Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolution and ecology of plant viruses


The discovery of the first non-cellular infectious agent, later determined to be tobacco mosaic virus, paved the way for the field of virology. In the ensuing decades, research focused on discovering and eliminating viral threats to plant and animal health. However, recent conceptual and methodological revolutions have made it clear that viruses are not merely agents of destruction but essential components of global ecosystems. As plants make up over 80% of the biomass on Earth, plant viruses likely have a larger impact on ecosystem stability and function than viruses of other kingdoms. Besides preventing overgrowth of genetically homogeneous plant populations such as crop plants, some plant viruses might also promote the adaptation of their hosts to changing environments. However, estimates of the extent and frequencies of such mutualistic interactions remain controversial. In this Review, we focus on the origins of plant viruses and the evolution of interactions between these viruses and both their hosts and transmission vectors. We also identify currently unknown aspects of plant virus ecology and evolution that are of practical importance and that should be resolvable in the near future through viral metagenomics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The many origins of plant viruses.
Fig. 2: Overlap between the plant hosts of a whitefly vector species and transmitted viruses.
Fig. 3: Co-divergence of a viral capsid protein and transmission vector sequences.
Fig. 4: Addressing important questions in the ecology and evolution of plant viruses.


  1. 1.

    Edwards, R. A. & Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510 (2005).

    CAS  PubMed  Google Scholar 

  2. 2.

    Greninger, A. L. A decade of RNA virus metagenomics is (not) enough. Virus Res. 244, 218–229 (2018).

    CAS  PubMed  Google Scholar 

  3. 3.

    Koonin, E. V. & Dolja, V. V. Metaviromics: a tectonic shift in understanding virus evolution. Virus Res. 246, A1–A3 (2018). This review highlights how our understanding of virology is changing as a consequence of advances in metagenomics.

    CAS  PubMed  Google Scholar 

  4. 4.

    Suttle, C. A. Viruses: unlocking the greatest biodiversity on Earth. Genome 56, 542–544 (2013).

    PubMed  Google Scholar 

  5. 5.

    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019). This study provides the most comprehensive inventory of marine viral diversity to date.

    CAS  PubMed  Google Scholar 

  6. 6.

    Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, E2274–E2283 (2018).

    CAS  PubMed  Google Scholar 

  7. 7.

    Mushegian, A., Shipunov, A. & Elena, S. F. Changes in the composition of the RNA virome mark evolutionary transitions in green plants. BMC Biol. 14, 68 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bernardo, P. et al. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. ISME J. 12, 173–184 (2018). This article is a viromics study of agro-ecological interfaces that demonstrates the impacts of agriculture on the diversity and prevalence of plant-associated viruses.

    PubMed  Google Scholar 

  9. 9.

    Muthukumar, V. et al. Non-cultivated plants of the Tallgrass Prairie Preserve of northeastern Oklahoma frequently contain virus-like sequences in particulate fractions. Virus Res. 141, 169–173 (2009).

    CAS  PubMed  Google Scholar 

  10. 10.

    Koonin, E. V., Dolja, V. V. & Krupovic, M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479–480, 2–25 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Nasir, A. & Caetano-Anolles, G. A phylogenomic data-driven exploration of viral origins and evolution. Sci. Adv. 1, e1500527 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Dolja, V. V. & Koonin, E. V. Common origins and host-dependent diversity of plant and animal viromes. Curr. Opin. Virol. 1, 322–331 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Wolf, Y. I. et al. Origins and evolution of the global RNA virome. mBio 9, e02329–18 (2018). This study yields new insights relating to the evolution of RNA viruses in light of novel RNA viruses that have recently been discovered using metagenomics techniques.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Volk, M., Gibbs, A. J. & Suttle, C. A. Metagenomes of a freshwater charavirus from British Columbia provide a window into ancient lineages of viruses. Viruses 11, 299 (2019).

    Google Scholar 

  15. 15.

    Krupovic, M. & Koonin, E. V. Multiple origins of viral capsid proteins from cellular ancestors. Proc. Natl Acad. Sci. USA 114, E2401–E2410 (2017).

    CAS  PubMed  Google Scholar 

  16. 16.

    Dolja, V. V. & Koonin, E. V. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res. 244, 36–52 (2018).

    CAS  PubMed  Google Scholar 

  17. 17.

    Roossinck, M. J. Evolutionary and ecological links between plant and fungal viruses. New Phytol. 221, 86–92 (2019). This review describes our current knowledge of mycoviruses and their evolutionary relationships with plant viruses.

    PubMed  Google Scholar 

  18. 18.

    Vieira, P. & Nemchinov, L. G. A novel species of RNA virus associated with root lesion nematode Pratylenchus penetrans. J. Gen. Virol. 100, 704–708 (2019).

    CAS  PubMed  Google Scholar 

  19. 19.

    Hollings, M. Viruses associated with a die-back disease of cultivated mushroom. Nature 196, 962–965 (1962).

    Google Scholar 

  20. 20.

    Pearson, M. N., Beever, R. E., Boine, B. & Arthur, K. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol. Plant Pathol. 10, 115–128 (2009).

    CAS  PubMed  Google Scholar 

  21. 21.

    Mu, F. et al. Virome characterization of a collection of S. sclerotiorum from Australia. Front. Microbiol. 8, 2540 (2017).

    PubMed  Google Scholar 

  22. 22.

    Marzano, S. L. & Domier, L. L. Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes. Virus Res. 213, 332–342 (2016).

    CAS  PubMed  Google Scholar 

  23. 23.

    Gilbert, K., Holcomb, E. E., Allscheid, R. L. & Carrington, J. Discovery of new mycoviral genomes within publicly available fungal transcriptomic datasets. Preprint at bioRxiv (2019).

  24. 24.

    Marzano, S. L. et al. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. J. Virol. 90, 6846–6863 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Frank, A. C. & Wolfe, K. H. Evolutionary capture of viral and plasmid DNA by yeast nuclear chromosomes. Eukaryot. Cell 8, 1521–1531 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Taylor, D. J. & Bruenn, J. The evolution of novel fungal genes from non-retroviral RNA viruses. BMC Biol. 7, 88 (2009).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Hillman, B. I. & Cai, G. The family Narnaviridae: simplest of RNA viruses. Adv. Virus Res. 86, 149–176 (2013).

    PubMed  Google Scholar 

  28. 28.

    Nerva, L. et al. Biological and molecular characterization of Chenopodium quinoa mitovirus 1 reveals a distinct small RNA response compared to those of cytoplasmic RNA viruses. J. Virol. 93, e01998–18 (2019).

    CAS  PubMed  Google Scholar 

  29. 29.

    Rastgou, M. et al. Molecular characterization of the plant virus genus Ourmiavirus and evidence of inter-kingdom reassortment of viral genome segments as its possible route of origin. J. Gen. Virol. 90, 2525–2535 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Nerva, L., Varese, G. C., Falk, B. W. & Turina, M. Mycoviruses of an endophytic fungus can replicate in plant cells: evolutionary implications. Sci. Rep. 7, 1908 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Andika, I. B. et al. Phytopathogenic fungus hosts a plant virus: a naturally occurring cross-kingdom viral infection. Proc. Natl Acad. Sci. USA 114, 12267–12272 (2017).

    CAS  PubMed  Google Scholar 

  32. 32.

    Mascia, T. et al. Infection of Colletotrichum acutatum and Phytophthora infestans by taxonomically different plant viruses. Eur. J. Plant Pathol. 153, 1001–1017 (2018).

    Google Scholar 

  33. 33.

    Malloch, D. W., Pirozynski, K. A. & Raven, P. H. Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proc. Natl Acad. Sci. USA 77, 2113–2118 (1980).

    CAS  PubMed  Google Scholar 

  34. 34.

    Bonfante, P. & Genre, A. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, 48 (2010).

    PubMed  Google Scholar 

  35. 35.

    Redman, R. S., Sheehan, K. B., Stout, R. G., Rodriguez, R. J. & Henson, J. M. Thermotolerance generated by plant/fungal symbiosis. Science 298, 1581 (2002).

    CAS  PubMed  Google Scholar 

  36. 36.

    Rodriguez, R. & Redman, R. More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J. Exp. Bot. 59, 1109–1114 (2008).

    CAS  PubMed  Google Scholar 

  37. 37.

    Li, C. X. et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife 4, e05378 (2015).

    PubMed Central  Google Scholar 

  38. 38.

    Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016). This study identified ~1,400 RNA viruses using metatranscriptomics, which tremendously expands our current knowledge of RNA virus diversity.

    CAS  PubMed  Google Scholar 

  39. 39.

    Dasgupta, R., Garcia, B. H. 2nd & Goodman, R. M. Systemic spread of an RNA insect virus in plants expressing plant viral movement protein genes. Proc. Natl Acad. Sci. USA 98, 4910–4915 (2001).

    CAS  PubMed  Google Scholar 

  40. 40.

    Gibbs, A. J., Wood, J., Garcia-Arenal, F., Ohshima, K. & Armstrong, J. S. Tobamoviruses have probably co-diverged with their eudicotyledonous hosts for at least 110 million years. Virus Evol. 1, vev019 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Stobbe, A. H., Melcher, U., Palmer, M. W., Roossinck, M. J. & Shen, G. Co-divergence and host-switching in the evolution of tobamoviruses. J. Gen. Virol. 93, 408–418 (2012).

    PubMed  Google Scholar 

  42. 42.

    Gibbs, A. How ancient are the tobamoviruses? Intervirology 14, 101–108 (1980).

    CAS  PubMed  Google Scholar 

  43. 43.

    Varsani, A., Lefeuvre, P., Roumagnac, P. & Martin, D. Notes on recombination and reassortment in multipartite/segmented viruses. Curr. Opin. Virol. 33, 156–166 (2018).

    CAS  PubMed  Google Scholar 

  44. 44.

    Briddon, R. W. et al. Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Arch. Virol. 163, 2587–2600 (2018).

    CAS  PubMed  Google Scholar 

  45. 45.

    Gnanasekaran, P. & Chakraborty, S. Biology of viral satellites and their role in pathogenesis. Curr. Opin. Virol. 33, 96–105 (2018).

    CAS  PubMed  Google Scholar 

  46. 46.

    Lucia-Sanz, A. & Manrubia, S. Multipartite viruses: adaptive trick or evolutionary treat? NPJ Syst. Biol. Appl. 3, 34 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Escriu, F., Fraile, A. & Garcia-Arenal, F. Constraints to genetic exchange support gene coadaptation in a tripartite RNA virus. PLOS Pathog. 3, e8 (2007).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Sicard, A. et al. Gene copy number is differentially regulated in a multipartite virus. Nat. Commun. 4, 2248 (2013).

    PubMed  Google Scholar 

  49. 49.

    Wu, B., Zwart, M. P., Sanchez-Navarro, J. A. & Elena, S. F. Within-host evolution of segments ratio for the tripartite genome of alfalfa mosaic virus. Sci. Rep. 7, 5004 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Benitez-Alfonso, Y., Faulkner, C., Ritzenthaler, C. & Maule, A. J. Plasmodesmata: gateways to local and systemic virus infection. Mol. Plant Microbe Interact. 23, 1403–1412 (2010).

    CAS  PubMed  Google Scholar 

  51. 51.

    Lucas, W. J. Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344, 169–184 (2006).

    CAS  PubMed  Google Scholar 

  52. 52.

    Sicard, A., Michalakis, Y., Gutierrez, S. & Blanc, S. The strange lifestyle of multipartite viruses. PLOS Pathog. 12, e1005819 (2016). This article reviews the ‘lifestyles’ of multipartite viruses, their peculiarities and the gaps in our understanding of their biology.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Gilmer, D., Ratti, C. & Michel, F. Long-distance movement of helical multipartite phytoviruses: keep connected or die? Curr. Opin. Virol. 33, 120–128 (2018).

    PubMed  Google Scholar 

  54. 54.

    Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A. Virus Taxonomy: VIII th Report of the International Committee on Taxonomy of Viruses (Academic Press, 2005).

  55. 55.

    Liu, S. et al. Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector. Proc. Natl Acad. Sci. USA 113, 12803–12808 (2016).

    CAS  PubMed  Google Scholar 

  56. 56.

    Sacristan, S., Diaz, M., Fraile, A. & Garcia-Arenal, F. Contact transmission of tobacco mosaic virus: a quantitative analysis of parameters relevant for virus evolution. J. Virol. 85, 4974–4981 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Jones, R. A. C. Plant and insect viruses in managed and natural environments: novel and neglected transmission pathways. Adv. Virus Res. 101, 149–187 (2018).

    PubMed  Google Scholar 

  58. 58.

    Hamelin, F. M., Allen, L. J., Prendeville, H. R., Hajimorad, M. R. & Jeger, M. J. The evolution of plant virus transmission pathways. J. Theor. Biol. 396, 75–89 (2016).

    PubMed  Google Scholar 

  59. 59.

    Hamelin, F. M. et al. The evolution of parasitic and mutualistic plant–virus symbioses through transmission–virulence trade-offs. Virus Res. 241, 77–87 (2017).

    CAS  PubMed  Google Scholar 

  60. 60.

    Nault, L. R. Arthropod transmission of plant viruses: a new synthesis. Ann. Entomol. Soc. Am. 90, 521–541 (1997).

    Google Scholar 

  61. 61.

    Tamada, T. & Kondo, H. Biological and genetic diversity of plasmodiophorid-transmitted viruses and their vectors. J. Gen. Plant Pathol. 79, 307–320 (2013).

    CAS  Google Scholar 

  62. 62.

    Hogenhout, S. A., Ammar el, D., Whitfield, A. E. & Redinbaugh, M. G. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 46, 327–359 (2008).

    CAS  PubMed  Google Scholar 

  63. 63.

    Dader, B. et al. Insect transmission of plant viruses: multilayered interactions optimize viral propagation. Insect Sci. 24, 929–946 (2017).

    PubMed  Google Scholar 

  64. 64.

    Uzest, M. et al. A protein key to plant virus transmission at the tip of the insect vector stylet. Proc. Natl Acad. Sci. USA 104, 17959–17964 (2007).

    CAS  PubMed  Google Scholar 

  65. 65.

    Ammar, E.-D., Tsai, C. W., Whitfield, A. E., Redinbaugh, M. G. & Hogenhout, S. A. Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts. Annu. Rev. Entomol. 54, 447–468 (2009).

    CAS  Google Scholar 

  66. 66.

    Brault, V., Herrbach, E. & Reinbold, C. Electron microscopy studies on luteovirid transmission by aphids. Micron 38, 302–312 (2007).

    CAS  PubMed  Google Scholar 

  67. 67.

    Blanc, S. & Michalakis, Y. Manipulation of hosts and vectors by plant viruses and impact of the environment. Curr. Opin. Insect Sci. 16, 36–43 (2016).

    PubMed  Google Scholar 

  68. 68.

    Safari, M., Ferrari, M. J. & Roossinck, M. J. Manipulation of aphid behavior by a persistent plant virus. J. Virol. 93, e01781–18 (2019).

    CAS  PubMed  Google Scholar 

  69. 69.

    Mauck, K., Bosque-Perez, N. A., Eigenbrode, S. D., De Moraes, C. M. & Mescher, M. C. Transmission mechanisms shape pathogen effects on host–vector interactions: evidence from plant viruses. Funct. Ecol. 26, 1162–1175 (2012).

    Google Scholar 

  70. 70.

    Gallitelli, D. The ecology of Cucumber mosaic virus and sustainable agriculture. Virus Res. 71, 9–21 (2000).

    CAS  PubMed  Google Scholar 

  71. 71.

    Power, A. G. & Flecker, A. S. in Infectious Disease Ecology: The Effects of Ecosystems on Disease and of Disease on Ecosystems Ch. 2 (eds Ostfeld, R. S., Keesing, F. & Eviner, V. T.) (Princeton Univ. Press, 2010).

  72. 72.

    Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).

    PubMed  Google Scholar 

  73. 73.

    Gilbertson, R. L., Batuman, O., Webster, C. G. & Adkins, S. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2, 67–93 (2015).

    CAS  PubMed  Google Scholar 

  74. 74.

    Fereres, A. Insect vectors as drivers of plant virus emergence. Curr. Opin. Virol. 10, 42–46 (2015).

    PubMed  Google Scholar 

  75. 75.

    Simmonds, P., Aiewsakun, P. & Katzourakis, A. Prisoners of war — host adaptation and its constraints on virus evolution. Nat. Rev. Microbiol. 17, 321–328 (2019). This study provides both a summary of viral evolutionary rates and a tentative framework to accommodate potentially conflicting long-term and short-term evolutionary rate inferences.

    CAS  PubMed  Google Scholar 

  76. 76.

    Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).

    Google Scholar 

  77. 77.

    Scholthof, K. B. et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 12, 938–954 (2011).

    CAS  PubMed  Google Scholar 

  78. 78.

    Jacquemond, M. Cucumber mosaic virus. Adv. Virus Res. 84, 439–504 (2012).

    PubMed  Google Scholar 

  79. 79.

    Dietzgen, R. G., Mann, K. S. & Johnson, K. N. Plant virus–insect vector interactions: current and potential future research directions. Viruses 8, E303 (2016).

    PubMed  Google Scholar 

  80. 80.

    Bragard, C. et al. Status and prospects of plant virus control through interference with vector transmission. Annu. Rev. Phytopathol. 51, 177–201 (2013).

    CAS  PubMed  Google Scholar 

  81. 81.

    Eastop, V. F. in Aphids As Virus Vectors (eds Harris, K. F. & Maramorosch, K.) 3–62 (Academic Press, 1977).

  82. 82.

    Li, C., Cox-Foster, D., Gray, S. M. & Gildow, F. Vector specificity of barley yellow dwarf virus (BYDV) transmission: identification of potential cellular receptors binding BYDV-MAV in the aphid, Sitobion avenae. Virology 286, 125–133 (2001).

    CAS  PubMed  Google Scholar 

  83. 83.

    Bedhomme, S., Hillung, J. & Elena, S. F. Emerging viruses: why they are not jacks of all trades? Curr. Opin. Virol. 10, 1–6 (2015).

    PubMed  Google Scholar 

  84. 84.

    Elena, S. F. Local adaptation of plant viruses: lessons from experimental evolution. Mol. Ecol. 26, 1711–1719 (2017).

    PubMed  Google Scholar 

  85. 85.

    Remold, S. Understanding specialism when the Jack of all trades can be the master of all. Proc. Biol. Sci. 279, 4861–4869 (2012).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Kawecki, T. J. Accumulation of deleterious mutations and the evolutionary cost of being a generalist. Am. Nat. 144, 833–838 (1994).

    Google Scholar 

  87. 87.

    Cooper, I. & Jones, R. A. Wild plants and viruses: under-investigated ecosystems. Adv. Virus Res. 67, 1–47 (2006).

    PubMed  Google Scholar 

  88. 88.

    Rodriguez-Nevado, C., Montes, N. & Pagan, I. Ecological factors affecting infection risk and population genetic diversity of a novel potyvirus in its native wild ecosystem. Front. Plant Sci. 8, 1958 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Susi, H., Filloux, D., Frilander, M. J., Roumagnac, P. & Laine, A. L. Diverse and variable virus communities in wild plant populations revealed by metagenomic tools. PeerJ 7, e6140 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Elena, S. F., Fraile, A. & García-Arenal, F. Evolution and emergence of plant viruses. Adv. Virus Res. 88, 161–191 (2014).

    CAS  PubMed  Google Scholar 

  91. 91.

    McLeish, M. J., Fraile, A. & Garcia-Arenal, F. Ecological complexity in plant virus host range evolution. Adv. Virus Res. 101, 293–339 (2018). This article presents a comprehensive review of plant virus ecology.

    PubMed  Google Scholar 

  92. 92.

    Cuevas, J. M., Willemsen, A., Hillung, J., Zwart, M. P. & Elena, S. F. Temporal dynamics of intrahost molecular evolution for a plant RNA virus. Mol. Biol. Evol. 32, 1132–1147 (2015).

    CAS  PubMed  Google Scholar 

  93. 93.

    Minicka, J., Rymelska, N., Elena, S. F., Czerwoniec, A. & Hasiów-Jaroszewska, B. Molecular evolution of Pepino mosaic virus during long-term passaging in different hosts and its impact on virus virulence. Ann. Appl. Biol. 166, 389–401 (2015).

    CAS  Google Scholar 

  94. 94.

    Ciota, A. T. et al. Experimental passage of St. Louis encephalitis virus in vivo in mosquitoes and chickens reveals evolutionarily significant virus characteristics. PLOS ONE 4, e7876 (2009).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Greene, I. P. et al. Effect of alternating passage on adaptation of sindbis virus to vertebrate and invertebrate cells. J. Virol. 79, 14253–14260 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Turner, P. E. & Elena, S. F. Cost of host radiation in an RNA virus. Genetics 156, 1465–1470 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Bedhomme, S., Lafforgue, G. & Elena, S. F. Multihost experimental evolution of a plant RNA virus reveals local adaptation and host-specific mutations. Mol. Biol. Evol. 29, 1481–1492 (2012). This study provides experimental evidence for the possible existence of no-cost generalists in plant viruses.

    CAS  PubMed  Google Scholar 

  98. 98.

    Hillung, J., Cuevas, J. M., Valverde, S. & Elena, S. F. Experimental evolution of an emerging plant virus in host genotypes that differ in their susceptibility to infection. Evolution 68, 2467–2480 (2014).

    PubMed  Google Scholar 

  99. 99.

    Lalic, J., Agudelo-Romero, P., Carrasco, P. & Elena, S. F. Adaptation of tobacco etch potyvirus to a susceptible ecotype of Arabidopsis thaliana capacitates it for systemic infection of resistant ecotypes. Phil. Trans. R. Soc. B 365, 1997–2007 (2010).

    PubMed  Google Scholar 

  100. 100.

    Charron, C. et al. Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. Plant J. 54, 56–68 (2008).

    CAS  PubMed  Google Scholar 

  101. 101.

    Jenner, C. E., Wang, X., Ponz, F. & Walsh, J. A. A fitness cost for Turnip mosaic virus to overcome host resistance. Virus Res. 86, 1–6 (2002).

    CAS  PubMed  Google Scholar 

  102. 102.

    Hillung, J., Garcia-Garcia, F., Dopazo, J., Cuevas, J. M. & Elena, S. F. The transcriptomics of an experimentally evolved plant–virus interaction. Sci. Rep. 6, 24901 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    McCallum, E. J., Anjanappa, R. B. & Gruissem, W. Tackling agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). Curr. Opin. Plant Biol. 38, 50–58 (2017).

    PubMed  Google Scholar 

  104. 104.

    Almeida, R. P. et al. Ecology and management of grapevine leafroll disease. Front. Microbiol. 4, 94 (2013).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Walls, J., Rajotte, E. & Rosa, C. The past, present, and future of barley yellow dwarf management. Agriculture 9, 23 (2019).

    Google Scholar 

  106. 106.

    Pinel-Galzi, A., Traore, O., Sere, Y., Hebrard, E. & Fargette, D. The biogeography of viral emergence: rice yellow mottle virus as a case study. Curr. Opin. Virol. 10, 7–13 (2015).

    PubMed  Google Scholar 

  107. 107.

    Fargette, D. et al. Molecular ecology and emergence of tropical plant viruses. Annu. Rev. Phytopathol. 44, 235–260 (2006).

    CAS  PubMed  Google Scholar 

  108. 108.

    Jones, R. A. Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 141, 113–130 (2009). This article reviews various anthropogenic factors associated with the emergence of plant viruses and the ongoing challenges in mitigating emerging disease threats.

    CAS  PubMed  Google Scholar 

  109. 109.

    Pagan, I. et al. Effect of biodiversity changes in disease risk: exploring disease emergence in a plant–virus system. PLOS Pathog. 8, e1002796 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Roossinck, M. J. & Garcia-Arenal, F. Ecosystem simplification, biodiversity loss and plant virus emergence. Curr. Opin. Virol. 10, 56–62 (2015).

    PubMed  Google Scholar 

  111. 111.

    Rodelo-Urrego, M. et al. Landscape heterogeneity shapes host–parasite interactions and results in apparent plant–virus codivergence. Mol. Ecol. 22, 2325–2340 (2013).

    CAS  PubMed  Google Scholar 

  112. 112.

    Rocha, C. S. et al. Brazilian begomovirus populations are highly recombinant, rapidly evolving, and segregated based on geographical location. J. Virol. 87, 5784–5799 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010). This article addresses the impacts of reduced biodiversity on disease transmission.

    CAS  PubMed  Google Scholar 

  114. 114.

    Lima, A. T. et al. Synonymous site variation due to recombination explains higher genetic variability in begomovirus populations infecting non-cultivated hosts. J. Gen. Virol. 94, 418–431 (2013).

    CAS  PubMed  Google Scholar 

  115. 115.

    Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 19–27 (1997).

    Google Scholar 

  116. 116.

    Coutinho, F. H. et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat. Commun. 8, 15955 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Coutinho, F. H., Gregoracci, G. B., Walter, J. M., Thompson, C. C. & Thompson, F. L. Metagenomics sheds light on the ecology of marine microbes and their viruses. Trends Microbiol. 26, 955–965 (2018).

    CAS  PubMed  Google Scholar 

  118. 118.

    Mitchell, C. E. & Power, A. G. Release of invasive plants from fungal and viral pathogens. Nature 421, 625–627 (2003).

    CAS  PubMed  Google Scholar 

  119. 119.

    Borer, E. T., Hosseini, P. R., Seabloom, E. W. & Dobson, A. P. Pathogen-induced reversal of native dominance in a grassland community. Proc. Natl Acad. Sci. USA 104, 5473–5478 (2007).

    CAS  PubMed  Google Scholar 

  120. 120.

    Malmstrom, C. M., McCullough, A. J., Johnson, H. A., Newton, L. A. & Borer, E. T. Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia 145, 153–164 (2005). This article addresses the impacts of an invasive plant species on viral dynamics in native plants.

    PubMed  Google Scholar 

  121. 121.

    Faillace, C. A., Lorusso, N. S. & Duffy, S. Overlooking the smallest matter: viruses impact biological invasions. Ecol. Lett. 20, 524–538 (2017). This article reviews the impacts of rapidly evolving plant viruses on plant community structure within a biological invasion framework.

    PubMed  Google Scholar 

  122. 122.

    Cervera, H., Ambros, S., Bernet, G. P., Rodrigo, G. & Elena, S. F. Viral fitness correlates with the magnitude and direction of the perturbation induced in the host’s transcriptome: the Tobacco Etch Potyvirus-Tobacco Case Study. Mol. Biol. Evol. 35, 1599–1615 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).

    CAS  PubMed  Google Scholar 

  124. 124.

    Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982).

    PubMed  Google Scholar 

  125. 125.

    Doumayrou, J., Avellan, A., Froissart, R. & Michalakis, Y. An experimental test of the transmission–virulence trade-off hypothesis in a plant virus. Evolution 67, 477–486 (2013).

    CAS  PubMed  Google Scholar 

  126. 126.

    Froissart, R., Doumayrou, J., Vuillaume, F., Alizon, S. & Michalakis, Y. The virulence–transmission trade-off in vector-borne plant viruses: a review of (non-)existing studies. Phil. Trans. R. Soc. B 365, 1907–1918 (2010). This article reviews our current understanding of the transmission–virulence trade-off hypothesis in the context of plant viruses.

    CAS  PubMed  Google Scholar 

  127. 127.

    Leggett, H. C., Buckling, A., Long, G. H. & Boots, M. Generalism and the evolution of parasite virulence. Trends Ecol. Evol. 28, 592–596 (2013).

    PubMed  Google Scholar 

  128. 128.

    Roossinck, M. J. A new look at plant viruses and their potential beneficial roles in crops. Mol. Plant Pathol. 16, 331–333 (2015).

    PubMed  Google Scholar 

  129. 129.

    Roossinck, M. J. Plants, viruses and the environment: ecology and mutualism. Virology 479–480, 271–277 (2015). This review addresses the paradigm shift away from viewing viruses as antagonistic pathogens towards viewing them as possible mutualists.

    PubMed  Google Scholar 

  130. 130.

    Shates, T. M., Sun, P., Malmstrom, C. M., Dominguez, C. & Mauck, K. E. Addressing research needs in the field of plant virus ecology by defining knowledge gaps and developing wild dicot study systems. Front. Microbiol. 9, 3305 (2018).

    PubMed  Google Scholar 

  131. 131.

    Fraile, A. & Garcia-Arenal, F. The coevolution of plants and viruses: resistance and pathogenicity. Adv. Virus Res. 76, 1–32 (2010).

    CAS  PubMed  Google Scholar 

  132. 132.

    Calil, I. P. & Fontes, E. P. B. Plant immunity against viruses: antiviral immune receptors in focus. Ann. Bot. 119, 711–723 (2017).

    CAS  PubMed  Google Scholar 

  133. 133.

    Malmstrom, C. M. & Alexander, H. M. Effects of crop viruses on wild plants. Curr. Opin. Virol. 19, 30–36 (2016).

    PubMed  Google Scholar 

  134. 134.

    Prendeville, H. R., Ye, X., Morris, T. J. & Pilson, D. Virus infections in wild plant populations are both frequent and often unapparent. Am. J. Bot. 99, 1033–1042 (2012).

    PubMed  Google Scholar 

  135. 135.

    Remold, S. K. Unapparent virus infection and host fitness in three weedy grass species. J. Ecol. 90, 967–977 (2002).

    Google Scholar 

  136. 136.

    Fraile, A. et al. Environmental heterogeneity and the evolution of plant-virus interactions: viruses in wild pepper populations. Virus Res. 241, 68–76 (2017).

    CAS  PubMed  Google Scholar 

  137. 137.

    Faure, D., Simon, J. C. & Heulin, T. Holobiont: a conceptual framework to explore the eco-evolutionary and functional implications of host–microbiota interactions in all ecosystems. New Phytol. 218, 1321–1324 (2018).

    PubMed  Google Scholar 

  138. 138.

    Grasis, J. A. The intra-dependence of viruses and the holobiont. Front. Immunol. 8, 1501 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Harth, J. E., Ferrari, M. J., Tooker, J. F. & Stephenson, A. G. Zucchini yellow mosaic virus infection limits establishment and severity of powdery mildew in wild populations of Cucurbita pepo. Front. Plant Sci. 9, 792 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Gibbs, A. A plant virus that partially protects its wild legume host against herbivores. Intervirology 13, 42–47 (1980).

    CAS  PubMed  Google Scholar 

  141. 141.

    Davis, T. S., Bosque-Perez, N. A., Foote, N. E., Magney, T. & Eigenbrode, S. D. Environmentally dependent host–pathogen and vector–pathogen interactions in the Barley yellow dwarf virus pathosystem. J. Appl. Ecol. 52, 1392–1401 (2015).

    Google Scholar 

  142. 142.

    Hily, J. M., Poulicard, N., Mora, M. A., Pagan, I. & Garcia-Arenal, F. Environment and host genotype determine the outcome of a plant–virus interaction: from antagonism to mutualism. New Phytol. 209, 812–822 (2016). This study provides compelling evidence that conditional interactions of plant viruses, plant genotypes and the environment modulate the outcome of symbiosis.

    PubMed  Google Scholar 

  143. 143.

    Westwood, J. H. et al. A viral RNA silencing suppressor interferes with abscisic acid-mediated signalling and induces drought tolerance in Arabidopsis thaliana. Mol. Plant Pathol. 14, 158–170 (2013).

    CAS  PubMed  Google Scholar 

  144. 144.

    Xu, P. et al. Virus infection improves drought tolerance. New Phytol. 180, 911–921 (2008).

    PubMed  Google Scholar 

  145. 145.

    Prasch, C. M. & Sonnewald, U. Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol. 162, 1849–1866 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Berges, S. E. et al. Interactions between drought and plant genotype change epidemiological traits of cauliflower mosaic virus. Front. Plant Sci. 9, 703 (2018).

    PubMed  PubMed Central  Google Scholar 

  147. 147.

    Bera, S., Fraile, A. & Garcia-Arenal, F. Analysis of fitness trade-offs in the host range expansion of an RNA virus, tobacco mild green mosaic virus. J. Virol. 92, e01268–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Zhang, Y. Z., Shi, M. & Holmes, E. C. Using metagenomics to characterize an expanding virosphere. Cell 172, 1168–1172 (2018).

    CAS  PubMed  Google Scholar 

  149. 149.

    Saunders, K., Bedford, I. D., Yahara, T. & Stanley, J. Aetiology: the earliest recorded plant virus disease. Nature 422, 831 (2003).

    CAS  PubMed  Google Scholar 

  150. 150.

    Lesnaw, J. A. & Ghabrial, S. A. Tulip breaking: past, present, and future. Plant Dis. 84, 1052–1060 (2000).

    CAS  PubMed  Google Scholar 

  151. 151.

    Ivanowski, D. Ueber die Mosaikkrankheit der Tabakspflanze. Bull. Acad. Imp. Sci. 35, 67–70 (1892).

    Google Scholar 

  152. 152.

    Beijerinck, W. M. Ueber ein contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabaksblatter. Verh. Kon. Akad. Wetensch. 5, 3–21 (1898).

    Google Scholar 

  153. 153.

    Stanley, W. M. Isolation of a crystalline protein possessing the properties of tobacco-mosaic virus. Science 81, 644–645 (1935).

    CAS  PubMed  Google Scholar 

  154. 154.

    Kausche, G. A., Pfankuch, E. & Ruska, H. Die Sichtbarmachung von pflanzlichem Virus im Übermikroskop. Naturwissenschaften 27, 292–299 (1939).

    Google Scholar 

  155. 155.

    Bernal, J. D. & Fankuchen, I. Structure types of protein crystals from virus-infected plants. Nature 139, 923–924 (1937).

    CAS  Google Scholar 

  156. 156.

    Fraenkel-Conrat, H. The genetic code of a virus. Sci. Am. 211, 47–54 (1964).

    CAS  PubMed  Google Scholar 

  157. 157.

    Anandalakshmi, R. et al. A viral suppressor of gene silencing in plants. Proc. Natl Acad. Sci. USA 95, 13079–13084 (1998).

    CAS  PubMed  Google Scholar 

  158. 158.

    Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    CAS  PubMed  Google Scholar 

  159. 159.

    Guo, Z. et al. Identification of a new host factor required for antiviral RNAi and amplification of viral siRNAs. Plant Physiol. 176, 1587–1597 (2018).

    CAS  PubMed  Google Scholar 

  160. 160.

    Baltimore, D. Expression of animal virus genomes. Bacteriol. Rev. 35, 235–241 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ 5, e3243 (2017).

    PubMed  PubMed Central  Google Scholar 

  162. 162.

    Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).

    PubMed  PubMed Central  Google Scholar 

  163. 163.

    Evans, G. A. Host Plant List of The Whiteflies (Aleyrodidae) of The World (USDA Animal Plant Health Inspection Service, 2007).

  164. 164.

    De Barro, P. J., Liu, S. S., Boykin, L. M. & Dinsdale, A. B. Bemisia tabaci: a statement of species status. Annu. Rev. Entomol. 56, 1–19 (2011).

    PubMed  Google Scholar 

  165. 165.

    Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  Google Scholar 

  168. 168.

    Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).

    CAS  PubMed  Google Scholar 

  169. 169.

    Ratnasingham, S. & Hebert, P. D. bold: the Barcode of Life Data System ( Mol. Ecol. Notes 7, 355–364 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Gerlt, J. A. et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors are grateful to Y. Michalakis (Centre national de la recherche scientifique, France) and A. Gibbs (Australian Nation University, Australia) for helpful comments and suggestions. P.L. was supported by the European Union: European Regional Development Fund (ERDF), by the Conseil Régional de La Réunion and by the Centre de Coopération internationale en Recherche agronomique pour le Développement (CIRAD). S.F.E. was supported by a grant (BFU2015-65037-P) from Spain Ministry of Science, Innovation and Universities–ERDF.

Author information




P.L., D.P.M., S.F.E., D.N.S., P.R. and A.V. wrote and edited the manuscript. P.L. and A.V. undertook the analyses for the data presented in figures 1–3.

Corresponding author

Correspondence to Arvind Varsani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks M. Roossinck, A. Whitfield and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Plant viruses dataset:



These invertebrate animals have exoskeletons, segmented bodies and paired jointed appendages. Arthropods belong to the phylum Euarthropoda that includes insects, arachnids, myriapods and crustaceans.

RNA-dependent RNA polymerases

These enzymes catalyse the synthesis of RNA from an RNA template. RNA-dependent RNA polymerases are essential to the replication of viruses that have no DNA stage.

Movement proteins

Some plant viruses encode these proteins to facilitate cell-to-cell movement of viral particles and/or uncoated viral nucleic acids. They frequently function by increasing the size exclusion limits of plasmodesmata.


Brassica is a genus in the mustard family (Brassicaceae) of plants, which includes cabbage, lettuce and cauliflower.


Angiosperms are also known as flowering plants and are the most diverse group of land plants. While both gymnosperms and angiosperms produce seeds, angiosperms are characterized by the presence of flowers, an endosperm within the seeds and the inclusion of seeds within fruits.


These microscopic channels traverse plant cell walls enabling intercellular trafficking of macromolecules.


This class of plant parasites comprises organisms in the orders Plasmodiophorida and Phagomyxida. They have long been recognized as a basal group to fungi, but recent molecular phylogenetic analysis suggests that they are more closely related to protozoa in the phylum Cercozoa.


This order of insects includes insects such as aphids, cicadas, leafhoppers and planthoppers. Most hemipterans feed on plant sap with their sucking and piercing mouthparts.


This is the body cavity in arthropods wherein haemolymph (plasma with haemocytes) circulates.


These small sap-sucking insects are members of the superfamily Aphidoidea in the Hemiptera order.


The phloem is the vascular system in plants within which soluble organic compounds that are produced during photosynthesis are transported.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lefeuvre, P., Martin, D.P., Elena, S.F. et al. Evolution and ecology of plant viruses. Nat Rev Microbiol 17, 632–644 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing