Abstract
Iron is an essential trace element for most organisms. A common way for bacteria to acquire this nutrient is through the secretion of siderophores, which are secondary metabolites that scavenge iron from environmental stocks and deliver it to cells via specific receptors. While there has been tremendous interest in understanding the molecular basis of siderophore synthesis, uptake and regulation, questions about the ecological and evolutionary consequences of siderophore secretion have only recently received increasing attention. In this Review, we outline how eco-evolutionary questions can complement the mechanistic perspective and help to obtain a more integrated view of siderophores. In particular, we explain how secreted diffusible siderophores can affect other community members, leading to cooperative, exploitative and competitive interactions between individuals. These social interactions in turn can spur co-evolutionary arms races between strains and species, lead to ecological dependencies between them and potentially contribute to the formation of stable communities. In brief, this Review shows that siderophores are much more than just iron carriers: they are important mediators of interactions between members of microbial assemblies and the eukaryotic hosts they inhabit.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Pulcherriminic acid modulates iron availability and protects against oxidative stress during microbial interactions
Nature Communications Open Access 03 May 2023
-
Metabolically versatile psychrotolerant Antarctic bacterium Pseudomonas sp. ANT_H12B is an efficient producer of siderophores and accompanying metabolites (SAM) useful for agricultural purposes
Microbial Cell Factories Open Access 29 April 2023
-
The potential to produce tropodithietic acid by Phaeobacter inhibens affects the assembly of microbial biofilm communities in natural seawater
npj Biofilms and Microbiomes Open Access 23 March 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Andrews, S. C., Robinson, A. K. & Rodriguez-Quinones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237 (2003).
Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010).
Emerson, D., Roden, E. & Twining, B. S. The microbial ferrous wheel: iron cycling in terrestrial, freshwater, and marine environments. Front. Microbiol. 3, 383 (2012).
Guerinot, M. L. Microbial iron transport. Annu. Rev. Microbiol. 48, 743–772 (1994).
Ratledge, C. & Dover, L. G. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54, 881–941 (2000).
Miethke, M. & Marahiel, M. A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71, 413–451 (2007).
Cassat, J. E. & Skaar, E. P. Iron in infection and immunity. Cell Host Microbe 13, 509–519 (2013).
Frawley, E. R. & Fang, F. C. The ins and outs of bacterial iron metabolism. Mol. Microbiol. 93, 609–616 (2014).
Barber, M. F. & Elde, N. C. Buried treasure: evolutionary perspectives on microbial iron piracy. Trends Genet. 31, 627–636 (2015).
Sheldon, J. R. & Heinrichs, D. E. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol. Rev. 39, 592–630 (2015).
Boiteau, R. M. et al. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proc. Natl Acad. Sci. USA. 113, 14237–14242 (2016).
Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637–657 (2010). This is an extensive and comprehensive review on siderophore chemistry, biosynthesis and transport.
Faraldo-Gómez, J. D. & Sansom, M. S. P. Acquisition of siderophores in gram-negative bacteria. Nat. Rev. Mol. Cell Biol. 4, 105–116 (2003).
Wandersman, C. & Delepelaire, P. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58, 611–647 (2004).
West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006). This review offers a conceptual overview of social evolution theory as it applies to this review and microorganisms in general.
Griffin, A., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004). This study demonstrates for the first time that siderophores are a public good in Pseudomonas aeruginosa, and reveals conditions under which cheaters can spread in populations.
Cordero, O. X., Ventouras, L.-A., DeLong, E. F. & Polz, M. F. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc. Natl Acad. Sci. USA. 109, 20059–20064 (2012). This study shows that public good interactions drive the evolution of siderophore-based iron-acquisition strategies in members of the family Vibrionaceae living on marine particles.
Kümmerli, R., Schiessl, K. T., Waldvogel, T., McNeill, K. & Ackermann, M. Habitat structure and the evolution of diffusible siderophores in bacteria. Ecol. Lett. 17, 1536–1544 (2014).
Andersen, S. B., Marvig, R. L., Molin, S., Johansen, H. K. & Griffin, A. S. Long-term social dynamics drive loss of function in pathogenic bacteria. Proc. Natl Acad. Sci. USA. 112, 10756–10761 (2015).
Butaitė, E., Baumgartner, M., Wyder, S. & Kümmerli, R. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat. Commun. 8, 414 (2017). This study shows that siderophore-mediated social interactions drive competitive dynamics in soil and freshwater communities of Pseudomonas bacteria.
Leinweber, A., Fredrik Inglis, R. & Kümmerli, R. Cheating fosters species co-existence in well-mixed bacterial communities. ISME J. 11, 1179–1188 (2017).
Andersen, S. B. et al. Privatisation rescues function following loss of cooperation. eLife 7, e38594 (2018). This study traces the evolutionary trajectory of siderophore production, exploitation and switch to alternative iron-uptake strategies in chronic lung infections of patients with cystic fibrosis.
Granato, E. T., Ziegenhain, C., Marvig, R. L. & Kummerli, R. Low spatial structure and selection against secreted virulence factors attenuates pathogenicity in Pseudomonas aeruginosa. ISME J. 12, 2907–2918 (2018).
Leventhal, G. E., Ackermann, M. & Schiessl, K. T. Why microbes secrete molecules to modify their environment: the case of iron-chelating siderophores. J. R. Soc. Interface 16, (2019). This theoretical study pins down the conditions under which siderophore secretion is favoured over surface-bound iron-uptake systems.
Völker, C. & Wolf-Gladrow, D. A. Physical limits on iron uptake mediated by siderophores or surface reductases. Mar. Chem. 65, 227–244 (1999).
Niehus, R., Picot, A., Oliveira, N. M., Mitri, S. & Foster, K. R. The evolution of siderophore production as a competitive trait. Evolution 71, 1443–1455 (2017). This theoretical study shows that siderophores can evolve as competitive agents against other bacteria lacking the cognate receptor required for siderophore uptake.
Sandy, M. & Butler, A. Microbial iron acquisition: marine and terrestrial siderophores. Chem. Rev. 109, 4580–4595 (2009).
Kraemer, S. M., Duckworth, O. W., Harrington, J. M. & Schenkeveld, W. D. C. Metallophores and trace metal biogeochemistry. Aquat. Geochem. 21, 159–195 (2015).
Crosa, J. H. & Walsh, C. T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66, 223–249 (2002).
Grünewald, J. & Marahiel, M. A. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol. Mol. Biol. Rev. 70, 121–146 (2006).
Donadio, S., Monciardini, P. & Sosio, M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat. Prod. Rep. 24, 1073–1109 (2007).
Lamb, A. L. Breaking a pathogen’s iron will: inhibiting siderophore production as an antimicrobial strategy. Biochim. Biophys. Acta 1854, 1054–1070 (2015).
Carroll, C. S. & Moore, M. M. Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. Crit. Rev. Biochem. Mol. Biol. 53, 356–381 (2018).
Krewulak, K. D. & Vogel, H. J. Structural biology of bacterial iron uptake. Biochim. Biophys. Acta 1778, 1781–1804 (2008).
Schalk, I. J. & Guillon, L. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44, 1267–1277 (2013).
Ganne, G. et al. Iron release from the siderophore pyoverdine in Pseudomonas aeruginosa involves three new actors: FpvC, FpvG, and FpvH. ACS Chem. Biol. 12, 1056–1065 (2017).
Imperi, F., Tiburzi, F. & Visca, P. Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 106, 20440–20445 (2009).
Jones, C. M. et al. Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling. Proc. Natl Acad. Sci. USA 111, 1945–1950 (2014).
Lin, H., Fischbach, M. A., Liu, D. R. & Walsh, C. T. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J. Am. Chem. Soc. 127, 11075–11084 (2005).
Neumann, W., Sassone-Corsi, M., Raffatellu, M. & Nolan, E. M. Esterase-catalyzed siderophore hydrolysis activates an enterobactin-ciprofloxacin conjugate and confers targeted antibacterial activity. J. Am. Chem. Soc. 140, 5193–5201 (2018).
Escolar, L., Pérez-Martín, J. & de Lorenzo, V. Opening the iron box: transcriptional metalloregulation by the fur protein. J. Bacteriol. 181, 6223–6229 (1999).
Troxell, B. & Hassan, H. M. Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria. Front. Cell. Infect. Microbiol. 3, 59 (2013).
Leoni, L., Orsi, N., de Lorenzo, V. & Visca, P. Functional analysis of PvdS, an iron starvation sigma factor of Pseudomonas aeruginosa. J. Bacteriol. 182, 1481–1491 (2000).
Lamont, I. L., Beare, P., Ochsner, U., Vasil, A. I. & Vasil, M. L. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 99, 7072–7077 (2002).
Cornelis, P. Iron uptake and metabolism in pseudomonads. Appl. Microbiol. Biotechnol. 86, 1637–1645 (2010).
Mathew, A., Eberl, L. & Carlier, A. L. A novel siderophore-independent strategy of iron uptake in the genus Burkholderia. Mol. Microbiol. 91, 805–820 (2014).
Lau, C. K. Y., Krewulak, K. D. & Vogel, H. J. Bacterial ferrous iron transport: the Feo system. FEMS Microbiol. Rev. 40, 273–298 (2015).
Vetter, Y. A., Deming, J. W., Jumars, P. A. & Krieger-Brockett, B. B. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb. Ecol. 36, 75–92 (1998).
Driscoll, W. W. & Pepper, J. W. Theory for the evolution of diffusible external goods. Evolution 64, 2682–2687 (2010).
Allen, B., Gore, J. & Nowak, M. A. Spatial dilemmas of diffusible public goods. eLife 2, e01169 (2013).
Dobay, A., Bagheri, H. C., Messina, A., Kümmerli, R. & Rankin, D. J. Interaction effects of cell diffusion, cell density and public goods properties on the evolution of cooperation in digital microbes. J. Evol. Biol. 27, 1869–1877 (2014).
Kümmerli, R., Griffin, A. S., West, S. A., Buckling, A. & Harrison, F. Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proc. R. Soc. B 276, 3531–3538 (2009).
Xu, G., Martinez, J. S., Groves, J. T. & Butler, A. Membrane affinity of the amphiphilic marinobactin siderophores. J. Am. Chem. Soc. 124, 13408–13415 (2002).
Martinez, J. L. et al. Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc. Natl Acad. Sci. USA 100, 3754–3759 (2003).
Sidebottom, A. M., Johnson, A. R., Karty, J. A., Trader, D. J. & Carlson, E. E. Integrated metabolomics approach facilitates discovery of an unpredicted natural product suite from Streptomyces coelicolor M145. ACS Chem. Biol. 8, 2009–2016 (2013).
Claessen, D., Rozen, D. E., Kuipers, O. P., Søgaard-Andersen, L. & van Wezel, G. P. Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat. Rev. Microbiol. 12, 115–124 (2014).
Flemming, H. C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).
Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).
West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).
Ross-Gillespie, A., Gardner, A., Buckling, A., West, S. A. & Griffin, A. S. Density dependence and cooperation: theory and a test with bacteria. Evolution 63, 2315–2325 (2009).
Buckling, A. et al. Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiolol. Ecol. 62, 135–141 (2007).
West, S. A., Griffin, A. S. & Gardner, A. Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol. 20, 415–432 (2007).
Sexton, D. J. & Schuster, M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat. Commun. 8, 230 (2017).
Schiessl, K. T. et al. Individual- versus group-optimality in the production of secreted bacterial compounds. Evolution 73, 675–688 (2019).
Weigert, M. & Kümmerli, R. The physical boundaries of public goods cooperation between surface-attached bacterial cells. Proc. R. Soc. B 284, 20170631 (2017).
Harrison, F. Dynamic social behaviour in a bacterium: Pseudomonas aeruginosa partially compensates for siderophore loss to cheats. J. Evol. Biol. 26, 1370–1378 (2013).
Julou, T. et al. Cell-cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies. Proc. Natl Acad. Sci. USA 110, 12577–12582 (2013).
Ross-Gillespie, A., Dumas, Z. & Kümmerli, R. Evolutionary dynamics of interlinked public goods traits: an experimental study of siderophore production in Pseudomonas aeruginosa. J. Evol. Biol. 28, 29–39 (2015).
Sathe, S., Mathew, A., Agnoli, K., Eberl, L. & Kümmerli, R. Genetic architecture constrains exploitation of siderophore cooperation in Burkholderia cenocepacia. Evol. Lett. https://doi.org/10.1002/evl3.144 (2019).
Scholz, R. L. & Greenberg, E. P. Sociality in Escherichia coli: enterochelin is a private good at low cell density and can be shared at high cell density. J. Bacteriol. 197, 2122–2128 (2015).
Kümmerli, R. & Brown, S. P. Molecular and regulatory properties of a public good shape the evolution of cooperation. Proc. Natl Acad. Sci. USA 107, 18921–18926 (2010).
MacLean, R. C. The tragedy of the commons in microbial populations: insights from theoretical, comparative and experimental studies. Heredity 100, 233–239 (2008).
Ghoul, M., Griffin, A. S. & West, S. A. Toward and evolutionary definition of cheating. Evolution 68, 318–331 (2014).
Hardin, G. The tragedy of the commons. Science 162, 1243–1248 (1968).
Rankin, D. J., Bargum, K. & Kokko, H. The tragedy of the commons in evolutionary biology. Trends Ecol. Evol. 22, 643–651 (2007).
Özkaya, Ö., Xavier, K. B., Dionisio, F. & Balbontin, R. Maintenance of microbial cooperation mediated by public goods in single and multiple traits scenarios. J. Bacteriol. 199, e00297-00217 (2017).
Jiricny, N. et al. Fitness correlates with the extent of cheating in a bacterium. J. Evol. Biol. 23, 738–747 (2010).
Dumas, Z. & Kümmerli, R. Cost of cooperation rules selection for cheats in bacterial metapopulations. J. Evol. Biol. 25, 473–484 (2012).
Tekwa, E. W., Nguyen, D., Loreau, M. & Gonzalez, A. Defector clustering is linked to cooperation in a pathogenic bacterium. Proc. R. Soc. B 284, 20172001 (2017).
Becker, F., Wienand, K., Lechner, M., Frey, E. & Jung, H. Interactions mediated by a public good transiently increase cooperativity in growing Pseudomonas putida metapopulations. Sci. Rep. 8, 4093 (2018).
Özkaya, Ö., Balbontin, R., Gordo, I. & Xavier, K. B. Cheating on cheaters stabilizes cooperation in Pseudomonas aeruginosa. Curr. Biol. 28, 2070–2080 (2018).
Kümmerli, R. et al. Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa. J. Evol. Biol. 28, 2264–2274 (2015).
Vasse, M., Torres-Barcelo, C. & Hochberg, M. E. Phage selection for bacterial cheats leads to population decline. Proc. R. Soc. B 282, 20152207 (2015).
Vasse, M. et al. Antibiotic stress selects against cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 114, 546–551 (2017).
Bruce, J. B., West, S. A. & Griffin, A. S. Functional amyloids promote retention of public goods in bacteria. Proc. R. Soc. B 286, 20190709 (2019).
Kümmerli, R., Jiricny, N., Clarke, L. S., West, S. A. & Griffin, A. S. Phenotypic plasticity of a cooperative behaviour in bacteria. J. Evol. Biol. 22, 589–598 (2009).
Ghoul, M. et al. Pyoverdin cheats fail to invade bacterial populations in stationary phase. J. Evol. Biol. 29, 1728–1736 (2016).
Ross-Gillespie, A., Gardner, A., West, S. A. & Griffin, A. S. Frequency dependence and cooperation: theory and a test with bacteria. Am. Nat. 170, 331–342 (2007).
Morris, J. J. Black Queen evolution: the role of leakiness in structuring microbial communities. Trends Genet. 31, 475–482 (2015). This review explains how secreted and leaky metabolites can spur the evolution of trait loss and dependencies in microbial communities.
Bruce, J. B., Cooper, G. A., Chabas, H., West, S. A. & Griffin, A. S. Cheating and resistance to cheating in natural populations of the bacterium Pseudomonas fluorescens. Evolution 71, 2484–2495 (2017).
De Vos, D. et al. Study of pyoverdin type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch. Microbiol. 175, 384–388 (2001).
Jiricny, N. et al. Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis. PLOS ONE 9, e83124 (2014).
Lujan, A. M., Pedro, G. & Buckling, A. Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil. Biol. Lett. 11, 20140934 (2015).
Zhang, X. X. & Rainey, P. B. Exploring the sociobiology of pyoverdin-producing Pseudomonas. Evolution 67, 3161–3174 (2013).
Butaitė, E., Kramer, J., Wyder, S. & Kümmerli, R. Environmental determinants of pyoverdine production, exploitation and competition in natural Pseudomonas communities. Environ. Microbiol. 20, 3629–3642 (2018).
Schiessl, K. T., Janssen, E. M. L., Kraemer, S. M., McNeill, K. & Ackermann, M. Magnitude and mechanism of siderophore-mediated competition at low iron solubility in the Pseudomonas aeruginosa pyochelin system. Front. Microbiol. 8, 1964 (2017).
Inglis, R. F., Biernaskie, J. M., Gardner, A. & Kümmerli, R. Presence of a loner strain maintains cooperation and diversity in well-mixed bacterial communities. Proc. R. Soc. B 283, 20152682 (2016).
Harrison, F., Paul, J., Massey, R. C. & Buckling, A. Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J. 2, 49–55 (2008). This study shows that siderophores can act as competitive agents in interspecific competition.
Leinweber, A., Weigert, M. & Kummerli, R. The bacterium Pseudomonas aeruginosa senses and gradually responds to interspecific competition for iron. Evolution 72, 1515–1528 (2018).
Dawkins, R. & Krebs, J. R. Arms races between and within species. Proc. R. Soc. B 205, 489–511 (1979).
Lee, W., van Baalen, M. & Jansen, V. A. A. Siderophore production and the evolution of investment in a public good: An adaptive dynamics approach to kin selection. J. Theor. Biol. 388, 61–71 (2016).
O’Brien, S., Lujan, A. M., Paterson, S., Cant, M. A. & Buckling, A. Adaptation to public goods cheats in Pseudomonas aeruginosa. Proc. R. Soc. B 284, 20171089 (2017).
Smith, E. E., Sims, E. H., Spencer, D. H., Kaul, R. & Olson, M. V. Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. J. Bacteriol. 187, 2138–2147 (2005).
Meyer, J. M. et al. Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21, 259–271 (2008).
Lee, W., van Baalen, M. & Jansen, V. A. A. An evolutionary mechanism for diversity in siderophore producing bacteria. Ecol. Lett. 15, 119–125 (2012). This theoretical study shows how competitive interactions between cheaters and cooperators can drive the diversification of siderophores.
Sexton, D. J., Glover, R. C., Loper, J. E. & Schuster, M. Pseudomonas protegens Pf-5 favours self-produced siderophore over free-loading in interspecies competition for iron. Environ. Microbiol. 19, 3514–3525 (2017).
Stilwell, P., Lowe, C. & Buckling, A. The effect of cheats on siderophore diversity in Pseudomonas aeruginosa. J. Evol. Biol. 31, 1330–1339 (2018).
Jurkevitch, E., Hadar, Y. & Chen, Y. Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl. Environ. Microbiol. 58, 119–124 (1992).
Champomier-Vergès, M. C., Stintzi, A. & Meyer, J. M. Acquisition of iron by the non-siderophore-producing Pseudomonas fragi. Microbiology 142, 1191–1199 (1996).
Llamas, M. A. et al. The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa. J. Bacteriol. 188, 1882–1891 (2006).
Lemos, M. L., Balado, M. & Osorio, C. R. Anguibactin- versus vanchrobactin-mediated iron uptake in Vibrio anguillarum: evolution and ecology of a fish pathogen. Environ. Microbiol. Rep. 2, 19–26 (2010).
Dumas, Z., Ross-Gillespie, A. & Kümmerli, R. Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc. R. Soc. B 280, 20131055 (2013).
Tyrrell, J. et al. Investigation of the multifaceted iron acquisition strategies of Burkholderia cenocepacia. BioMetals 28, 367–380 (2015).
Estrela, S., Morris, J. J. & Kerr, B. Private benefits and metabolic conflicts shape the emergence of microbial interdependencies. Environ. Microbiol. 18, 1415–1427 (2016).
D’Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17, 254–264 (2010). This study shows that unculturable marine bacteria become culturable on the supplementation of exogenous siderophores, demonstrating the existence of complete ecological dependencies.
Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. M. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418, 171–174 (2002). This study shows (theoretically and empirically) that non-transitive rock–paper–scissor dynamics can maintain species diversity in bacterial communities.
Allesina, S. & Levine, J. M. A competitive network theory of species diversity. Proc. Natl Acad. Sci. USA 108, 5638–5642 (2011).
Kelsic, E. D., Zhao, J., Vetsigian, K. & Kishony, R. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature 521, 516–519 (2015).
Diggle, S. P., Griffin, A. S., Campell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007).
Xavier, J. B., Kim, W. & Foster, K. R. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol. Microbiol. 79, 166–179 (2011).
Crespi, B. J. The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16, 178–183 (2001).
Brown, S. P. & Taylor, P. D. Joint evolution of multiple social traits: a kin selection analysis. Proc. R. Soc. B 277, 415–422 (2010).
Driscoll, W. W., Pepper, J. W., Pierson, L. S. & Pierson, E. A. Spontaneous Gac mutants of Pseudomonas biological control strains: cheaters or mutualists. Appl. Environ. Microbiol. 77, 7227–7235 (2011).
Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036–00012 (2012).
Shou, W., Ram, S. & Vilar, J. M. Synthetic cooperation in engineered yeast populations. Proc. Natl Acad. Sci. USA 104, 1877–1882 (2007).
Harcombe, W. R. Novel cooperation experimentally evolved between species. Evolution 64, 2166–2172 (2010).
Pande, S. & Kost, C. Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 25, 349–361 (2017).
Amin, S. A. et al. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc. Natl Acad. Sci. USA. 106, 17071–17076 (2009).
Oliveira, N. M., Niehus, R. & Foster, K. R. Evolutionary limits to cooperation in microbial communities. Proc. Natl Acad. Sci. USA. 111, 17941–17946 (2014). This conceptual study explains why the evolution of cooperative mutual exchange of secreted compounds is constrained in bacterial communities.
Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).
Koskella, B., Hall, L. J. & Metcalf, C. J. E. The microbiome beyond the horizon of ecological and evolutionary theory. Nat. Ecol. Evol. 1, 1606–1615 (2017).
Loper, J. E. & Buyer, J. S. Siderophores in microbial interactions on plant surfaces. Mol. Plant Microbe Interact. 4, 5–13 (1991).
Raaijmakers, J. M. et al. Utilisation of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can. J. Microbiol. 41, 126–135 (1995).
Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).
Kupferschmied, P., Maurhofer, M. & Keel, C. Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front. Plant. Sci. 4, 287–287 (2013).
Pieterse, C. M. et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375 (2014).
Deriu, E. et al. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14, 26–37 (2013).
Sassone-Corsi, M. et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540, 280–283 (2016).
Granato, E. T., Harrison, F., Kümmerli, R. & Ross-Gillespie, A. Do bacterial “virulence factors” always increase virulence? A meta-analysis of pyoverdine production in Pseudomonas aeruginosa as a test case. Front. Microbiol. 7, 1952 (2016).
Harrison, F., Browning, L. E., Vos, M. & Buckling, A. Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biol. 4, 21 (2006).
Marvig, R. L. et al. Within-host evolution of Pseudomonas aeruginosa reveals adaptation. mBio 5, 1–8 (2014).
Harrison, F. Microbial ecology of the cystic fibrosis lung. Microbiology 153, 917–923 (2007).
Callaghan, M. & McClean, S. Bacterial host interactions in cystic fibrosis. Curr. Opin. Microbiol. 15, 71–77 (2012).
Cutting, G. R. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat. Rev. Genet. 16, 45–56 (2015).
Cornelis, P. & Dingemans, J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front. Cell. Infect. Microbiol. 3, 75 (2013).
Ford, S. A., Kao, D., Williams, D. & King, K. C. Microbe-mediated host defence drives the evolution of reduced pathogen virulence. Nat. Commun. 7, 13430 (2016).
Tinbergen, N. On aims and methods of ethology. Z. Tierpsychol. 20, 410–433 (1963).
Sessions, A. L., Doughty, D. M., Welander, P. V., Summons, R. E. & Newman, D. K. The continuing puzzle of the great oxidation event. Curr. Biol. 19, R567–R574 (2009).
Braud, A., Hoegy, F., Jezequel, K., Lebeau, T. & Schalk, I. J. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine–iron uptake pathway. Environ. Microbiol. 11, 1079–1091 (2009).
Braud, A., Geoffroy, V., Hoegy, F., Mislin, G. L. A. & Schalk, I. J. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ. Microbiol. Rep. 2, 419–425 (2010).
Bobrov, A. G. et al. The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice. Mol. Microbiol. 93, 759–775 (2014).
Perry, R. D., Bobrov, A. G. & Fetherston, J. D. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis. Metallomics 7, 965–978 (2015).
Koh, E. I. & Henderson, J. P. Microbial copper-binding siderophores at the host-pathogen interface. J. Biol. Chem. 290, 18967–18974 (2015).
Robinson, A. E., Lowe, J. E., Koh, E. I. & Henderson, J. P. Uropathogenic enterobacteria use the yersiniabactin metallophore system to acquire nickel. J. Biol. Chem. 293, 14953–14961 (2018).
Giller, K. E., Witter, E. & McGrath, S. P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol. Biochem. 30, 1389–1414 (1998).
Schalk, I. J., Hannauer, M. & Braud, A. New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol. 13, 2844–2854 (2011).
Hesse, E. et al. Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol. Lett. 21, 117–127 (2018).
O’Brien, S., Hodgson, D. J. & Buckling, A. Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proc. R. Soc. B 281, 20140858 (2014).
Guan, L. L., Kanoh, K. & Kamino, K. Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron-limited conditions. Appl. Environ. Microbiol. 67, 1710–1717 (2001).
Grandchamp, G. M., Caro, L. & Shank, E. A. Pirated siderophores promote sporulation in Bacillus subtilis. Appl. Environ. Microbiol. 83, e03293-16 (2017).
Burke, R. M., Upton, M. E. & McLoughlin, A. J. Influence of pigment production on resistance to ultraviolet irradiation in Pseudomonas aeruginosa ATCC 10145. Ir. J. Food Sci. Technol. 14, 51–60 (1990).
Achard, M. E. et al. An antioxidant role for catecholate siderophores in. Salmonella. Biochem. J. 454, 543–549 (2013).
Adler, C. et al. The alternative role of enterobactin as an oxidative stress protector allows Escherichia coli colony development. PLOS ONE 9, e84734 (2014).
Jin, Z. et al. Conditional privatization of a public siderophore enables Pseudomonas aeruginosa to resist cheater invasion. Nat. Commun. 9, 1383 (2018).
Braun, V., Pramanik, A., Gwinner, T., Köberle, M. & Bohn, E. Sidermycins: tools and antibiotics. Biometals 22, 3–13 (2009).
Acknowledgements
This work was funded by the European Research Council under grant agreement no. 681295 and the Swiss National Science Foundation under grant no. 31003A_182499 (both to R. K.), the German Science Foundation under grant no. KR 5017/2-1 (to J. K.) and a University Research Priority Program (Evolution in Action) grant (to Ö. Ö.).
Author information
Authors and Affiliations
Contributions
All authors developed together the concept of the Review and wrote the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Microbiology thanks Michael Bachman, Ashleigh Griffin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Siderophores
-
Secondary metabolites with high affinity and specificity for iron that function as organic ligands, serve the purpose of iron acquisition and are regulated in response to the producer’s need for iron.
- Biofilms
-
Aggregates of microorganisms that are embedded within a self-produced matrix of extracellular polymeric substances and that adhere to each other and/or a surface.
- Cooperation
-
A social behaviour which provides a benefit to another individual and which has evolved and/or is currently maintained (at least partly) because of its beneficial effect on the recipient.
- Pseudomonas aeruginosa
-
A metabolically versatile, ubiquitous, rod-shaped, Gram-negative bacterium that can opportunistically infect plants, animals and humans and is known for its high intrinsic resistance to antibiotics.
- Public goods
-
Costly resources that benefit not only the producer but also other members of the population or local community.
- Tragedy of the commons
-
A situation in which cooperation would be beneficial in the long term but breaks down because individuals selfishly pursue their own short-term interests.
- Negative frequency-dependent selection
-
An evolutionary process by which the relative fitness of a phenotype is high when it occurs at low frequency in the population but decreases as it becomes more common relative to other phenotypes.
- Cheating
-
Exploitation of a cooperative behaviour by an individual that does not cooperate (or cooperates less than its fair share), whereby the cheating individual reaps the benefits of cooperation at the expense of the cooperating individual.
- Competition
-
A situation that arises when two or more individuals of the same species or different species strive for the same limited resource, resulting in immediate costs for all individuals involved.
- Horizontal gene transfer
-
The transfer of genetic material from one individual to another individual (of the same species or a different species) that does not involve the vertical transmission of DNA typical of cell division and reproduction.
- Co-evolutionary arms races
-
Evolutionary tug of war between competing strains or species, whereby adaptations in one party select for counteradaptations in the other party.
- Non-transitive population dynamics
-
Population dynamics arising from non-hierarchical circular competitive relationships between species, in which each species is both superior and inferior to different community members, with no overall winner existing in the population.
- Metallophores
-
Secondary metabolites with high affinity and specificity for a given metal. They function as an organic ligand, serve the purpose of acquiring the metal in question and are regulated in response to metal limitation.
- Division of labour
-
The division of a task that occurs when cooperating individuals specialize to carry out specific subtasks.
- Cross-feeding
-
A nutritional interdependence between different strains or species in which each species feeds on the metabolic products released by the other species.
- Virulence
-
The damage caused to the host by a parasite or pathogen, measured as the decrease in host fitness.
Rights and permissions
About this article
Cite this article
Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol 18, 152–163 (2020). https://doi.org/10.1038/s41579-019-0284-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41579-019-0284-4
This article is cited by
-
Genome insights into the plant growth-promoting bacterium Saccharibacillus brassicae ATSA2T
AMB Express (2023)
-
Metabolically versatile psychrotolerant Antarctic bacterium Pseudomonas sp. ANT_H12B is an efficient producer of siderophores and accompanying metabolites (SAM) useful for agricultural purposes
Microbial Cell Factories (2023)
-
Eco-evolutionary modelling of microbial syntrophy indicates the robustness of cross-feeding over cross-facilitation
Scientific Reports (2023)
-
Metals to combat antimicrobial resistance
Nature Reviews Chemistry (2023)
-
The potential to produce tropodithietic acid by Phaeobacter inhibens affects the assembly of microbial biofilm communities in natural seawater
npj Biofilms and Microbiomes (2023)