Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


The ancestral and industrialized gut microbiota and implications for human health


Human-associated microbial communities have adapted to environmental pressures. Doses of antibiotics select for a community with increased antibiotic resistance, inflammation is accompanied by expansion of community members equipped to flourish in the presence of immune effectors and Western diets shift the microbiota away from fibre degraders in favour of species that thrive on mucus. Recent data suggest that the microbiota of industrialized societies differs substantially from the recent ancestral microbiota of humans. Rapid modernization, including medical practices and dietary changes, is causing progressive deterioration of the microbiota, and we hypothesize that this may contribute to various diseases prevalent in industrialized societies. In this Opinion article, we explore whether individuals in the industrialized world may be harbouring a microbial community that, while compatible with our environment, is now incompatible with our human biology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Changes in host–microbiota interactions over evolutionary time.
Fig. 2: Loss of VANISH taxa in industrialized populations.
Fig. 3: Population-wide and personalized strategies to manipulate the gut microbiota to improve health.


  1. 1.

    Sonnenburg, J. L. & Backhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Sommer, F. & Backhed, F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F. & Tillisch, K. Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci. 34, 15490–15496 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Donia, M. S. & Fischbach, M. A. Small molecules from the human microbiota. Science 349, 1254766 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    CAS  PubMed  Google Scholar 

  6. 6.

    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Moeller, A. H. et al. Cospeciation of gut microbiota with hominids. Science 353, 380–382 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Martinez, I. et al. The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).

    CAS  PubMed  Google Scholar 

  9. 9.

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z. & Dominguez-Bello, M. G. The infant microbiome development: mom matters. Trends Mol. Med. 21, 109–117 (2015).

    PubMed  Google Scholar 

  12. 12.

    Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. J. Clin. Invest. 124, 4212–4218 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).

    CAS  PubMed  Google Scholar 

  14. 14.

    Tropini, C. et al. Transient osmotic perturbation causes long-term alteration to the gut microbiota. Cell 173, 1742–1754 (2018).

    CAS  PubMed  Google Scholar 

  15. 15.

    Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Sonnenburg, E. D. & Sonnenburg, J. L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20, 779–786 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Villmoare, B. et al. Early homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science 347, 1352–1355 (2015).

    CAS  PubMed  Google Scholar 

  18. 18.

    Hublin, J. J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).

    CAS  PubMed  Google Scholar 

  19. 19.

    Richter, D. et al. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature 546, 293–296 (2017).

    CAS  PubMed  Google Scholar 

  20. 20.

    Fuller, D. Q. et al. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc. Natl Acad. Sci. USA 111, 6147–6152 (2014).

    CAS  PubMed  Google Scholar 

  21. 21.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Shepherd, E. S., DeLoache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Collins, J. et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 553, 291–294 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014).

    CAS  PubMed  Google Scholar 

  27. 27.

    Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Backhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).

    PubMed  Google Scholar 

  29. 29.

    Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl Med. 8, 343ra82 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).

    CAS  PubMed  Google Scholar 

  31. 31.

    Miyoshi, J. et al. Peripartum antibiotics promote gut dysbiosis, loss of immune tolerance, and inflammatory bowel disease in genetically prone offspring. Cell Rep. 20, 491–504 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Schulfer, A. F., Battaglia, T., Alvarez, Y. & Bijnens, L. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat Microbiol. 3, 234–242 (2018).

    CAS  PubMed  Google Scholar 

  33. 33.

    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    PubMed  Google Scholar 

  34. 34.

    Ayeni, F. A. et al. Infant and adult gut microbiome and metabolome in rural Bassa and urban settlers from Nigeria. Cell Rep. 23, 3056–3067 (2018).

    CAS  PubMed  Google Scholar 

  35. 35.

    Tito, R. Y. et al. Insights from characterizing extinct human gut microbiomes. PLOS ONE 7, e51146 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Tito, R. Y. et al. Phylotyping and functional analysis of two ancient human microbiomes. PLOS ONE 3, e3703 (2008).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Cano, R. J. et al. Sequence analysis of bacterial DNA in the colon and stomach of the Tyrolean Iceman. Am. J. Phys. Anthropol. 112, 297–309 (2000).

    CAS  PubMed  Google Scholar 

  38. 38.

    Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLOS Biol. 8, e1000546 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Moeller, A. H. et al. Rapid changes in the gut microbiome during human evolution. Proc. Natl Acad. Sci. USA 111, 16431–16435 (2014).

    CAS  PubMed  Google Scholar 

  40. 40.

    Obregon-Tito, A. J. et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat. Commun. 6, 6505 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Suzuki, T. A. & Worobey, M. Geographical variation of human gut microbial composition. Biol. Lett. 10, 20131037 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell 175, 962–972 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ley, R. E. Prevotella in the gut: choose carefully. Nat. Rev. Gastroenterol. Hepatol. 13, 69–70 (2016).

    CAS  PubMed  Google Scholar 

  45. 45.

    Kovatcheva-Datchary, P. et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 22, 971–982 (2015).

    CAS  PubMed  Google Scholar 

  46. 46.

    Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Fragiadakis, G. K. et al. Links between environment, diet, and the hunter-gatherer microbiome. Gut Microbes (2018).

    CAS  Article  Google Scholar 

  48. 48.

    Jha, A. R. et al. Gut microbiome transition across a lifestyle gradient in Himalaya. PLOS Biol. 16, e2005396 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    He, Y. et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat. Med. 24, 1532–1535 (2018).

    CAS  PubMed  Google Scholar 

  50. 50.

    Deschasaux, M. et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat. Med. 24, 1526–1531 (2018).

    CAS  PubMed  Google Scholar 

  51. 51.

    Consortium, H. M. P. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Google Scholar 

  52. 52.

    Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Anderson, G. & Horvath, J. The growing burden of chronic disease in America. Public Health Rep. 119, 263–270 (2004).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Pawelec, G., Goldeck, D. & Derhovanessian, E. Inflammation, ageing and chronic disease. Curr. Opin. Immunol. 29, 23–28 (2014).

    CAS  PubMed  Google Scholar 

  55. 55.

    Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2012).

  56. 56.

    Xu, J., Murphy, S. L., Kochanek, K. D. & Arias, E. Mortality in the United States, 2015. CDC (2016).

  57. 57.

    Organization, W. H. Global Health Observatory (GHO) data: life expectancy. WHO (2019).

  58. 58.

    Gurven, M. & Kaplan, H. Longevity among hunter-gatherers: a cross-cultural examination. Popul. Dev. Rev. 33, 321–365 (2007).

    Google Scholar 

  59. 59.

    Eaton, S. B., Konner, M. & Shostak, M. Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective. Am. J. Med. 84, 739–749 (1988).

    CAS  PubMed  Google Scholar 

  60. 60.

    Go, A. S. et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127, e6–e245 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Mozaffarian, D. et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131, e29–e322 (2015).

    PubMed  Google Scholar 

  62. 62.

    Agmon-Levin, N., Lian, Z. & Shoenfeld, Y. Explosion of autoimmune diseases and the mosaic of old and novel factors. Cell. Mol. Immunol. 8, 189–192 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Backhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    CAS  PubMed  Google Scholar 

  64. 64.

    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Feehley, T. et al. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat. Med. 25, 448–453 (2019).

    CAS  PubMed  Google Scholar 

  68. 68.

    Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Raichlen, D. A. et al. Physical activity patterns and biomarkers of cardiovascular disease risk in hunter-gatherers. Am. J. Hum. Biol. 29, e22919 (2016).

    Google Scholar 

  70. 70.

    Caballero, B. The global epidemic of obesity: an overview. Epidemiol. Rev. 29, 1–5 (2007).

    PubMed  Google Scholar 

  71. 71.

    O’Keefe, S. J., Li, J. V. & Lahti, L. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6, 6342 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Furman, D. & Davis, M. M. New approaches to understanding the immune response to vaccination and infection. Vaccine 33, 5271–5281 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Deehan, E. C. & Walter, J. The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol. Metab. 27, 239–242 (2016).

    CAS  PubMed  Google Scholar 

  74. 74.

    Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    CAS  Google Scholar 

  75. 75.

    Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

    CAS  Google Scholar 

  76. 76.

    Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation. Nature 504, 451–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    CAS  Google Scholar 

  78. 78.

    De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).

    PubMed  Google Scholar 

  79. 79.

    Lee, R. B. in Man the Hunter (eds Lee, B., DeVore, I. & Nash, J.) 30–48 (Aldine Publishing Company, 1968).

  80. 80.

    Poulain, M. et al. Identification of a geographic area characterized by extreme longevity in the Sardinia island: the AKEA study. Exp. Gerontol. 39, 1423–1429 (2004).

    PubMed  Google Scholar 

  81. 81.

    Yang, Y., Zhao, L. G., Wu, Q. J., Ma, X. & Xiang, Y. B. Association between dietary fiber and lower risk of all-cause mortality: a meta-analysis of cohort studies. Am. J. Epidemiol. 181, 83–91 (2015).

    PubMed  Google Scholar 

  82. 82.

    Kim, Y. & Je, Y. Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am. J. Epidemiol. 180, 565–573 (2014).

    PubMed  Google Scholar 

  83. 83.

    Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    CAS  PubMed  Google Scholar 

  84. 84.

    Sofi, F., Abbate, R., Gensini, G. F. & Casini, A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am. J. Clin. Nutr. 92, 1189–1196 (2010).

    CAS  PubMed  Google Scholar 

  85. 85.

    Pes, G. M. et al. Male longevity in Sardinia, a review of historical sources supporting a causal link with dietary factors. Eur. J. Clin. Nutr. 69, 411–418 (2015).

    CAS  PubMed  Google Scholar 

  86. 86.

    Dehghan, M. et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet 390, 2050–2062 (2017).

    CAS  PubMed  Google Scholar 

  87. 87.

    Marlowe, F. W. & Berbesque, J. C. Tubers as fallback foods and their impact on Hadza hunter-gatherers. Am. J. Phys. Anthropol. 140, 751–758 (2009).

    PubMed  Google Scholar 

  88. 88.

    Bello, M. G. D., Knight, R., Gilbert, J. A. & Blaser, M. J. Preserving microbial diversity. Science 362, 33–34 (2018).

    PubMed  Google Scholar 

  89. 89.

    Claw, K. G. et al. A framework for enhancing ethical genomic research with Indigenous communities. Nat. Commun. 9, 2957 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    PubMed  Google Scholar 

  91. 91.

    Blaser, M. J. Antibiotic use and its consequences for the normal microbiome. Science 352, 544–545 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Okada, H., Kuhn, C., Feillet, H. & Bach, J. F. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin. Exp. Immunol. 160, 1–9 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    McGarvey, S. T. The thrifty gene concept and adiposity studies in biological anthropology. J. Polyn. Soc. 103, 29–42 (1994).

    Google Scholar 

  94. 94.

    Brinkworth, J. F. & Barreiro, L. B. The contribution of natural selection to present-day susceptibility to chronic inflammatory and autoimmune disease. Curr. Opin. Immunol. 31, 66–78 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Reviewer information

Nature Reviews Microbiology thanks R. Carmody and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information




E.D.S. and J.L.S. researched data for the article, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Erica D. Sonnenburg or Justin L. Sonnenburg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sonnenburg, E.D., Sonnenburg, J.L. The ancestral and industrialized gut microbiota and implications for human health. Nat Rev Microbiol 17, 383–390 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing