Soil microbiomes and climate change


The soil microbiome governs biogeochemical cycling of macronutrients, micronutrients and other elements vital for the growth of plants and animal life. Understanding and predicting the impact of climate change on soil microbiomes and the ecosystem services they provide present a grand challenge and major opportunity as we direct our research efforts towards one of the most pressing problems facing our planet. In this Review, we explore the current state of knowledge about the impacts of climate change on soil microorganisms in different climate-sensitive soil ecosystems, as well as potential ways that soil microorganisms can be harnessed to help mitigate the negative consequences of climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Current state and desired outcome of soil microbiome science.
Fig. 2: Soil microbial responses to climate change.
Fig. 3: Manipulating the soil microbiome to mitigate the negative consequences of climate change.


  1. 1.

    U.S. Global Change Research Program. Impacts, risks, and adaptation in the United States: Fourth National Climate Assessment Vol. II (USGCRP, 2018).

  2. 2.

    Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Google Scholar 

  3. 3.

    Wang, K. et al. Modeling global soil carbon and soil microbial carbon by integrating microbial processes into the ecosystem process model TRIPLEX-GHG. J. Adv. Modeling Earth Syst. 9, 2368–2384 (2017).

    Google Scholar 

  4. 4.

    Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).

    CAS  Google Scholar 

  5. 5.

    Wahl T. et al. When environmental forces collide. (2018).

  6. 6.

    Berard, A., Pierre, R. & Kaisermann, A. Soil microbial community responses to heat wave components: drought and high temperature. Clim. Res. 3, 243–264 (2014).

    Google Scholar 

  7. 7.

    Sheik, C. et al. Effect of warming and drought on grassland microbial communities. ISME J. 5, 1692–1700 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023 (2009).

    Article  Google Scholar 

  9. 9.

    Bruhwiler, L. et al. in Second State of the Carbon Cycle Report (SOCCR2): a sustained assessment report (eds Cavallaro, N. et al.) 42–70 (U.S. Global Change Research Program, 2018).

  10. 10.

    Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).

    PubMed  Google Scholar 

  11. 11.

    Bond-Lamberty, B., Bailey, V., Chen, M., Gough, C. & Vargas, R. Globally rising soil heterotrophic respiration over recent decades. Nature 560, 80–83 (2018). Based on existing data, this study determines trends towards increased soil microbial mineralization of SOC, leading to increased CO 2 emissions as a result of climate change.

    CAS  PubMed  Google Scholar 

  12. 12.

    Rustad, L. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).

    CAS  PubMed  Google Scholar 

  13. 13.

    Nottingham, A. T. et al. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. Bioscience 65, 906–921 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Vitousek, P. M. et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7, 737–750 (1997).

    Google Scholar 

  15. 15.

    Syakila, A. & Kroeze, C. The global nitrous oxide budget revisited. Greenh. Gas Meas. Manag. 1, 17–26 (2011).

    CAS  Google Scholar 

  16. 16.

    Regan, K. et al. Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil. Soil Biol. Biochem. 109, 214–226 (2017).

    CAS  Google Scholar 

  17. 17.

    Groffman, P. M. et al. Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol. Appl. 16, 2091–2122 (2006).

    PubMed  Google Scholar 

  18. 18.

    Butterbach-Bahl, K., Baggs Elizabeth, M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Phil. Trans. R. Soc. B 368, 20130122 (2013).

    Google Scholar 

  19. 19.

    van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Xia, F. et al. Ubiquity and diversity of complete ammonia oxidizers (comammox). Appl. Environ. Microb. 84, e01390-18 (2018).

    CAS  Google Scholar 

  21. 21.

    Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).

    CAS  Google Scholar 

  22. 22.

    Norby, R. J. et al. Model–data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol. 209, 17–28 (2016).

    CAS  PubMed  Google Scholar 

  23. 23.

    Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).

    PubMed  Google Scholar 

  24. 24.

    Evans, S. E. & Wallenstein, M. D. Climate change alters ecological strategies of soil bacteria. Ecol. Lett. 17, 155–164 (2014). This study assesses the phylogenetic conservation of ecological strategies in response to drying–re-wetting in incubation studies on soils from the Rainfall Manipulation Plot Study (RaMPS) in the US tallgrass prairie.

