Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Restriction of HIV-1 and other retroviruses by TRIM5

Abstract

Mammalian cells express a variety of innate immune proteins — known as restriction factors — which defend against invading retroviruses such as HIV-1. Two members of the tripartite motif protein family — TRIM5α and TRIMCyp — were identified in 2004 as restriction factors that recognize and inactivate the capsid shell that surrounds and protects the incoming retroviral core. Research on these TRIM5 proteins has uncovered a novel mode of non-self recognition that protects against cross-species transmission of retroviruses. Our developing understanding of the mechanism of TRIM5 restriction underscores the concept that core uncoating and reverse transcription of the viral genome are coordinated processes rather than discrete steps of the post-entry pathway of retrovirus replication. In this Review, we provide an overview of the current state of knowledge of the molecular mechanism of TRIM5-mediated restriction, highlight recent advances and discuss implications for the development of capsid-targeted antiviral therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The early stages of HIV-1 replication.
Fig. 2: Structural and functional properties of TRIM5.
Fig. 3: Mechanism of core recognition by TRIM5.
Fig. 4: Mechanism of TRIM5-mediated restriction.
Fig. 5: TRIM5-mediated signalling.

Similar content being viewed by others

References

  1. Shibata, R., Sakai, H., Kawamura, M., Tokunaga, K. & Adachi, A. Early replication block of human immunodeficiency virus type 1 in monkey cells. J. Gen. Virol. 76, 2723–2730 (1995).

    CAS  PubMed  Google Scholar 

  2. Hoffman, W. et al. Species-specific, postentry barriers to primate immunodeficiency virus infection. J. Virol. 73, 10020–10028 (1999).

    Google Scholar 

  3. Towers, G. et al. A conserved mechanism of retrovirus restriction in mammals. Proc. Natl Acad. Sci. USA 97, 12295–12299 (2000).

    CAS  PubMed  Google Scholar 

  4. Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004).

    CAS  PubMed  Google Scholar 

  5. Sayah, D. M., Sokolskaja, E., Berthoux, L. & Luban, J. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430, 569–573 (2004). Stremlau et al. (2004) and Sayah et al. report the identification of TRIM5α and TRIMCyp and the initial characterization of their restriction mechanism.

    CAS  PubMed  Google Scholar 

  6. Sebastian, S. & Luban, J. TRIM5α selectively binds a restriction-sensitive retroviral capsid. Retrovirology 2, 40 (2005).

    PubMed  PubMed Central  Google Scholar 

  7. Stremlau, M. et al. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor. Proc. Natl Acad. Sci. USA 103, 5514–5519 (2006). This study reports TRIM5 binding to assembled HIV-1 CA–nucleocaspid protein tubes, which are functional and structural mimics of the HIV-1 capsid. The ‘fate of capsid’ assay is used to show accelerated disassembly of the HIV-1 capsid under restricting conditions.

    CAS  PubMed  Google Scholar 

  8. Ganser, B. K., Li, S., Klishko, V. Y., Finch, J. T. & Sundquist, W. I. Assembly and analysis of conical models for the HIV-1 core. Science 283, 80–83 (1999).

    CAS  PubMed  Google Scholar 

  9. Mattei, S., Glass, B., Hagen, W. J., Krausslich, H. G. & Briggs, J. A. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 354, 1434–1437 (2016). The studies by Ganser et al. and Mattei et al. act as bookends for a large body of work describing the architecture of retroviral capsids.

    CAS  PubMed  Google Scholar 

  10. Ambrose, Z. & Aiken, C. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins. Virology 454–455, 371–379 (2014).

    PubMed  Google Scholar 

  11. Hilditch, L. & Towers, G. J. A model for cofactor use during HIV-1 reverse transcription and nuclear entry. Curr. Opin. Virol. 4, 32–36 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Campbell, E. M. & Hope, T. J. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat. Rev. Microbiol. 13, 471–483 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Forshey, B. M., von Schwedler, U., Sundquist, W. I. & Aiken, C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol. 76, 5667–5677 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hulme, A. E., Perez, O. & Hope, T. J. Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc. Natl Acad. Sci. USA 108, 9975–9980 (2011).

    CAS  PubMed  Google Scholar 

  15. Yang, Y., Fricke, T. & Diaz-Griffero, F. Inhibition of reverse transcriptase activity increases stability of the HIV-1 core. J. Virol. 87, 683–687 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rankovic, S., Varadarajan, J., Ramalho, R., Aiken, C. & Rousso, I. Reverse transcription mechanically initiates HIV-1 capsid disassembly. J. Virol. 91, e00289-17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Arhel, N. J. et al. HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J. 26, 3025–3037 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cosnefroy, O., Murray, P. J. & Bishop, K. N. HIV-1 capsid uncoating initiates after the first strand transfer of reverse transcription. Retrovirology 13, 58 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Mamede, J. I. & Hope, T. J. Detection and tracking of dual-labeled HIV particles using wide-field live cell imaging to follow viral core integrity. Methods Mol. Biol. 1354, 49–59 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dick, R. A. et al. Inositol phosphates are assembly co-factors for HIV-1. Nature 560, 509–512 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mallery, D. L. et al. IP6 is an HIV pocket factor that prevents capsid collapse and promotes DNA synthesis. eLife 7, e35335 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. Meroni, G. & Diez-Roux, G. TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. Bioessays 27, 1147–1157 (2005).

    CAS  PubMed  Google Scholar 

  23. Kar, A. K., Diaz-Griffero, F., Li, Y., Li, X. & Sodroski, J. Biochemical and biophysical characterization of a chimeric TRIM21-TRIM5α protein. J. Virol. 82, 11669–11681 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Langelier, C. R. et al. Biochemical characterization of a recombinant TRIM5α protein that restricts human immunodeficiency virus type 1 replication. J. Virol. 82, 11682–11694 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sanchez, J. G. et al. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer. Proc. Natl Acad. Sci. USA 111, 2494–2499 (2014).

    CAS  PubMed  Google Scholar 

  26. Goldstone, D. C. et al. Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice. Proc. Natl Acad. Sci. USA 111, 9609–9614 (2014). The studies by Kar et al., Langelier et al., Sanchez et al. and Goldstone et al. establish that TRIM5 coiled-coil domains form elongated antiparallel dimers.

    CAS  PubMed  Google Scholar 

  27. Diaz-Griffero, F. et al. A B-box 2 surface patch important for TRIM5α self-association, capsid binding avidity, and retrovirus restriction. J. Virol. 83, 10737–10751 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, X., Yeung, D. F., Fiegen, A. M. & Sodroski, J. Determinants of the higher order association of the restriction factor TRIM5α and other tripartite motif (TRIM) proteins. J. Biol. Chem. 286, 27959–27970 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wagner, J. M. et al. Mechanism of B-box 2 domain-mediated higher-order assembly of the retroviral restriction factor TRIM5α. eLife 5, e16309 (2016). The B-box 2 domain of TRIM5α is shown to form dimers and trimers (see also Keown et al. (2016)). A molecular model for the TRIM5 hexagonal lattice based on crystal structures of subcomplexes is proposed.

    PubMed  PubMed Central  Google Scholar 

  30. Keown, J. R., Yang, J. X., Douglas, J. & Goldstone, D. C. Characterisation of assembly and ubiquitylation by the RBCC motif of Trim5α. Sci. Rep. 6, 26837 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Keown, J. R. & Goldstone, D. C. Crystal structure of the Trim5α Bbox2 domain from rhesus macaques describes a plastic oligomerisation interface. J. Struct. Biol. 195, 282–285 (2016).

    CAS  PubMed  Google Scholar 

  32. Wagner, J. M. et al. General model for retroviral capsid pattern recognition by TRIM5 proteins. J. Virol. 92, e01563-17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Javanbakht, H., Diaz-Griffero, F., Stremlau, M., Si, Z. & Sodroski, J. The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5α. J. Biol. Chem. 280, 26933–26940 (2005).

    CAS  PubMed  Google Scholar 

  34. Li, X. & Sodroski, J. The TRIM5α B-box 2 domain promotes cooperative binding to the retroviral capsid by mediating higher-order self-association. J. Virol. 82, 11495–11502 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ganser-Pornillos, B. K. et al. Hexagonal assembly of a restricting TRIM5α protein. Proc. Natl Acad. Sci. USA 108, 534–539 (2011). This study demonstrates that purified TRIM5α assembles into a hexagonal lattice that matches the symmetry and spacing of retroviral capsid lattices. The HIV-1 capsid lattice is shown to act as a template for assembly of TRIM5α in vitro.

    CAS  PubMed  Google Scholar 

  36. Reymond, A. et al. The tripartite motif family identifies cell compartments. EMBO J. 20, 2140–2151 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Campbell, E. M. et al. TRIM5 α cytoplasmic bodies are highly dynamic structures. Mol. Biol. Cell 18, 2102–2111 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Song, B. et al. TRIM5α association with cytoplasmic bodies is not required for antiretroviral activity. Virology 343, 201–211 (2005).

    CAS  PubMed  Google Scholar 

  39. Perez-Caballero, D., Hatziioannou, T., Zhang, F., Cowan, S. & Bieniasz, P. D. Restriction of human immunodeficiency virus type 1 by TRIM-CypA occurs with rapid kinetics and independently of cytoplasmic bodies, ubiquitin, and proteasome activity. J. Virol. 79, 15567–15572 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Perez-Caballero, D., Hatziioannou, T., Yang, A., Cowan, S. & Bieniasz, P. D. Human tripartite motif 5α domains responsible for retrovirus restriction activity and specificity. J. Virol. 79, 8969–8978 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Campbell, E. M., Perez, O., Anderson, J. L. & Hope, T. J. Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α. J. Cell Biol. 180, 549–561 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yudina, Z. et al. RING dimerization links higher-order assembly of TRIM5α to synthesis of K63-linked polyubiquitin. Cell Rep. 12, 788–797 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lienlaf, M. et al. Contribution of E3-ubiquitin ligase activity to HIV-1 restriction by TRIM5αrh: structure of the RING domain of TRIM5α. J. Virol. 85, 8725–8737 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fletcher, A. J. et al. Trivalent RING assembly activates TRIM5 ubiquitination and innate immune signalling. Cell Host Microbe 24, 761–775 (2018). This study proposes an integrative model for the roles of the TRIM5 RING domain in capsid recognition, core destabilization and innate immune signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Roganowicz, M. D. et al. TRIM5α SPRY/coiled-coil interactions optimize avid retroviral capsid recognition. PLOS Pathog. 13, e1006686 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Diaz-Griffero, F. et al. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1. Virology 351, 404–419 (2006).

    CAS  PubMed  Google Scholar 

  47. Black, L. R. & Aiken, C. TRIM5α disrupts the structure of assembled HIV-1 capsid complexes in vitro. J. Virol. 84, 6564–6569 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, H. et al. Structural insight into HIV-1 capsid recognition by rhesus TRIM5α. Proc. Natl Acad. Sci. USA 109, 18372–18377 (2012).

    CAS  PubMed  Google Scholar 

  49. Biris, N., Tomashevski, A., Bhattacharya, A., Diaz-Griffero, F. & Ivanov, D. N. Rhesus monkey TRIM5 SPRY domain recognizes multiple epitopes that span several capsid monomers on the surface of the HIV-1 mature viral core. J. Mol. Biol. 425, 5032–5044 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Perron, M. J. et al. The human TRIM5α restriction factor mediates accelerated uncoating of the N-tropic murine leukemia virus capsid. J. Virol. 81, 2138–2148 (2007).

    CAS  PubMed  Google Scholar 

  51. Javanbakht, H. et al. Characterization of TRIM5α trimerization and its contribution to human immunodeficiency virus capsid binding. Virology 353, 234–246 (2006).

    CAS  PubMed  Google Scholar 

  52. Li, Y. L. et al. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. eLife 5, e16269 (2016). This study demonstrates that hexagonal lattice assembly is a conserved property of TRIM5 orthologues across different species, as well as templated TRIM5 assembly on both capsid mimics and authentic HIV-1 capsids.

    PubMed  PubMed Central  Google Scholar 

  53. Shi, J., Friedman, D. B. & Aiken, C. Retrovirus restriction by TRIM5 proteins requires recognition of only a small fraction of viral capsid subunits. J. Virol. 87, 9271–9278 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Besnier, C., Takeuchi, Y. & Towers, G. Restriction of lentivirus in monkeys. Proc. Natl Acad. Sci. USA 99, 11920–11925 (2002).

    CAS  PubMed  Google Scholar 

  55. Cowan, S. et al. Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc. Natl Acad. Sci. USA 99, 11914–11919 (2002).

    CAS  PubMed  Google Scholar 

  56. Munk, C., Brandt, S. M., Lucero, G. & Landau, N. R. A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc. Natl Acad. Sci. USA 99, 13843–13848 (2002).

    CAS  PubMed  Google Scholar 

  57. Hatziioannou, T., Cowan, S., Goff, S. P., Bieniasz, P. D. & Towers, G. J. Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO J. 22, 385–394 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Song, B. et al. The B30.2(SPRY) domain of the retroviral restriction factor TRIM5α exhibits lineage-specific length and sequence variation in primates. J. Virol. 79, 6111–6121 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Biris, N. et al. Structure of the rhesus monkey TRIM5α PRYSPRY domain, the HIV capsid recognition module. Proc. Natl Acad. Sci. USA 109, 13278–13283 (2012).

    CAS  PubMed  Google Scholar 

  60. Stremlau, M., Perron, M., Welikala, S. & Sodroski, J. Species-specific variation in the B30.2(SPRY) domain of TRIM5α determines the potency of human immunodeficiency virus restriction. J. Virol. 79, 3139–3145 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yap, M. W., Nisole, S. & Stoye, J. P. A single amino acid change in the SPRY domain of human Trim5α leads to HIV-1 restriction. Curr. Biol. 15, 73–78 (2005).

    CAS  PubMed  Google Scholar 

  62. Li, Y., Li, X., Stremlau, M., Lee, M. & Sodroski, J. Removal of arginine 332 allows human TRIM5α to bind human immunodeficiency virus capsids and to restrict infection. J. Virol. 80, 6738–6744 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ohkura, S., Yap, M. W., Sheldon, T. & Stoye, J. P. All three variable regions of the TRIM5α B30.2 domain can contribute to the specificity of retrovirus restriction. J. Virol. 80, 8554–8565 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Maillard, P. V., Reynard, S., Serhan, F., Turelli, P. & Trono, D. Interfering residues narrow the spectrum of MLV restriction by human TRIM5α. PLOS Pathog. 3, e200 (2007).

    PubMed  PubMed Central  Google Scholar 

  65. Diaz-Griffero, F. et al. Comparative requirements for the restriction of retrovirus infection by TRIM5α and TRIMCyp. Virology 369, 400–410 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Diaz-Griffero, F. et al. A human TRIM5α B30.2/SPRY domain mutant gains the ability to restrict and prematurely uncoat B-tropic murine leukemia virus. Virology 378, 233–242 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wilson, S. J. et al. Rhesus macaque TRIM5 alleles have divergent antiretroviral specificities. J. Virol. 82, 7243–7247 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Pham, Q. T., Bouchard, A., Grutter, M. G. & Berthoux, L. Generation of human TRIM5α mutants with high HIV-1 restriction activity. Gene Ther. 17, 859–871 (2010).

    CAS  PubMed  Google Scholar 

  69. Pham, Q. T. et al. A novel aminoacid determinant of HIV-1 restriction in the TRIM5α variable 1 region isolated in a random mutagenic screen. Virus Res. 173, 306–314 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu, F. et al. TRIM5 α drives SIVsmm evolution in rhesus macaques. PLOS Pathog. 9, e1003577 (2013). The studies by Stremlau et al. (2005), Yap et al. (2005), Li et al. (2006), Ohkura et al. (2006), Maillard et al. (2007), Diaz-Griffero et al. ( Virology , 2007), Diaz-Griffero et al. (2008), Wilson et al. ( J. Virol . , 2008), Pham et al. (2010), Pham et al. (2013) and Wu et al. (2013) are among a large number of studies showing that restriction specificity maps primarily to the V1 loop of the TRIM5α SPRY domain.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kovalskyy, D. B. & Ivanov, D. N. Recognition of the HIV capsid by the TRIM5α restriction factor is mediated by a subset of pre-existing conformations of the TRIM5α SPRY domain. Biochemistry 53, 1466–1476 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hatziioannou, T., Cowan, S., Von Schwedler, U. K., Sundquist, W. I. & Bieniasz, P. D. Species-specific tropism determinants in the human immunodeficiency virus type 1 capsid. J. Virol. 78, 6005–6012 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Owens, C. M. et al. Binding and susceptibility to postentry restriction factors in monkey cells are specified by distinct regions of the human immunodeficiency virus type 1 capsid. J. Virol. 78, 5423–5437 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yap, M. W., Nisole, S., Lynch, C. & Stoye, J. P. Trim5α protein restricts both HIV-1 and murine leukemia virus. Proc. Natl Acad. Sci. USA 101, 10786–10791 (2004).

    CAS  PubMed  Google Scholar 

  75. Perron, M. J. et al. TRIM5α mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc. Natl Acad. Sci. USA 101, 11827–11832 (2004).

    CAS  PubMed  Google Scholar 

  76. Perron, M. J., Stremlau, M. & Sodroski, J. Two surface-exposed elements of the B30.2/SPRY domain as potency determinants of N-tropic murine leukemia virus restriction by human TRIM5α. J. Virol. 80, 5631–5636 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mortuza, G. B. et al. Structure of B-MLV capsid amino-terminal domain reveals key features of viral tropism. gag assembly and core formation. J. Mol. Biol. 376, 1493–1508 (2008).

    CAS  PubMed  Google Scholar 

  78. Nagao, T. et al. Amino acid alterations in Gag that confer the ability to grow in simian cells on HIV-1 are located at a narrow CA region. J. Med. Invest. 56, 21–25 (2009).

    PubMed  Google Scholar 

  79. Pacheco, B., Finzi, A., Stremlau, M. & Sodroski, J. Adaptation of HIV-1 to cells expressing rhesus monkey TRIM5α. Virology 408, 204–212 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kuroishi, A., Bozek, K., Shioda, T. & Nakayama, E. E. A single amino acid substitution of the human immunodeficiency virus type 1 capsid protein affects viral sensitivity to TRIM5 α. Retrovirology 7, 58 (2010).

    PubMed  PubMed Central  Google Scholar 

  81. Ohkura, S. et al. Novel escape mutants suggest an extensive TRIM5α binding site spanning the entire outer surface of the murine leukemia virus capsid protein. PLOS Pathog. 7, e1002011 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Maillard, P. V., Zoete, V., Michielin, O. & Trono, D. Homology-based identification of capsid determinants that protect HIV1 from human TRIM5α restriction. J. Biol. Chem. 286, 8128–8140 (2011).

    CAS  PubMed  Google Scholar 

  83. Nomaguchi, M. et al. Generation of rhesus macaque-tropic HIV-1 clones that are resistant to major anti-HIV-1 restriction factors. J. Virol. 87, 11447–11461 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. McCarthy, K. R. et al. Gain-of-sensitivity mutations in a Trim5-resistant primary isolate of pathogenic SIV identify two independent conserved determinants of Trim5α specificity. PLOS Pathog. 9, e1003352 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ohkura, S. & Stoye, J. P. A comparison of murine leukemia viruses that escape from human and rhesus macaque TRIM5αs. J. Virol. 87, 6455–6468 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Soll, S. J., Wilson, S. J., Kutluay, S. B., Hatziioannou, T. & Bieniasz, P. D. Assisted evolution enables HIV-1 to overcome a high TRIM5α-imposed genetic barrier to rhesus macaque tropism. PLOS Pathog. 9, e1003667 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Morger, D. et al. The three-fold axis of the HIV-1 capsid lattice is the species-specific binding interface for TRIM5α. J. Virol. 92, e01541-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. Sanz-Ramos, M. & Stoye, J. P. Capsid-binding retrovirus restriction factors: discovery, restriction specificity and implications for the development of novel therapeutics. J. Gen. Virol. 94, 2587–2598 (2013).

    CAS  PubMed  Google Scholar 

  89. Fuxreiter, M. Fuzziness in protein interactions — a historical perspective. J. Mol. Biol. 430, 2278–2287 (2018).

    CAS  PubMed  Google Scholar 

  90. Maillard, P. V., Ecco, G., Ortiz, M. & Trono, D. The specificity of TRIM5 α-mediated restriction is influenced by its coiled-coil domain. J. Virol. 84, 5790–5801 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gamble, T. R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285–1294 (1996).

    CAS  PubMed  Google Scholar 

  92. Vajdos, F. F., Yoo, S., Houseweart, M., Sundquist, W. I. & Hill, C. P. Crystal structure of cyclophilin A complexed with a binding site peptide from the HIV-1 capsid protein. Protein Sci. 6, 2297–2307 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yoo, S. et al. Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J. Mol. Biol. 269, 780–795 (1997).

    CAS  PubMed  Google Scholar 

  94. Price, A. J. et al. Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nat. Struct. Mol. Biol. 16, 1036–1042 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Caines, M. E. et al. Diverse HIV viruses are targeted by a conformationally dynamic antiviral. Nat. Struct. Mol. Biol. 19, 411–416 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu, C. et al. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site. Nat. Commun. 7, 10714 (2016). The studies by Vajdos et al., Yoo et al., Price et al. (2009), Caines et al. and Liu et al. establish the structural and biochemical principles that govern binding of CypA to retroviral capsids.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yap, M. W., Mortuza, G. B., Taylor, I. A. & Stoye, J. P. The design of artificial retroviral restriction factors. Virology 365, 302–314 (2007).

    CAS  PubMed  Google Scholar 

  98. Javanbakht, H. et al. The ability of multimerized cyclophilin A to restrict retrovirus infection. Virology 367, 19–29 (2007). The studies by Yap et al. (2007) and Javanbakht et al. (2007) demonstrate that artificial multimerization of CypA generates a restriction factor, forming the basis for the idea the multivalent capsid-binding proteins are intrinsically inhibitory to a retrovirus.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang, Y., Luban, J. & Diaz-Griffero, F. The fate of HIV-1 capsid: a biochemical assay for HIV-1 uncoating. Methods Mol. Biol. 1087, 29–36 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kutluay, S. B., Perez-Caballero, D. & Bieniasz, P. D. Fates of retroviral core components during unrestricted and TRIM5-restricted infection. PLOS Pathog. 9, e1003214 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhao, G. et al. Rhesus TRIM5α disrupts the HIV-1 capsid at the inter-hexamer interfaces. PLOS Pathog. 7, e1002009 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lamichhane, R. et al. Dynamic conformational changes in the rhesus TRIM5α dimer dictate the potency of HIV-1 restriction. Virology 500, 161–168 (2017).

    CAS  PubMed  Google Scholar 

  103. Quinn, C. et al. Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5α - magic angle spinning NMR and MD simulations. Proc. Natl Acad. Sci. USA 115, 11519–11524 (2018).

    CAS  PubMed  Google Scholar 

  104. Wu, X., Anderson, J. L., Campbell, E. M., Joseph, A. M. & Hope, T. J. Proteasome inhibitors uncouple rhesus TRIM5α restriction of HIV-1 reverse transcription and infection. Proc. Natl Acad. Sci. USA 103, 7465–7470 (2006). This study demonstrates that inhibition of the proteasome can relieve the TRIM5-mediated block to reverse transcription, even though virus infectivity is not restored.

    CAS  PubMed  Google Scholar 

  105. Lukic, Z. et al. TRIM5α associates with proteasomal subunits in cells while in complex with HIV-1 virions. Retrovirology 8, 93 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Danielson, C. M., Cianci, G. C. & Hope, T. J. Recruitment and dynamics of proteasome association with rhTRIM5α cytoplasmic complexes during HIV-1 infection. Traffic 13, 1206–1217 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Danielson, C. M. & Hope, T. J. Using antiubiquitin antibodies to probe the ubiquitination state within rhTRIM5α cytoplasmic bodies. AIDS Res. Hum. Retroviruses 29, 1373–1385 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Roa, A. et al. RING domain mutations uncouple TRIM5α restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating. J. Virol. 86, 1717–1727 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Fletcher, A. J. et al. TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription. EMBO J. 34, 2078–2095 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Campbell, E. M. et al. TRIM5α-mediated ubiquitin chain conjugation is required for inhibition of HIV-1 reverse transcription and capsid destabilization. J. Virol. 90, 1849–1857 (2015).

    PubMed  Google Scholar 

  111. Anderson, J. L. et al. Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins. J. Virol. 80, 9754–9760 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Rankovic, S., Ramalho, R., Aiken, C. & Rousso, I. PF74 reinforces the HIV-1 capsid to impair reverse transcription-induced uncoating. J. Virol. 92, e00845-18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Blair, W. S. et al. HIV capsid is a tractable target for small molecule therapeutic intervention. PLOS Pathog. 6, e1001220 (2010).

    PubMed  PubMed Central  Google Scholar 

  114. Shi, J., Zhou, J., Shah, V. B., Aiken, C. & Whitby, K. Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J. Virol. 85, 542–549 (2011).

    CAS  PubMed  Google Scholar 

  115. Bhattacharya, A. et al. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proc. Natl Acad. Sci. USA 111, 18625–18630 (2014).

    CAS  PubMed  Google Scholar 

  116. Gres, A. T. et al. X-Ray crystal structures of native HIV-1 capsid protein reveal conformational variability. Science 349, 99–103 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Marquez, C. L. et al. Kinetics of HIV-1 capsid uncoating revealed by single-molecule analysis. eLife 7, e34772 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Peng, K. et al. Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid. eLife 3, e04114 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. O’Connor, C. et al. p62/sequestosome-1 associates with and sustains the expression of retroviral restriction factor TRIM5α. J. Virol. 84, 5997–6006 (2010).

    PubMed  PubMed Central  Google Scholar 

  120. Mandell, M. A. et al. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev. Cell 30, 394–409 (2014). This study proposes that TRIM5-mediated restriction is linked to autophagy (but see also Imam et al.).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Keown, J. R. et al. A helical LIR mediates the interaction between the retroviral restriction factor Trim5α and the mammalian autophagy related ATG8 proteins. J. Biol. Chem. 293, 18378–18386 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Tanida, I., Ueno, T. & Kominami, E. LC3 and autophagy. Methods Mol. Biol. 445, 77–88 (2008).

    CAS  PubMed  Google Scholar 

  123. Imam, S. et al. TRIM5α degradation via autophagy is not required for retroviral restriction. J. Virol. 90, 3400–3410 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Pertel, T. et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472, 361–365 (2011). This was the first report of TRIM5 as a pattern recognition receptor that initiates antiviral signalling on recognition of a retroviral capsid.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sakuma, R., Mael, A. A. & Ikeda, Y. Alpha interferon enhances TRIM5α-mediated antiviral activities in human and rhesus monkey cells. J. Virol. 81, 10201–10206 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Carthagena, L. et al. Implication of TRIM α and TRIMCyp in interferon-induced anti-retroviral restriction activities. Retrovirology 5, 59 (2008).

    PubMed  PubMed Central  Google Scholar 

  127. OhAinle, M. et al. A virus-packageable CRISPR screen identifies host factors mediating interferon inhibition of HIV. eLife 7, e39823 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Jimenez-Guardeno, J. M., Apolonia, L., Betancor, G. & Malim, M. H. Immunoproteasome activation enables human TRIM5α restriction of HIV-1. Nat. Microbiol. 4, 933–940 (2019). OhAinle et al. and Jimenez-Guardeno et al. reported that human TRIM5α is a substantial contributor to HIV-1 restriction in the presence of interferon.

    CAS  PubMed  Google Scholar 

  129. Nakayama, E. E. & Shioda, T. Impact of TRIM5α in vivo. AIDS 29, 1733–1743 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Sundquist, W. I. & Pornillos, O. Retrovirus restriction by TRIM5α: RINGside at a cage fight. Cell Host Microbe 24, 751–753 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Diaz-Griffero, F. et al. Modulation of retroviral restriction and proteasome inhibitor-resistant turnover by changes in the TRIM5α B-box 2 domain. J. Virol. 81, 10362–10378 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Yamauchi, K., Wada, K., Tanji, K., Tanaka, M. & Kamitani, T. Ubiquitination of E3 ubiquitin ligase TRIM5 α and its potential role. FEBS J. 275, 1540–1555 (2008).

    CAS  PubMed  Google Scholar 

  133. Zhang, F., Hatziioannou, T., Perez-Caballero, D., Derse, D. & Bieniasz, P. D. Antiretroviral potential of human tripartite motif-5 and related proteins. Virology 353, 396–409 (2006).

    CAS  PubMed  Google Scholar 

  134. Battivelli, E. et al. Modulation of TRIM5α activity in human cells by alternatively spliced TRIM5 isoforms. J. Virol. 85, 7828–7835 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Maegawa, H., Nakayama, E. E., Kuroishi, A. & Shioda, T. Silencing of tripartite motif protein (TRIM) 5α mediated anti-HIV-1 activity by truncated mutant of TRIM5α. J. Virol. Methods 151, 249–256 (2008).

    CAS  PubMed  Google Scholar 

  136. Battivelli, E. et al. Strain-specific differences in the impact of human TRIM5α, different TRIM5α alleles, and the inhibition of capsid-cyclophilin A interactions on the infectivity of HIV-1. J. Virol. 84, 11010–11019 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Granier, C. et al. Pressure from TRIM5α contributes to control of HIV-1 replication by individuals expressing protective HLA-B alleles. J. Virol. 87, 10368–10380 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ribeiro, C. M. et al. Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets. Nature 540, 448–452 (2016).

    CAS  PubMed  Google Scholar 

  139. Merindol, N. et al. HIV-1 capsids from B27/B57+ elite controllers escape Mx2 but are targeted by TRIM5α, leading to the induction of an antiviral state. PLOS Pathog. 14, e1007398 (2018). This study shows that a specific type of selective pressure can induce changes in the HIV-1 CA protein that make the virus susceptible to restriction by human TRIM5α.

    PubMed  PubMed Central  Google Scholar 

  140. Kane, M. et al. Identification of interferon-stimulated genes with antiretroviral activity. Cell Host Microbe 20, 392–405 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Doyle, T., Goujon, C. & Malim, M. H. HIV-1 and interferons: who’s interfering with whom? Nat. Rev. Microbiol. 13, 403–413 (2015).

    CAS  PubMed  Google Scholar 

  142. Kloetzel, P. M. Antigen processing by the proteasome. Nat. Rev. Mol. Cell Biol. 2, 179–187 (2001).

    CAS  PubMed  Google Scholar 

  143. McCarthy, M. K. & Weinberg, J. B. The immunoproteasome and viral infection: a complex regulator of inflammation. Front. Microbiol. 6, 21 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. Walker, J. E. et al. Generation of an HIV-1-resistant immune system with CD34+ hematopoietic stem cells transduced with a triple-combination anti-HIV lentiviral vector. J. Virol. 86, 5719–5729 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Richardson, M. W., Guo, L., Xin, F., Yang, X. & Riley, J. L. Stabilized human TRIM5α protects human T cells from HIV-1 infection. Mol. Ther. 22, 1084–1095 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Jung, U. et al. Preclinical assessment of mutant human TRIM5 as an anti-HIV-1 transgene. Hum. Gene Ther. 26, 664–679 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Dufour, C. et al. Editing of the human TRIM5 gene to introduce mutations with the potential to inhibit HIV-1. PLOS ONE 13, e0191709 (2018).

    PubMed  PubMed Central  Google Scholar 

  148. Fegan, A., White, B., Carlson, J. C. & Wagner, C. R. Chemically controlled protein assembly: techniques and applications. Chem. Rev. 110, 3315–3336 (2010).

    CAS  PubMed  Google Scholar 

  149. Andrei, S. A. et al. Stabilization of protein-protein interactions in drug discovery. Expert Opin. Drug Discov. 12, 925–940 (2017).

    CAS  PubMed  Google Scholar 

  150. Carnes, S. K., Sheehan, J. H. & Aiken, C. Inhibitors of the HIV-1 capsid, a target of opportunity. Curr. Opin. HIV AIDS 13, 359–365 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Perrier, M. et al. Prevalence of gag mutations associated with in vitro resistance to capsid inhibitor GS-CA1 in HIV-1 antiretroviral-naive patients. J. Antimicrob. Chemother. 72, 2954–2955 (2017).

    CAS  PubMed  Google Scholar 

  152. Wilson, S. J. et al. Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc. Natl Acad. Sci. USA 105, 3557–3562 (2008).

    CAS  PubMed  Google Scholar 

  153. Ylinen, L. M. et al. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity. PLOS Pathog. 6, e1001062 (2010).

    PubMed  PubMed Central  Google Scholar 

  154. Gitti, R. K. et al. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273, 231–235 (1996).

    CAS  PubMed  Google Scholar 

  155. Gamble, T. R. et al. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278, 849–853 (1997).

    CAS  PubMed  Google Scholar 

  156. Ganser-Pornillos, B. K., Cheng, A. & Yeager, M. Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell 131, 70–79 (2007).

    CAS  PubMed  Google Scholar 

  157. Pornillos, O. et al. X-ray structures of the hexameric building block of the HIV capsid. Cell 137, 1282–1292 (2009).

    PubMed  PubMed Central  Google Scholar 

  158. Pornillos, O., Ganser-Pornillos, B. K. & Yeager, M. Atomic-level modelling of the HIV capsid. Nature 469, 424–427 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Price, A. J. et al. Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly. PLOS Pathog. 10, e1004459 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Buffone, C. et al. Nup153 unlocks the nuclear pore complex for HIV-1 nuclear translocation in nondividing cells. J. Virol. 92, e00648-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Jacques, D. A. et al. HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis. Nature 536, 349–353 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank E. M. Campbell, W. E. Diehl, J. Luban and W. I. Sundquist for discussions. Work on TRIM5 in the laboratories of the authors is supported by grants P50-GM082545 (B.K.G.-P.) and R01-GM112508 (O.P.) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Barbie K. Ganser-Pornillos or Owen Pornillos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks L. Berthoux, F. Diaz-Griffero and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Recognition

In the context of immune surveillance and antiviral defence, this refers to the ability of the host to distinguish its own (self) macromolecules from those of others (non-self) such as viruses and pathogens.

Viral capsid

A protein shell that surrounds (encapsidates) and protects the viral genome.

Viral core

In retroviruses, this refers to the viral capsid and its contents (the genome and its associated proteins and enzymes). The core is a diffusible object that (in the case of HIV-1) can travel from the site of entry at the plasma membrane to the nucleus.

Ubiquitylation

A multienzyme process of modifying primary amines in target proteins (typically lysine side chains or free amino termini) with the small protein ubiquitin.

Lentiviruses

Viruses belonging to a genus of retroviruses that have the ability to infect non-dividing cells, and have therefore evolved mechanisms to directly deliver their genomes to an intact nucleus.

Fullerene cone

The geometric architecture of the HIV-1 capsid. In general, a closed fullerene shell is made up of multiple hexagons and 12 pentagons.

Coiled-coil

A quaternary protein fold made up of one or more α-helices that oligomerize and coil around each other in the form of a superhelix.

Scaffolds

A general term that applies to a protein whose function is to bind other proteins, thereby directing the spatial and temporal juxtaposition of the binding partners and influencing their interactions.

Restriction factor

A protein that inhibits (or restricts) virus replication in cells. In general, these proteins exhibit sequence signatures of positive selective pressure. Viruses typically evolve adaptations that mitigate the antiviral effects of these proteins.

Antiviral state

A general term that refers to the cellular environment on induction of interferon-stimulated genes, which collectively act to inhibit virus infection.

Immunoproteasome

A specialized kind of proteasome that is upregulated by interferon. It is distinguished from the constitutive proteasome by different catalytic subunits and its dependence on the proteasome activator 28 regulatory subunit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganser-Pornillos, B.K., Pornillos, O. Restriction of HIV-1 and other retroviruses by TRIM5. Nat Rev Microbiol 17, 546–556 (2019). https://doi.org/10.1038/s41579-019-0225-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-019-0225-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing