., Puerta-Fernandez, E. & Casadesus, J. Regulation of bistability in the std fimbrial operon of Salmonella enterica by DNA adenine methylation and transcription factors HdfR, StdE and StdF. Nucleic Acids Res. 47, 7929–7941 (2019).
Ardissone, S. et al. Cell cycle constraints and environmental control of local DNA hypomethylation in alpha-proteobacteria. PLOS Genet. 12, e1006499 (2016).
Ringquist, S. & Smith, C. L. The Escherichia coli chromosome contains specific, unmethylated dam and dcm sites. Proc. Natl Acad. Sci. USA 89, 4539–4543 (1992).
Wang, M. X. & Church, G. M. A whole genome approach to in vivo DNA–protein interactions in E. coli. Nature 360, 606–610 (1992).
Kozdon, J. B. et al. Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell cycle. Proc. Natl Acad. Sci. USA 110, E4658–E4667 (2013).
Payelleville, A. et al. The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated adenines. Sci. Rep. 8, 12091 (2018).
Hale, W. B., van der Woude, M. W. & Low, D. A. Analysis of nonmethylated GATC sites in the Escherichia coli chromosome and identification of sites that are differentially methylated in response to environmental stimuli. J. Bacteriol. 176, 3438–3441 (1994).
Li, D. et al. Exocyclic carbons adjacent to the N6 of adenine are targets for oxidation by the Escherichia coli adaptive response protein AlkB. J. Am. Chem. Soc. 134, 8896–8901 (2012). This report describes active demethylation of 6mA during DNA repair.
Polaczek, P., Kwan, K. & Campbell, J. L. GATC motifs may alter the conformation of DNA depending on sequence context and N6-adenine methylation status: possible implications for DNA–protein recognition. Mol. Gen. Genet. 258, 488–493 (1998).
Kimura, T., Asai, T., Imai, M. & Takanami, M. Methylation strongly enhances DNA bending in the replication origin region of the Escherichia coli chromosome. Mol. Gen. Genet. 219, 69–74 (1989).
Diekmann, S. DNA methylation can enhance or induce DNA curvature. EMBO J. 6, 4213–4217 (1987).
Waldminghaus, T. & Skarstad, K. The Escherichia coli SeqA protein. Plasmid 61, 141–150 (2009).
Sanchez-Romero, M. A. et al. Dynamic distribution of SeqA protein across the chromosome of Escherichia coli K-12. Mbio 1, e00012-10 (2010).
Camacho, E. M. & Casadesus, J. Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. Mol. Microbiol. 44, 1589–1598 (2002).
Camacho, E. M. & Casadesus, J. Regulation of traJ transcription in the Salmonella virulence plasmid by strand-specific DNA adenine hemimethylation. Mol Microbiol 57, 1700–1718 (2005).
Fioravanti, A. et al. DNA binding of the cell cycle transcriptional regulator GcrA depends on N6-adenosine methylation in Caulobacter crescentus and other Alphaproteobacteria. PLOS Genet. 9, e1003541 (2013).
Roberts, D., Hoopes, B. C., McClure, W. R. & Kleckner, N. IS10 transposition is regulated by DNA adenine methylation. Cell 43, 117–130 (1985).
Camacho, E. M. et al. Regulation of finP transcription by DNA adenine methylation in the virulence plasmid of Salmonella enterica. J. Bacteriol. 187, 5691–5699 (2005).
van der Woude, M., Braaten, B. & Low, D. Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol 4, 5–9 (1996).
Broadbent, S. E., Davies, M. R. & van der Woude, M. W. Phase variation controls expression of Salmonella lipopolysaccharide modification genes by a DNA methylation-dependent mechanism. Mol. Microbiol. 77, 337–353 (2010).
Hernday, A. D., Braaten, B. A. & Low, D. A. The mechanism by which DNA adenine methylase and PapI activate the pap epigenetic switch. Mol. Cell 12, 947–957 (2003).
Davies, M. R., Broadbent, S. E., Harris, S. R., Thomson, N. R. & van der Woude, M. W. Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity. PLOS Genet. 9, e1003568 (2013).
Garcia-Pastor, L., Sanchez-Romero, M. A., Gutierrez, G., Puerta-Fernandez, E. & Casadesus, J. Formation of phenotypic lineages in Salmonella enterica by a pleiotropic fimbrial switch. PLOS Genet. 14, e1007677 (2018).
Suwandi, A. et al. Std fimbriae–fucose interaction increases Salmonella-induced intestinal inflammation and prolongs colonization. PLOS Pathog. 15, e1007915 (2019).
Weyand, N. J., Braaten, B. A., van der Woude, M., Tucker, J. & Low, D. A. The essential role of the promoter-proximal subunit of CAP in pap phase variation: Lrp- and helical phase-dependent activation of papBA transcription by CAP from -215. Mol. Microbiol. 39, 1504–1522 (2001).
Hernday, A. D., Braaten, B. A., Broitman-Maduro, G., Engelberts, P. & Low, D. A. Regulation of the pap epigenetic switch by CpxAR: phosphorylated CpxR inhibits transition to the phase ON state by competition with Lrp. Mol. Cell 16, 537–547 (2004).
White-Ziegler, C. A., Angus Hill, M. L., Braaten, B. A., van der Woude, M. W. & Low, D. A. Thermoregulation of Escherichia coli pap transcription: H-NS is a temperature-dependent DNA methylation blocking factor. Mol. Microbiol. 28, 1121–1137 (1998).
Reyes-Lamothe, R. & Sherratt, D. J. The bacterial cell cycle, chromosome inheritance and cell growth. Nat. Rev. Microbiol. 17, 467–478 (2019).
Campbell, J. L. & Kleckner, N. E. coli oric and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell 62, 967–979 (1990).
Cagliero, C., Grand, R. S., Jones, M. B., Jin, D. J. & O’Sullivan, J. M. Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res. 41, 6058–6071 (2013).
Modrich, P. Methyl-directed DNA mismatch correction. J. Biol. Chem. 264, 6597–6600 (1989).
Cota, I., Blanc-Potard, A. B. & Casadesus, J. STM2209-STM2208 (opvAB): a phase variation locus of Salmonella enterica involved in control of O-antigen chain length. PLOS ONE 7, e36863 (2012).
Cota, I. et al. Epigenetic control of Salmonella enterica O-antigen chain length: a tradeoff between virulence and bacteriophage resistance. PLOS Genet. 11, e1005667 (2015).
Chessa, D., Winter, M. G., Jakomin, M. & Baumler, A. J. Salmonella enterica serotype Typhimurium Std fimbriae bind terminal alpha(1,2)fucose residues in the cecal mucosa. Mol. Microbiol. 71, 864–875 (2009).
De Bolle, X. et al. The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol. Microbiol. 35, 211–222 (2000).
de Vries, N. et al. Transcriptional phase variation of a type III restriction-modification system in Helicobacter pylori. J. Bacteriol. 184, 6615–6623 (2002).
Srikhanta, Y. N., Maguire, T. L., Stacey, K. J., Grimmond, S. M. & Jennings, M. P. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc. Natl Acad. Sci. USA 102, 5547–5551 (2005).
Fox, K. L. et al. Haemophilus influenzae phasevarions have evolved from type III DNA restriction systems into epigenetic regulators of gene expression. Nucleic Acids Res. 35, 5242–5252 (2007).
Srikhanta, Y. N. et al. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLOS Pathog. 5, e1000400 (2009).
Srikhanta, Y. N., Fox, K. L. & Jennings, M. P. The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat. Rev. Microbiol. 8, 196–206 (2010).
Kwiatek, A., Mrozek, A., Bacal, P., Piekarowicz, A. & Adamczyk-Poplawska, M. Type III methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 regulates biofilm formation and interactions with human cells. Front. Microbiol. 6, 1426 (2015).
Blakeway, L. V. et al. Moraxella catarrhalis restriction-modification systems are associated with phylogenetic lineage and disease. Genome Biol. Evol. 10, 2932–2946 (2018).
Atack, J. M., Yang, Y., Seib, K. L., Zhou, Y. & Jennings, M. P. A survey of Type III restriction-modification systems reveals numerous, novel epigenetic regulators controlling phase-variable regulons: phasevarions. Nucleic Acids Res. 46, 3532–3542 (2018). A comprehensive bioinformatic search for phase-variable type III R-M DNA methyltransferases.
Gawthorne, J. A., Beatson, S. A., Srikhanta, Y. N., Fox, K. L. & Jennings, M. P. Origin of the diversity in DNA recognition domains in phasevarion associated modA genes of pathogenic Neisseria and Haemophilus influenzae. PLOS ONE 7, e32337 (2012).
Srikhanta, Y. N. et al. Methylomic and phenotypic analysis of the ModH5 phasevarion of Helicobacter pylori. Sci. Rep. 7, 16140 (2017).
Anjum, A. et al. Phase variation of a Type IIG restriction-modification enzyme alters site-specific methylation patterns and gene expression in Campylobacter jejuni strain NCTC11168. Nucleic Acids Res. 44, 4581–4594 (2016).
Sitaraman, R., Denison, A. M. & Dybvig, K. A unique, bifunctional site-specific DNA recombinase from Mycoplasma pulmonis. Mol. Microbiol. 46, 1033–1040 (2002).
Doberenz, S. et al. Identification of a Pseudomonas aeruginosa PAO1 DNA methyltransferase, its targets, and physiological roles. MBio 8, e02312–e02316 (2017).
Manso, A. S. et al. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat. Commun. 5, 5055 (2014). This study, together with Li et al. (2016) and Oliver et al. (2017), characterizes a phase variation mechanism that controls switching between pneumococcal phenotypic forms.
Li, J. et al. Epigenetic switch driven by DNA inversions dictates phase variation in Streptococcus pneumoniae. PLOS Pathog. 12, e1005762 (2016).
Oliver, M. B., Basu Roy, A., Kumar, R., Lefkowitz, E. J. & Swords, W. E. Streptococcus pneumoniae TIGR4 phase-locked opacity variants differ in virulence phenotypes. mSphere 2, e00386-17 (2017).
Estibariz, I. et al. The core genome m5C methyltransferase JHP1050 (M.Hpy99III) plays an important role in orchestrating gene expression in Helicobacter pylori. Nucleic Acids Res. 47, 2336–2348 (2019). This article demonstrates direct transcriptional control of bacterial genes by 5mC.
Chao, M. C. et al. A cytosine methyltransferase modulates the cell envelope stress response in the cholera pathogen. PLOS Genet. 11, e1005666 (2015).
Kahramanoglou, C. et al. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat. Commun. 3, 886 (2012).
Militello, K. T., Mandarano, A. H., Varechtchouk, O. & Simon, R. D. Cytosine DNA methylation influences drug resistance in Escherichia coli through increased sugE expression. FEMS Microbiol. Lett. 350, 100–106 (2014).
Kumar, S. et al. N4-cytosine DNA methylation regulates transcription and pathogenesis in Helicobacter pylori. Nucleic Acids Res. 46, 3429–3445 (2018).
Budroni, S. et al. Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc. Natl Acad. Sci. USA 108, 4494–4499 (2011).
Nandi, T. et al. Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles. Genome Res. 25, 608 (2015).
Kobayashi, I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29, 3742–3756 (2001).
Tomcsanyi, T. & Berg, D. E. Transposition effect of adenine (Dam) methylation on activity of O end mutants of IS50. J. Mol. Biol. 209, 191–193 (1989).
Alonso, A., Pucciarelli, M. G., Figueroa-Bossi, N. & Garcia-del Portillo, F. Increased excision of the Salmonella prophage ST64B caused by a deficiency in Dam methylase. J. Bacteriol. 187, 7901–7911 (2005).
Murphy, K. C., Ritchie, J. M., Waldor, M. K., Lobner-Olesen, A. & Marinus, M. G. Dam methyltransferase is required for stable lysogeny of the Shiga toxin (Stx2)-encoding bacteriophage 933W of enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 190, 438–441 (2008).
Wang, T. C. & Smith, K. C. Inviability of dam recA and dam recB cells of Escherichia coli is correlated with their inability to repair DNA double-strand breaks produced by mismatch repair. J. Bacteriol. 165, 1023–1025 (1986).
Veening, J. W., Smits, W. K. & Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008).
Maynard-Smith, J. Evolution and the Theory of Games (Cambridge University Press, 1982).
Roth, J. R., Kugelberg, E., Reams, A. B., Kofoid, E. & Andersson, D. I. Origin of mutations under selection: the adaptive mutation controversy. Annu. Rev. Microbiol. 60, 477–501 (2006).
Tanner, J. R. & Kingsley, R. A. Evolution of Salmonella within hosts. Trends Microbiol. 26, 986–998 (2018).
Turrientes, M. C. et al. Normal mutation rate variants arise in a mutator (MutS) Escherichia coli population. PLOS ONE 8, e72963 (2013).
Furuta, Y. & Kobayashi, I. Movement of DNA sequence recognition domains between non-orthologous proteins. Nucleic Acids Res. 40, 9218–9232 (2012).
Coulondre, C., Miller, J. H., Farabaugh, P. J. & Gilbert, W. Molecular basis of base substitution hotspots in Escherichia coli. Nature 274, 775–780 (1978).
Lieb, M. & Bhagwat, A. S. Very short patch repair: reducing the cost of cytosine methylation. Mol. Microbiol. 20, 467–473 (1996).
Hershberg, R. & Petrov, D. A. Evidence that mutation is universally biased towards AT in bacteria. PLOS Genet. 6, e1001115 (2011).
Lobry, J. R. & Sueoka, N. Asymmetric directional mutation pressures in bacteria. Genome Biol. 3, RESEARCH0058 (2002).
Pereira, J. M., Hamon, M. A. & Cossart, P. A lasting impression: epigenetic memory of nacterial infections? Cell Host Microbe. 19, 579–582 (2016).
Niller, H. H. & Minarovits, J. Patho-epigenetics of infectious diseases caused by intracellular bacteria. Adv. Exp. Med. Biol. 879, 107–130 (2016).
Bierne, H. in Epigenetics of Infectious Diseases (eds Doerfler, W. & Casadesus, J.) 113–158 (Springer, 2017).
Chernov, A. V. et al. Mycoplasma CG- and GATC-specific DNA methyltransferases selectively and efficiently methylate the host genome and alter the epigenetic landscape in human cells. Epigenetics 10, 303–318 (2015).
Mashhoon, N., Pruss, C., Carroll, M., Johnson, P. H. & Reich, N. O. Selective inhibitors of bacterial DNA adenine methyltransferases. J. Biomol. Screen 11, 497–510 (2006).
Benkovic, S. J. et al. Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH. J. Med. Chem. 48, 7468–7476 (2005).
Ceccaldi, A. et al. Identification of novel inhibitors of DNA methylation by screening of a chemical library. ACS Chem. Biol. 8, 543–548 (2013).
Cohen, N. R. et al. A role for the bacterial GATC methylome in antibiotic stress survival. Nat. Genet. 48, 581–586 (2016).
Maier, J. A. H., Mohrle, R. & Jeltsch, A. Design of synthetic epigenetic circuits featuring memory effects and reversible switching based on DNA methylation. Nat. Commun. 8, 15336 (2017).
Olivenza, D. R. et al. A portable epigenetic switch for bistable gene expression in bacteria. Sci. Rep. 9, 11261 (2019).
Nou, X. et al. Regulation of pyelonephritis-associated pili phase-variation in Escherichia coli: binding of the PapI and the Lrp regulatory proteins is controlled by DNA methylation. Mol. Microbiol. 7, 545–553 (1993).
Heithoff, D. M. et al. Salmonella DNA adenine methylase mutants confer cross-protective immunity. Infect. Immun. 69, 6725–6730 (2001).
Heithoff, D. M., House, J. K., Thomson, P. C. & Mahan, M. J. Development of a Salmonella cross-protective vaccine for food animal production systems. Vaccine 33, 100–107 (2015).
Xiao, C. L. et al. N6-methyladenine DNA modification in the human genome. Mol. Cell 71, 306–318.e7 (2018).
Lopez-Garrido, J. & Casadesus, J. Crosstalk between virulence loci: regulation of Salmonella enterica pathogenicity island 1 (SPI-1) by products of the std fimbrial operon. PLOS ONE 7, e30499 (2012).
Braaten, B. A. et al. Leucine-responsive regulatory protein controls the expression of both the pap and fan pili operons in Escherichia coli. Proc. Natl Acad. Sci. USA 89, 4250–4254 (1992).
Waldminghaus, T., Weigel, C. & Skarstad, K. Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome. Nucleic Acids Res. 40, 5465–5476 (2012).
Badie, G., Heithoff, D. M. & Mahan, M. J. LcrV synthesis is altered by DNA adenine methylase overproduction in Yersinia pseudotuberculosis and is required to confer immunity in vaccinated hosts. Infect. Immun. 72, 6707–6710 (2004).
Pucciarelli, M. G., Prieto, A. I., Casadesus, J. & Garcia-del Portillo, F. Envelope instability in DNA adenine methylase mutants of Salmonella enterica. Microbiology 148, 1171–1182 (2002).
Fumeaux, C. et al. Cell cycle transition from S-phase to G1 in Caulobacter is mediated by ancestral virulence regulators. Nat. Commun. 5, 4081 (2014).
Acknowledgements
Work in the authors’ laboratory is supported by grant BIO2016-75235-P from the Ministerio de Ciencia, Innovación y Universidades of Spain and the European Regional Fund. They are grateful to M. van der Woude and L. García-Pastor for discussions.
Author information
Authors and Affiliations
Contributions
J.C. and M.A.S.-R. contributed to discussion of the content, wrote the article, reviewed and edited the manuscript before submission, and researched data for the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Microbiology thanks M. R. Oggioni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Methylome
-
Overall DNA methylation pattern in a genome.
- Adaptive value
-
In population genetics, the contribution of a phenotypic trait to the fitness of an individual or a population.
- Restriction–modification (R-M) systems
-
Machine systems that eliminate foreign DNA molecules by endonucleolytic cleavage and protect the genome by modification of the cognate endonuclease target. A frequent type of protection is DNA methylation.
- SOS regulon
-
Regulatory network that responds to DNA damage in gammaproteobacteria.
- Homopolymeric nucleotide tract
-
DNA region that contains only AT or GC nucleotide pairs.
- Transparent–opaque transition
-
Formation of phenotypic variants (phase variation) of Streptococcus pneumoniae that is involved in pneumococcal carriage and invasive infection.
Rights and permissions
About this article
Cite this article
Sánchez-Romero, M.A., Casadesús, J. The bacterial epigenome. Nat Rev Microbiol 18, 7–20 (2020). https://doi.org/10.1038/s41579-019-0286-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41579-019-0286-2
This article is cited by
-
Navigating the pitfalls of mapping DNA and RNA modifications
Nature Reviews Genetics (2023)
-
Comparative Genomics of Pesticide-Degrading Enterococcus Symbionts of Spodoptera frugiperda (Lepidoptera: Noctuidae) Leads to the Identification of Two New Species and the Reappraisal of Insect-Associated Enterococcus Species
Microbial Ecology (2023)
-
Marine DNA methylation patterns are associated with microbial community composition and inform virus-host dynamics
Microbiome (2022)
-
NT-seq: a chemical-based sequencing method for genomic methylome profiling
Genome Biology (2022)
-
Metagenomic methylation patterns resolve bacterial genomes of unusual size and structural complexity
The ISME Journal (2022)