    PubMed  Google Scholar 

  25. 25.

    Berg, M. P. et al. Adapt or disperse: understanding species persistence in a changing world. Glob. Chang. Biol. 16, 587–598 (2010).

    Google Scholar 

  26. 26.

    de Vries, F. T. & Shade, A. Controls on soil microbial community stability under climate change. Front. Microbiol. 4, 265 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Jansson, J. K. & Hofmockel, K. S. The soil microbiome—from metagenomics to metaphenomics. Curr. Opin. Microbiol. 43, 162–168 (2018).

    CAS  PubMed  Google Scholar 

  29. 29.

    Waldrop, M. P. & Firestone, M. K. Response of microbial community composition and function to soil climate change. Microb. Ecol. 52, 716–724 (2006).

    CAS  PubMed  Google Scholar 

  30. 30.

    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

    CAS  PubMed  Google Scholar 

  31. 31.

    Schimel, J. & Schaeffer, S. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Cordero, O. X. & Datta, M. S. Microbial interactions and community assembly at microscales. Curr. Opin. Microbiol. 31, 227–234 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Dunbar, J. et al. Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environ. Microbiol. 14, 1145–1158 (2012).

    CAS  PubMed  Google Scholar 

  34. 34.

    Hayden, H. L. et al. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environ. Microbiol. 14, 3081–3096 (2012).

    CAS  PubMed  Google Scholar 

  35. 35.

    Allison, S. D. A trait-based approach for modelling microbial litter decomposition. Ecol. Lett. 15, 1058–1070 (2012). This article describes a trait-based modelling approach that links phylogenetic and functional information to predict ecosystem processes carried out by microbial communities.

    CAS  PubMed  Google Scholar 

  36. 36.

    Tu, Q. et al. Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem. Soil Biol. Biochem. 106, 99–108 (2017).

    CAS  Google Scholar 

  37. 37.

    Yu, H. et al. Elevated CO2 and warming altered grassland microbial communities in soil top-layers. Front. Microbiol. 9, 1790 (2018). This study uses a gene array to measure the functional gene composition, structure and metabolic potential of soil microbial communities under warming, eCO 2 and eCO 2 with warming conditions in a semi-arid grassland.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Adair, C. E., Reich, P. B., Trost, J. J. & Hobbie, S. E. Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil moisture. Glob. Chang. Biol. 17, 3546–3563 (2011).

    Google Scholar 

  39. 39.

    Bréchet, L. M. et al. Distinct responses of soil respiration to experimental litter manipulation in temperate woodland and tropical forest. Ecol. Evol. 8, 3787–3796 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Bengtson, P., Barker, J. & Grayston, S. J. Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol. Evol. 2, 1843–1852 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Jansson, C., Vogel, J., Hazen, S., Brutnell, T. & Mockler, T. Climate-smart crops with enhanced photosynthesis. J. Exp. Bot. 69, 3801–3809 (2018).

    CAS  PubMed  Google Scholar 

  42. 42.

    Qiao, N. et al. Labile carbon retention compensates for CO2 released by priming in forest soils. Glob. Chang. Biol. 20, 1943–1954 (2014).

    PubMed  Google Scholar 

  43. 43.

    van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y. Q. & Hungate, B. A. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344, 508–509 (2014).

    PubMed  Google Scholar 

  44. 44.

    Drake, J. E. et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol. Lett. 14, 349–357 (2011).

    PubMed  Google Scholar 

  45. 45.

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004). This paper discusses different land management strategies to optimize soil carbon sequestration through soil microbial activities.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).

    CAS  Google Scholar 

  47. 47.

    Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5, 81–91 (2014).

    CAS  Google Scholar 

  48. 48.

    Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–104 (2017). This article describes the results of long-term warming field studies at the Harvard Forest field station on soil carbon flux and how the soil microorganisms acclimate to the warmer soil conditions.

    CAS  PubMed  Google Scholar 

  49. 49.

    Romero-Olivares, A. L., Allison, S. D. & Treseder, K. K. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 107, 32–40 (2017).

    CAS  Google Scholar 

  50. 50.

    Schindlbacher, A. et al. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol. Biochem. 43, 1417–1425 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Clemmensen, K. E. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618 (2013).

    CAS  PubMed  Google Scholar 

  52. 52.

    Allison, S. D. & Treseder, K. K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob. Chang. Biol. 14, 2898–2909 (2008).

    Google Scholar 

  53. 53.

    Morrissey, E. M. et al. Evolutionary history constrains microbial traits across environmental variation. Nat. Ecol. Evol. 3, 1064–1069 (2019).

    PubMed  Google Scholar 

  54. 54.

    DeAngelis, K. M. et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front. Microbiol. 6, 104 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Zhang, B. et al. Responses of soil microbial communities to experimental warming in alpine grasslands on the Qinghai–Tibet Plateau. PLOS ONE 8, E103859 (2014).

    Google Scholar 

  56. 56.

    Deslippe, J. R., Hartmann, M., Simard, S. W. & Mohn, W. W. Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol. Ecol. 82, 303–315 (2012).

    CAS  PubMed  Google Scholar 

  57. 57.

    Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813–818 (2018).

    Google Scholar 

  58. 58.

    Frey, S. D., Drijber, R., Smith, H. & Melillo, J. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol. Biochem. 40, 2904–2907 (2008).

    CAS  Google Scholar 

  59. 59.

    Zhou, J. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110 (2011).

    Google Scholar 

  60. 60.

    Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008). This article provides evidence and discusses uncertainties about terrestrial ecosystem feedback with climate change.

    CAS  PubMed  Google Scholar 

  61. 61.

    Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).

    CAS  PubMed  Google Scholar 

  62. 62.

    Mackelprang, R., Saleska, S. R., Jacobsen, C. S., Jansson, J. K. & Taş, N. Permafrost meta-omics and climate change. Annu. Rev. Earth Planet. Sci. 44, 439–462 (2016).

    CAS  Google Scholar 

  63. 63.

    Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).

    CAS  PubMed  Google Scholar 

  64. 64.

    Tas, N. et al. Landscape topography structures the soil microbiome in Arctic polygonal tundra. Nat. Commun. 9, 777 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018). This study assembles thousands of genomes from soil metagenomes, corresponding to primarily uncultivated and uncharacterized microorganisms, along a permafrost thaw gradient in Sweden.

    CAS  PubMed  Google Scholar 

  66. 66.

    Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).

    CAS  PubMed  Google Scholar 

  67. 67.

    Bottos, E. M. et al. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94, 1–14 (2018).

    Google Scholar 

  68. 68.

    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).

    CAS  PubMed  Google Scholar 

  69. 69.

    Müller, O. et al. Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates. Environ. Microbiol. 20, 4328–4342 (2018).

    PubMed  Google Scholar 

  70. 70.

    Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076-18 (2018). This study characterizes viruses in thawing permafrost peatlands and suggests that viruses can impact the biogeochemistry of their hosts and carbon metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Penton, C. R. et al. Fungal diversity in permafrost and tallgrass prairie soils under experimental warming conditions. Appl. Environ. Microb. 79, 7063–7072 (2013).

    CAS  Google Scholar 

  74. 74.

    Schütte, U. M. E. et al. Effect of permafrost thaw on plant and soil fungal community in a boreal forest: does fungal community change mediate plant productivity response? J. Ecol. 107, 1737–1752 (2019).

    Google Scholar 

  75. 75.

    Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Science Adv. 1, e1400082 (2015).

    Google Scholar 

  76. 76.

    Huang, J. P., Yu, H. P., Guan, X. D., Wang, G. Y. & Guo, R. X. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

    Google Scholar 

  77. 77.

    McHugh, T. A. et al. Climate controls prokaryotic community composition in desert soils of the southwestern United States. FEMS Microbiol. Ecol. 93, fix116 (2017).

    Google Scholar 

  78. 78.

    Schimmel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Ann. Rev. Ecol. Evol. Syst. 49, 409–432 (2018). This article reviews current knowledge of microbial community dynamics and physiological responses to drought.

    Google Scholar 

  79. 79.

    Hyvonen, R. et al. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol. 173, 463–480 (2007).

    PubMed  Google Scholar 

  80. 80.

    Pointing, S. B. & Belnap, J. Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. 10, 551–562 (2012).

    CAS  PubMed  Google Scholar 

  81. 81.

    Garcia-Pichel, F., Johnson, S. L., Youngkin, D. & Belnap, J. Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microb. Ecol. 46, 312–321 (2003).

    CAS  PubMed  Google Scholar 

  82. 82.

    Steven, B., Kuske, C. R., Gallegos-Graves, L. V., Reed, S. C. & Belnap, J. Climate change and physical disturbance manipulations result in distinct biological soil crust communities. Appl. Environ. Microb. 81, 7448–7459 (2015).

    CAS  Google Scholar 

  83. 83.

    Reed, S. C. et al. in Biological Soil Crusts: An Organizing Princincipal in Drylands (eds Weber, B., Büdel, B. & Belnap, J.) 451–476 (Springer, 2016).

  84. 84.

    Upton, R. N., Bach, E. M. & Hofmockel, K. S. Belowground response of prairie restoration and resiliency to drought. Agric. Ecosyst. Environ. 266, 122–132 (2018).

    Google Scholar 

  85. 85.

    de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018). This study uses network analyses to show that bacterial networks are less resilient to drought than fungal networks, suggesting that bacteria are less stable to environmental change than fungi.

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Treseder, K. K., Berlemont, R., Allison, S. D. & Martiny, A. C. Drought increases the frequencies of fungal functional genes related to carbon and nitrogen acquisition. PLOS ONE 13, e0206441 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Carson, J. K. et al. Low pore connectivity increases bacterial diversity in soil. Appl. Environ. Microb. 76, 3936–3942 (2010).

    CAS  Google Scholar 

  88. 88.

    Dechesne, A., Wang, G., Gülez, G., Or, D. & Smets, B. F. Hydration-controlled bacterial motility and dispersal on surfaces. Proc. Natl Acad. Sci. USA 107, 14369–14372 (2010).

    CAS  PubMed  Google Scholar 

  89. 89.

    Guhr, A., Borken, W., Spohn, M. & Matzner, E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. Proc. Natl Acad. Sci. USA 112, 14647–14651 (2015).

    CAS  PubMed  Google Scholar 

  90. 90.

    Barnard, R. L., Osborne, C. A. & Firestone, M. K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 7, 2229–2241 (2013). This study finds different responses of potentially active bacterial and fungal communities to desiccation and re-wetting across three grassland sites in California, United States.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Boot, C. M., Schaeffer, S. M. & Schimel, J. P. Static osmolyte concentrations in microbial biomass during seasonal drought in a California grassland. Soil Biol. Biochem. 57, 356–361 (2013).

    CAS  Google Scholar 

  92. 92.

    Kakumanu, M. L., Cantrell, C. L. & Williams, M. A. Microbial community response to varying magnitudes of desiccation in soil: a test of the osmolyte accumulation hypothesis. Soil Biol. Biochem. 57, 644–653 (2013).

    CAS  Google Scholar 

  93. 93.

    Meisner, A., Leizeaga, A., Rousk, J. & Bååth, E. Partial drying accelerates bacterial growth recovery to rewetting. Soil Biol. Biochem. 112, 269–276 (2017). Based on experiments and other recent results, this article proposes a framework for microbial response patterns after drying–re-wetting, in which the harshness of drying determines the response pattern of bacteria upon re-wetting dried soils.

    CAS  Google Scholar 

  94. 94.

    Bouskill, N. J. et al. Belowground response to drought in a tropical forest soil. II. Change in microbial function impacts carbon composition. Front. Microbiol. 7, 323 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Naylor, D., DeGraaf, S., Purdom, E. & Coleman-Derr, D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 11, 2691–2704 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Unger, S., Maguas, C., Pereira, J., David, T. & Werner, C. The influence of precipitation pulses on soil respiration—assessing the “Birch effect” by stable carbon isotopes. Soil Biol. Biochem. 42, 1800–1810 (2010).

    CAS  Google Scholar 

  97. 97.

    Birch, H. F. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10, 9–31 (1958).

    CAS  Google Scholar 

  98. 98.

    Blazewicz, S. J., Schwartz, E. & Firestone, M. K. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 95, 1162–1172 (2014). This study uses stable isotope probing with H 2 18O combined with quantitative PCR to determine the dynamics of growing and dying bacterial and fungal populations following soil desiccation and re-wetting.

    PubMed  Google Scholar 

  99. 99.

    Stovicek, A., Kim, M., Or, D. & Gillor, O. Microbial community response to hydration–desiccation cycles in desert soil. Sci. Rep. 7, 45735 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Schaeffer, S. M., Homyak, P. M., Boot, C. M., Roux-Michollet, D. & Schimel, J. P. Soil carbon and nitrogen dynamics throughout the summer drought in a California annual grassland. Soil Biol. Biochem. 115, 54–62 (2017). Using a long-term field experiment in annual dry grasslands, this study demonstrates a positive relationship between drought length, microbial biomass carbon and nitrogen, extractable carbon and nitrogen, and microbial activity upon re-wetting.

    CAS  Google Scholar 

  101. 101.

    Neilson, J. W. et al. Significant impacts of increasing aridity on the arid soil microbiome. mSystems 2, e00195-16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pachauri, R. & Meyer, L.) (IPCC, 2014).

  103. 103.

    Sorensen, P. O., Templer, P. H. & Finzi, A. C. Contrasting effects of winter snowpack and soil frost on growing season microbial biomass and enzyme activity in two mixed-hardwood forests. Biogeochemistry 128, 141–154 (2016).

    CAS  Google Scholar 

  104. 104.

    Roy Chowdhury, T. et al. Metaphenomic responses of a native prairie soil microbiome to moisture perturbations. mSystems 4, e00061-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Gedney, N., Cox, P. M. & Huntingford, C. Climate feedback from wetland methane emissions. Geophys. Res. Lett. 31, L20503 (2004).

    Google Scholar 

  106. 106.

    Moomaw, W. R. et al. Wetlands in a changing climate: science, policy and management. Wetlands 38, 183–205 (2018).

    Google Scholar 

  107. 107.

    Chambers, L. G., Osborne, T. Z. & Reddy, K. R. Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment. Biogeochemistry 115, 363–383 (2013).

    CAS  Google Scholar 

  108. 108.

    Steinmuller, H. E. & Chambers, L. G. Can saltwater intrusion accelerate nutrient export from freshwater wetland soils? An experimental approach. Soil Sci. Soc. Am. J. 82, 283–29 (2018).

    CAS  Google Scholar 

  109. 109.

    Sjogaard, K. S., Valdemarsen, T. B. & Treusch, A. H. Responses of an agricultural soil microbiome to flooding with seawater after managed coastal realignment. Microorganisms 6, 1–18 (2018).

    Google Scholar 

  110. 110.

    Knelman, E. J., Schmidt, K. S., Garayburu-Caruso, V., Kumar, S. & Graham, B. E. Multiple, compounding disturbances in a forest ecosystem: fire increases susceptibility of soil edaphic properties, bacterial community structure, and function to change with extreme precipitation event. Soil Syst. 3, 1–16 (2019).

    Google Scholar 

  111. 111.

    Sun, H. et al. Fungal community shifts in structure and function across a boreal forest fire chronosequence. Appl. Environ. Microb. 81, 7869–7880 (2015).

    CAS  Google Scholar 

  112. 112.

    Hart, S. C., DeLuca, T., Newman, G., MacKenzie, D. & Boyle, S. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manag. 220, 166–184 (2005).

    Google Scholar 

  113. 113.

    Nave, L. E., Vance, E. D., Swanston, C. W. & Curtis, P. S. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 21, 1189–1201 (2011).

    PubMed  Google Scholar 

  114. 114.

    Hinojosa, M. B., Parra, A., Laudicina, V. A. & Moreno, J. M. Post-fire soil functionality and microbial community structure in a mediterranean shrubland subjected to experimental drought. Sci. Total Environ. 573, 1178–1189 (2016).

    CAS  PubMed  Google Scholar 

  115. 115.

    Tas, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. 8, 1904–1919 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Goberna, M., García, C., Insam, H., Hernández, M. T. & Verdú, M. Burning fire-prone mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions. Microb. Ecol. 64, 242–255 (2012).

    CAS  PubMed  Google Scholar 

  117. 117.

    DeLuca, T. H. & Sala, A. Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland northwest. Ecology 87, 2511–2522 (2006).

    PubMed  Google Scholar 

  118. 118.

    Bowker, M. A., Belnap, J., Rosentreter, R. & Graham, B. Wildfire-resistant biological soil crusts and fire-induced loss of soil stability in Palouse prairies, USA. Appl. Soil Ecol. 26, 41–52 (2004).

    Google Scholar 

  119. 119.

    Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).

    CAS  PubMed  Google Scholar 

  120. 120.

    Hicks, N. et al. Using prokaryotes for carbon capture storage. Trends Biotechnol. 35, 22–32 (2017).

    CAS  PubMed  Google Scholar 

  121. 121.

    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011). This article describes a paradigm shift in understanding the composition of persistent SOCs, including determination of microbial cell macromolecules that persist in soil.

    CAS  PubMed  Google Scholar 

  122. 122.

    Kapilan, R., Vaziri, M. & Zwiazek, J. J. Regulation of aquaporins in plants under stress. Biol. Res. 51, 4 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Jansson, C., Tuskan, G. A., Wullschleger, S. D. & Kalluri, U. C. Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60, 685–696 (2010).

    Google Scholar 

  124. 124.

    Wallenstein, M. D. Managing and manipulating the rhizosphere microbiome for plant health: a systems approach. Rhizosphere 3, 230–232 (2017). This article discusses several strategies to harness soil microorganisms in the plant rhizosphere to store soil carbon and help mitigate negative consequences of rising atmospheric CO 2 levels.

    Google Scholar 

  125. 125.

    Lakshmanan, V., Ray, P. & Craven, K. D. Toward a resilient, functional microbiome: drought tolerance-alleviating microbes for sustainable agriculture. Methods Mol. Biol. 1631, 69–84 (2017).

    CAS  PubMed  Google Scholar 

  126. 126.

    Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Compant, S., van der Heijden, M. G. A. & Sessitsch, A. Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol. Ecol. 73, 197–214 (2010).

    CAS  PubMed  Google Scholar 

  128. 128.

    Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. & SkZ, A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184, 13–24 (2016).

    PubMed  Google Scholar 

  129. 129.

    Armada, E., Azcon, R., Lopez-Castillo, O. M., Calvo-Polanco, M. & Ruiz-Lozano, J. M. Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol. Biochem. 90, 64–74 (2015).

    CAS  Google Scholar 

  130. 130.

    Pereyra, M. A., García, P., Colabelli, M. N., Barassi, C. A. & Creus, C. M. A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl. Soil Ecol. 53, 94–97 (2012).

    Google Scholar 

  131. 131.

    Casanovas, E. M., Barassi, C. & Sueldo, R. J. Azospirillum inoculation mitigates water stress effects in maize seedlings. JSTOR 30, 343–350 (2002).

    Google Scholar 

  132. 132.

    Quiroga, G., Erice, G., Aroca, R., Chaumont, F. & Ruiz-Lozano, J. M. Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front. Plant Sci. 8, 1056 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Itakura, M. et al. Mitigation of nitrous oxide emissions from soils by Bradyrhizobium japonicum inoculation. Nat. Clim. Change 3, 208–212 (2012).

    Google Scholar 

  134. 134.

    Subbarao, G. V. et al. Evidence for biological nitrification inhibition in Brachiaria pastures. Proc. Natl Acad. Sci. USA 106, 17302–17307 (2009).

    CAS  PubMed  Google Scholar 

  135. 135.

    National Academies of Sciences, Engineering and Medicine. Science Breakthroughs to Advance Food and Agricultural Research by 2030 (National Academies, 2019).

  136. 136.

    Lal, R. Soil erosion and the global carbon budget. Environ. Int. 29, 437–450 (2003).

    CAS  PubMed  Google Scholar 

  137. 137.

    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019). This work presents a petition for a call to action to better understand and predict how climate change will impact crucial processes currently carried out by Earth’s microorganisms across a range of ecosystems.

    CAS  PubMed  Google Scholar 

  138. 138.

    Intergovernmental Panel on Climate Change. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, Pachauri, R. K. & Reisinger, A.) (IPCC, 2007).

  139. 139.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015). This article discusses evidence for gradual and sustained greenhouse gas emissions from permafrost as the climate warms. The authors also discuss the need for more integration of data with models to improve climate change predictions.

    CAS  PubMed  Google Scholar 

  140. 140.

    Stocker, T. F. et al. Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge Univ. Press, 2014).

  141. 141.

    Llado, S., Lopez-Mondejar, R. & Baldrian, P. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81, e00063 (2017).

    CAS  Google Scholar 

  142. 142.

    Kirschbaum, M. U. F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48, 21–51 (2000).

    CAS  Google Scholar 

  143. 143.

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

    Google Scholar 

  144. 144.

    Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).

    CAS  Google Scholar 

  145. 145.

    Tian, H. et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531, 225–228 (2016).

    CAS  PubMed  Google Scholar 

  146. 146.

    Zhang, Z. et al. Emerging role of wetland methane emissions in driving 21st century climate change. Proc. Natl Acad. Sci. USA 36, 9647–9652 (2017). This study determines the potential sensitivities of terrestrial wetlands to rising temperatures, and emphasizes the importance of including CH 4 feedback from wetlands in climate models.

    Google Scholar 

  147. 147.

    Makhalanyane, T. P. et al. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221 (2015). This article reviews the microbial communities of hot desert terrestrial biotopes, the processes that govern their assembly, the possible effects of global climate change on hot desert microbial communities and the resulting feedback and directions for future research.

    CAS  PubMed  Google Scholar 

Download references


This research was supported by the US Department of Energy Office of Biological and Environmental Research (BER) and is a contribution to the Scientific Focus Area ‘Phenotypic response of the soil microbiome to environmental perturbations’. Pacific Northwest National Laboratory is operated for the Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RLO1830.

Author information




The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Janet K. Jansson or Kirsten S. Hofmockel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Soil that has been frozen for at least 2 consecutive years.

Carbon use efficiency

The difference between the amount of carbon respired as CO2 and that incorporated into the cellular biomass.


Species that typically have high growth rates and are able to respond quickly to resources as they become available.


Species that typically are slow growing and adapted to utilize minimal resources.


A community phenotype that is the product of genomic potential encoded in metagenomes and the environmental conditions that govern which genes are expressed.

C4 plants

Plants that fix CO2 into a four-carbon compound (in addition to a three-carbon compound) and that have high photosynthetic efficiency due to an absence of photorespiration.

C3 plants

Plants that fix CO2 into a three-carbon compound and that have a lower photosynthetic efficiency than C4 plants.

Metagenome-assembled genomes

(MAGs). Genomes that are derived from assembled metagenome data; often using a process called ‘binning’.

Auxiliary metabolic genes

Genes on viral sequences (genomes or contigs) that represent non-viral metabolic genes, such as genes involved in carbon metabolism.

Matric potentials

The potential energy of water that is due to adhesion of water molecules to soil particles.


The amount of light or radiation that is reflected from a surface.


Residue mixtures of molecules derived from microorganisms, including biomass, intracellular and extracellular biomolecules/aggregations.


Fire-derived (pyrolysed) carbon (also known as black carbon) that has been proposed as a soil carbon-storage amendment.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jansson, J.K., Hofmockel, K.S. Soil microbiomes and climate change. Nat Rev Microbiol 18, 35–46 (2020).

Download citation

Further reading