Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Origins and evolutionary consequences of ancient endogenous retroviruses

Abstract

Retroviruses infect a broad range of vertebrate hosts that includes amphibians, reptiles, fish, birds and mammals. In addition, a typical vertebrate genome contains thousands of loci composed of ancient retroviral sequences known as endogenous retroviruses (ERVs). ERVs are molecular remnants of ancient retroviruses and proof that the ongoing relationship between retroviruses and their vertebrate hosts began hundreds of millions of years ago. The long-term impact of retroviruses on vertebrate evolution is twofold: first, as with other viruses, retroviruses act as agents of selection, driving the evolution of host genes that block viral infection or that mitigate pathogenesis, and second, through the phenomenon of endogenization, retroviruses contribute an abundance of genetic novelty to host genomes, including unique protein-coding genes and cis-acting regulatory elements. This Review describes ERV origins, their diversity and their relationships to retroviruses and discusses the potential for ERVs to reveal virus–host interactions on evolutionary timescales. It also describes some of the many examples of cellular functions, including protein-coding genes and regulatory elements, that have evolved from ERVs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Random genetic drift, natural selection and the early stages of endogenous retrovirus evolution in a host population.
Fig. 2: Features of a typical DNA provirus.
Fig. 3: Reconstructing and analysing ancient endogenous retrovirus genes.
Fig. 4: Env exaptation and the relationship between ancient viral functions and current genome functions.
Fig. 5: The effects of drift and selection on endogenous retrovirus genes.

Similar content being viewed by others

References

  1. Herniou, E. et al. Retroviral diversity and distribution in vertebrates. J. Virol. 72, 5955–5966 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Aiewsakun, P. & Katzourakis, A. Endogenous viruses: connecting recent and ancient viral evolution. Virology 479–480, 26–37 (2015).

    PubMed  Google Scholar 

  3. Xu, X., Zhao, H., Gong, Z. & Han, G.-Z. Endogenous retroviruses of non-avian/mammalian vertebrates illuminate diversity and deep history of retroviruses. PLOS Pathog. 14, e1007072 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Naville, M. & Volff, J.-N. Endogenous retroviruses in fish genomes: from relics of past infections to evolutionary innovations? Front. Microbiol. 7, 1197 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. Gifford, R. & Tristem, M. The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 26, 291–315 (2003).

    CAS  PubMed  Google Scholar 

  6. Gifford, R. J. Viral evolution in deep time: lentiviruses and mammals. Trends Genet. 28, 89–100 (2012).

    CAS  PubMed  Google Scholar 

  7. Lavialle, C. et al. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Phil. Trans. R. Soc. B Biol. Sci. 368, 20120507 (2013).

    Google Scholar 

  8. Delviks-Frankenberry, K., Cingöz, O., Coffin, J. M. & Pathak, V. K. Recombinant origin, contamination, and de-discovery of XMRV. Curr. Opin. Virol. 2, 499–507 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Groom, H. C. T. & Bishop, K. N. The tale of xenotropic murine leukemia virus-related virus. J. Gen. Virol. 93, 915–924 (2012).

    CAS  PubMed  Google Scholar 

  10. Suling, K., Quinn, G., Wood, J. & Patience, C. Packaging of human endogenous retrovirus sequences is undetectable in porcine endogenous retrovirus particles produced from human cells. Virology 312, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  11. Young, G. R., Stoye, J. P. & Kassiotis, G. Are human endogenous retroviruses pathogenic? An approach to testing the hypothesis. Bioessays 35, 794–803 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Babaian, A. & Mager, D. L. Endogenous retroviral promoter exaptation in human cancer. Mob. DNA 7, 24 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Mager, D. L. & Lorincz, M. C. Epigenetic modifier drugs trigger widespread transcription of endogenous retroviruses. Nat. Genet. 49, 974–975 (2017).

    CAS  PubMed  Google Scholar 

  14. Young, G. R. et al. Resurrection of endogenous retroviruses in antibody-deficient mice. Nature 491, 774–778 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Stoye, J. P. & Coffin, J. M. The four classes of endogenous murine leukemia virus: structural relationships and potential for recombination. J. Virol. 61, 2659–2669 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Martinelli, S. C. & Goff, S. P. Rapid reversion of a deletion mutation in Moloney murine leukemia virus by recombination with a closely related endogenous provirus. Virology 174, 135–144 (1990).

    CAS  PubMed  Google Scholar 

  17. Stoye, J. P., Moroni, C. & Coffin, J. M. Virological events leading to spontaneous AKR thymomas. J. Virol. 65, 1273–1285 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Benachenhou, F. et al. Evolutionary conservation of orthoretroviral long terminal repeats (LTRs) and ab initio detection of single LTRs in genomic data. PLOS ONE 4, e5179 (2009).

    PubMed  PubMed Central  Google Scholar 

  19. Benachenhou, F. et al. Conserved structure and inferred evolutionary history of long terminal repeats (LTRs). Mob. DNA 4, 5 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Copeland, N. G., Hutchison, K. W. & Jenkins, N. A. Excision of the DBA ecotropic provirus in dilute coat-color revertants of mice occurs by homologous recombination involving the viral LTRs. Cell 33, 379–387 (1983).

    CAS  PubMed  Google Scholar 

  21. Weiss, R. A. The discovery of endogenous retroviruses. Retrovirology 3, 67 (2006).

    PubMed  PubMed Central  Google Scholar 

  22. Bannert, N. & Kurth, R. The evolutionary dynamics of human endogenous retroviral families. Annu. Rev. Genomics Hum. Genet. 7, 149–173 (2006).

    CAS  PubMed  Google Scholar 

  23. Gifford, R., Kabat, P., Martin, J., Lynch, C. & Tristem, M. Evolution and distribution of class II-related endogenous retroviruses. J. Virol. 79, 6478–6486 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Belshaw, R., Katzourakis, A., Pac˘es, J., Burt, A. & Tristem, M. High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol. Biol. Evol. 22, 814–817 (2005).

    CAS  PubMed  Google Scholar 

  25. Magiorkinis, G., Gifford, R. J., Katzourakis, A., De Ranter, J. & Belshaw, R. Env-less endogenous retroviruses are genomic superspreaders. Proc. Natl Acad. Sci. USA 109, 7385–7390 (2012).

    CAS  PubMed  Google Scholar 

  26. Jern, P., Sperber, G. O. & Blomberg, J. Use of endogenous retroviral sequences (ERVs) and structural markers for retroviral phylogenetic inference and taxonomy. Retrovirology 2, 50 (2005).

    PubMed  PubMed Central  Google Scholar 

  27. Hayward, A., Cornwallis, C. K. & Jern, P. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution. Proc. Natl Acad. Sci. USA 112, 464–469 (2015).

    CAS  PubMed  Google Scholar 

  28. Bénit, L., Dessen, P. & Heidmann, T. Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J. Virol. 75, 11709–11719 (2001).

    PubMed  PubMed Central  Google Scholar 

  29. King, A. M. Q., Adams, M. J., Carstens, E. B. & Lefkowitz, E. J. (eds) Virus Taxonomy: Classification and Nomenclature of Viruses: The Ninth Report of the International Committee on Taxonomy of Viruses (Elsevier, 2011).

  30. Gifford, R. J. et al. Nomenclature for endogenous retrovirus (ERV) loci. Retrovirology 15, 59 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Martin, J., Herniou, E., Cook, J., O’Neill, R. W. & Tristem, M. Interclass transmission and phyletic host tracking in murine leukemia virus-related retroviruses. J. Virol. 73, 2442–2449 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hayward, A., Grabherr, M. & Jern, P. Broad-scale phylogenomics provides insights into retrovirus-host evolution. Proc. Natl Acad. Sci. USA 110, 20146–20151 (2013).

    CAS  PubMed  Google Scholar 

  33. Henzy, J. E. & Johnson, W. E. Pushing the endogenous envelope. Phil. Trans. R. Soc. B Biol. Sci. 368, 20120506 (2013).

    Google Scholar 

  34. Farkašová, H. et al. Discovery of an endogenous deltaretrovirus in the genome of long-fingered bats (Chiroptera: Miniopteridae). Proc. Natl Acad. Sci. USA 114, 3145–3150 (2017). This paper is the first to identify an ERV related to modern deltaretroviruses, the genus that includes human T-lymphotropic viruses and the bovine leukaemia virus.

    PubMed  Google Scholar 

  35. Hron, T. et al. Remnants of an ancient deltaretrovirus in the genomes of horseshoe bats (Rhinolophidae). Viruses 10, 185 (2018).

    PubMed Central  Google Scholar 

  36. Katzourakis, A., Tristem, M., Pybus, O. G. & Gifford, R. J. Discovery and analysis of the first endogenous lentivirus. Proc. Natl Acad. Sci. USA 104, 6261–6265 (2007).

    CAS  PubMed  Google Scholar 

  37. Gifford, R. J. et al. A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc. Natl Acad. Sci. USA 105, 20362–20367 (2008).

    CAS  PubMed  Google Scholar 

  38. Gilbert, C., Maxfield, D. G., Goodman, S. M. & Feschotte, C. Parallel germline infiltration of a lentivirus in two Malagasy lemurs. PLOS Genet. 5, e1000425 (2009).

    PubMed  PubMed Central  Google Scholar 

  39. Cui, J. & Holmes, E. C. Endogenous lentiviruses in the ferret genome. J. Virol. 86, 3383–3385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Han, G.-Z. & Worobey, M. A primitive endogenous lentivirus in a colugo: insights into the early evolution of lentiviruses. Mol. Biol. Evol. 32, 211–215 (2015).

    CAS  PubMed  Google Scholar 

  41. Hron, T., Fábryová, H., Pačes, J. & Elleder, D. Endogenous lentivirus in Malayan colugo (Galeopterus variegatus), a close relative of primates. Retrovirology 11, 84 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Hron, T., Farkašová, H., Padhi, A., Pačes, J. & Elleder, D. Life history of the oldest lentivirus: characterization of ELVgv integrations in the dermopteran genome. Mol. Biol. Evol. 33, 2659–2669 (2016).

    CAS  PubMed  Google Scholar 

  43. Marchi, E., Kanapin, A., Byott, M., Magiorkinis, G. & Belshaw, R. Neanderthal and Denisovan retroviruses in modern humans. Curr. Biol. 23, R994–R995 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, A. et al. Novel Denisovan and Neanderthal retroviruses. J. Virol. 88, 12907–12909 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Lenz, J. HERV-K HML-2 diversity among humans. Proc. Natl Acad. Sci. USA 113, 4240–4242 (2016).

    CAS  PubMed  Google Scholar 

  46. Holloway, J. R., Williams, Z. H., Freeman, M. M., Bulow, U. & Coffin, J. M. Gorillas have been infected with the HERV-K (HML-2) endogenous retrovirus much more recently than humans and chimpanzees. Proc. Natl Acad. Sci. USA 116, 1337–1346 (2019). This study uncovers multiple young ERVs in gorilla genomes related to human HERV-K(HML2), indicating recent activity in the gorilla lineage and raising the possibility that modern gorillas host an active HML-2 virus.

    CAS  PubMed  Google Scholar 

  47. Goldstone, D. C. et al. Structural and functional analysis of prehistoric lentiviruses uncovers an ancient molecular interface. Cell Host Microbe 8, 248–259 (2010). This paper describes X-ray crystallography of the capsid proteins of two ancient lentiviruses in complex with host factor cyclophilin A. It also uses structures to infer phylogenetic relationships between extinct and extant lentiviruses.

    CAS  PubMed  Google Scholar 

  48. Aiewsakun, P. & Katzourakis, A. Marine origin of retroviruses in the early Palaeozoic Era. Nat. Commun. 8, 13954 (2017). This paper describes the discovery and analysis of foamy-virus-like ERVs in marine vertebrates and suggests retroviruses may have originated early during vertebrate evolution.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Diehl, W. E., Patel, N., Halm, K. & Johnson, W. E. Tracking interspecies transmission and long-term evolution of an ancient retrovirus using the genomes of modern mammals. eLife 5, e12704 (2016). This paper describes the use of ERV loci to retrace the origins and global spread of an ancient gammaretrovirus among mammals between 15 million and 33 million years ago, spanning the late Oligocene and early Miocene epochs.

    PubMed  PubMed Central  Google Scholar 

  50. Katzourakis, A. et al. Discovery of prosimian and afrotherian foamy viruses and potential cross species transmissions amidst stable and ancient mammalian co-evolution. Retrovirology 11, 61 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Escalera-Zamudio, M. et al. A novel endogenous betaretrovirus in the common vampire bat (Desmodus rotundus) suggests multiple independent infection and cross-species transmission events. J. Virol. 89, 5180–5184 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhuo, X. & Feschotte, C. Cross-species transmission and differential fate of an endogenous retrovirus in three mammal lineages. PLOS Pathog. 11, e1005279 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Holmes, E. C. The evolution of endogenous viral elements. Cell Host Microbe 10, 368–377 (2011).

    CAS  PubMed  Google Scholar 

  54. Kamath, P. L. et al. The population history of endogenous retroviruses in mule deer (Odocoileus hemionus). J. Hered. 105, 173–187 (2014).

    CAS  PubMed  Google Scholar 

  55. Greenwood, A. D., Ishida, Y., O’Brien, S. P., Roca, A. L. & Eiden, M. V. Transmission, evolution, and endogenization: lessons learned from recent retroviral invasions. Microbiol. Mol. Biol. Rev. 82, e00044–17 (2018).

    CAS  PubMed  Google Scholar 

  56. Lee, A., Nolan, A., Watson, J. & Tristem, M. Identification of an ancient endogenous retrovirus, predating the divergence of the placental mammals. Phil. Trans. R. Soc. B Biol. Sci. 368, 20120503 (2013).

    Google Scholar 

  57. Blanco-Melo, D., Gifford, R. J. & Bieniasz, P. D. Co-option of an endogenous retrovirus envelope for host defense in hominid ancestors. eLife 6, 11 (2017). This study uses ancestral node reconstruction to establish that an intact env gene in the human genome can mediate superinfection interference and may have functioned to restrict entry of an ancient exogenous virus.

    Google Scholar 

  58. Blanco-Melo, D., Gifford, R. J. & Bieniasz, P. D. Reconstruction of a replication-competent ancestral murine endogenous retrovirus-L. Retrovirology 15, 34 (2018). This paper reports on the resurrection and experimental investigation of an ancient, extinct retrovirus using ancestral node reconstruction. This retrovirus is the oldest ERV (ERV-L) successfully reconstructed so far.

    PubMed  PubMed Central  Google Scholar 

  59. Johnson, W. E. & Coffin, J. M. Constructing primate phylogenies from ancient retrovirus sequences. Proc. Natl Acad. Sci. USA 96, 10254–10260 (1999).

    CAS  PubMed  Google Scholar 

  60. Martins, H. & Villesen, P. Improved integration time estimation of endogenous retroviruses with phylogenetic data. PLOS ONE 6, e14745 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dangel, A. W., Baker, B. J., Mendoza, A. R. & Yu, C. Y. Complement component C4 gene intron 9 as a phylogenetic marker for primates: long terminal repeats of the endogenous retrovirus ERV-K(C4) are a molecular clock of evolution. Immunogenetics 42, 41–52 (1995).

    CAS  PubMed  Google Scholar 

  62. Magiorkinis, G., Blanco-Melo, D. & Belshaw, R. The decline of human endogenous retroviruses: extinction and survival. Retrovirology 12, 8 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Wildschutte, J. H. et al. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc. Natl Acad. Sci. USA 113, E2326–E2334 (2016). This study capitalizes on human genomic variation captured in databases, such as the 1000 Genomes Project, to detect and describe rare, unfixed HERV-K(HML-2) loci in the human population.

    CAS  PubMed  Google Scholar 

  64. Subramanian, R. P., Wildschutte, J. H., Russo, C. & Coffin, J. M. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 8, 90 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bhardwaj, N., Montesion, M., Roy, F. & Coffin, J. M. Differential expression of HERV-K (HML-2) proviruses in cells and virions of the teratocarcinoma cell line Tera-1. Viruses 7, 939–968 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Domansky, A. N. et al. Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett. 472, 191–195 (2000).

    CAS  PubMed  Google Scholar 

  67. Boeke, J. D., Garfinkel, D. J., Styles, C. A. & Fink, G. R. Ty elements transpose through an RNA intermediate. Cell 40, 491–500 (1985).

    CAS  PubMed  Google Scholar 

  68. Heidmann, T., Heidmann, O. & Nicolas, J. F. An indicator gene to demonstrate intracellular transposition of defective retroviruses. Proc. Natl Acad. Sci. USA 85, 2219–2223 (1988).

    CAS  PubMed  Google Scholar 

  69. Esnault, C. et al. APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433, 430–433 (2005).

    CAS  PubMed  Google Scholar 

  70. Heslin, D. J. et al. A single amino acid substitution in a segment of the CA protein within Gag that has similarity to human immunodeficiency virus type 1 blocks infectivity of a human endogenous retrovirus K provirus in the human genome. J. Virol. 83, 1105–1114 (2009).

    CAS  PubMed  Google Scholar 

  71. Chudak, C. et al. Identification of late assembly domains of the human endogenous retrovirus-K(HML-2). Retrovirology 10, 140 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. Hanke, K. et al. Reconstitution of the ancestral glycoprotein of human endogenous retrovirus k and modulation of its functional activity by truncation of the cytoplasmic domain. J. Virol. 83, 12790–12800 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Robinson, L. R. & Whelan, S. P. J. Infectious entry pathway mediated by the human endogenous retrovirus K envelope protein. J. Virol. 90, 3640–3649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Robinson-McCarthy, L. R. et al. Reconstruction of the cell entry pathway of an extinct virus. PLOS Pathog. 14, e1007123 (2018). This paper and that of Robinson and Whelan (2016) use an infectious rhabdovirus vesicular stomatitis virus (VSV) engineered to express an ancient Env protein in place of the VSVG protein to dissect the entry pathway of an ancient human endogenous retrovirus.

    PubMed  PubMed Central  Google Scholar 

  75. Soll, S. J., Neil, S. J. D. & Bieniasz, P. D. Identification of a receptor for an extinct virus. Proc. Natl Acad. Sci. USA 107, 19496–19501 (2010).

    CAS  PubMed  Google Scholar 

  76. Kaiser, S. M., Malik, H. S. & Emerman, M. Restriction of an extinct retrovirus by the human TRIM5alpha antiviral protein. Science 316, 1756–1758 (2007).

    CAS  PubMed  Google Scholar 

  77. Dewannieux, M. et al. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res. 16, 1548–1556 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee, Y. N. & Bieniasz, P. D. Reconstitution of an infectious human endogenous retrovirus. PLOS Pathog. 3, e10 (2007). This paper and that of Dewannieux et al. (2006) describe the first successful reconstructions of functional infectious human endogenous retrovirus particles, in both cases on the basis of the HERV-K(HML2) family of ERV loci.

    PubMed  PubMed Central  Google Scholar 

  79. Lee, Y. N., Malim, M. H. & Bieniasz, P. D. Hypermutation of an ancient human retrovirus by APOBEC3G. J. Virol. 82, 8762–8770 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Brady, T. et al. Integration target site selection by a resurrected human endogenous retrovirus. Genes Dev. 23, 633–642 (2009). This study describes the first global analysis of integration site preferences for an ancient, reconstituted endogenous retrovirus (HERV–Kcon), enabling direct comparison of integration site preferences to the locations of fixed HERV-K(HML2) loci in the human genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gould, S. J. & Vrba, E. S. Exaptation—a missing term in the science of form. Paleobiology 8, 4–15 (2016).

    Google Scholar 

  82. McClintock, B. Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21, 197–216 (1956).

    CAS  PubMed  Google Scholar 

  83. Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–357 (1969).

    CAS  PubMed  Google Scholar 

  84. Nethe, M., Berkhout, B. & van der Kuyl, A. C. Retroviral superinfection resistance. Retrovirology 2, 52 (2005).

    PubMed  PubMed Central  Google Scholar 

  85. Sommerfelt, M. A. & Weiss, R. A. Receptor interference groups of 20 retroviruses plating on human cells. Virology 176, 58–69 (1990).

    CAS  PubMed  Google Scholar 

  86. Malfavon-Borja, R. & Feschotte, C. Fighting fire with fire: endogenous retrovirus envelopes as restriction factors. J. Virol. 89, 4047–4050 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bolze, P.-A., Mommert, M. & Mallet, F. Contribution of syncytins and other endogenous retroviral envelopes to human placenta pathologies. Prog. Mol. Biol. Transl Sci. 145, 111–162 (2017).

    PubMed  Google Scholar 

  88. Dupressoir, A., Lavialle, C. & Heidmann, T. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33, 663–671 (2012).

    CAS  PubMed  Google Scholar 

  89. Cornelis, G. et al. Retroviral envelope gene captures and syncytin exaptation for placentation in marsupials. Proc. Natl Acad. Sci. USA 112, E487–E496 (2015).

    CAS  PubMed  Google Scholar 

  90. Cornelis, G. et al. An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental Mabuya lizard. Proc. Natl Acad. Sci. USA 114, E10991–E11000 (2017). This paper gives the first description of a syncytin in a nonmammalian species.

    CAS  PubMed  Google Scholar 

  91. Dupressoir, A. et al. A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast. Proc. Natl Acad. Sci. USA 108, E1164–E1173 (2011).

    CAS  PubMed  Google Scholar 

  92. Johnson, W. E. Rapid adversarial co-evolution of viruses and cellular restriction factors. Curr. Top. Microbiol. Immunol. 371, 123–151 (2013).

    PubMed  Google Scholar 

  93. Meyerson, N. R. & Sawyer, S. L. Two-stepping through time: mammals and viruses. Trends Microbiol. 19, 286–294 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Robinson, H. L., Astrin, S. M., Senior, A. M. & Salazar, F. H. Host susceptibility to endogenous viruses: defective, glycoprotein-expressing proviruses interfere with infections. J. Virol. 40, 745–751 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ikeda, H. & Odaka, T. A cell membrane ‘gp70’ associated with Fv-4 gene: immunological characterization, and tissue and strain distribution. Virology 133, 65–76 (1984).

    CAS  PubMed  Google Scholar 

  96. Gardner, M. B., Kozak, C. A. & O’Brien, S. J. The Lake Casitas wild mouse: evolving genetic resistance to retroviral disease. Trends Genet. 7, 22–27 (1991).

    CAS  PubMed  Google Scholar 

  97. Kozak, C. A., Gromet, N. J., Ikeda, H. & Buckler, C. E. A unique sequence related to the ecotropic murine leukemia virus is associated with the Fv-4 resistance gene. Proc. Natl Acad. Sci. USA 81, 834–837 (1984).

    CAS  PubMed  Google Scholar 

  98. Inaguma, Y., Yoshida, T. & Ikeda, H. Scheme for the generation of a truncated endogenous murine leukaemia virus, the Fv-4 resistance gene. J. Gen. Virol. 73, 1925–1930 (1992).

    CAS  PubMed  Google Scholar 

  99. Jung, Y. T., Lyu, M. S., Buckler-White, A. & Kozak, C. A. Characterization of a polytropic murine leukemia virus proviral sequence associated with the virus resistance gene Rmcf of DBA/2 mice. J. Virol. 76, 8218–8224 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu, T., Yan, Y. & Kozak, C. A. Rmcf2, a xenotropic provirus in the Asian mouse species Mus castaneus, blocks infection by polytropic mouse gammaretroviruses. J. Virol. 79, 9677–9684 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ito, J. et al. Refrex-1, a soluble restriction factor against feline endogenous and exogenous retroviruses. J. Virol. 87, 12029–12040 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sugimoto, J., Sugimoto, M., Bernstein, H., Jinno, Y. & Schust, D. A novel human endogenous retroviral protein inhibits cell-cell fusion. Sci. Rep. 3, 1462 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Villesen, P., Aagaard, L., Wiuf, C. & Pedersen, F. S. Identification of endogenous retroviral reading frames in the human genome. Retrovirology 1, 32 (2004).

    PubMed  PubMed Central  Google Scholar 

  104. de Parseval, N., Lazar, V., Casella, J.-F., Bénit, L. & Heidmann, T. Survey of human genes of retroviral origin: identification and transcriptome of the genes with coding capacity for complete envelope proteins. J. Virol. 77, 10414–10422 (2003).

    PubMed  PubMed Central  Google Scholar 

  105. Young, G. R. et al. HIV-1 infection of primary CD4+ T cells regulates the expression of specific human endogenous retrovirus HERV-K (HML-2) elements. J. Virol. 92, e01507–17 (2018).

    PubMed  Google Scholar 

  106. Terry, S. N. et al. Expression of HERV-K108 envelope interferes with HIV-1 production. Virology 509, 52–59 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Henzy, J. E., Gifford, R. J., Kenaley, C. P. & Johnson, W. E. An intact retroviral gene conserved in Spiny-rayed fishes for over 100 My. Mol. Biol. Evol. 34, 634–639 (2017). This paper describes what may be the oldest reported intact retroviral env gene, which inserted between 109 million and 140 million years ago and is shared by thousands of species of modern fish.

    CAS  PubMed  Google Scholar 

  108. Heidmann, O. et al. HEMO, an ancestral endogenous retroviral envelope protein shed in the blood of pregnant women and expressed in pluripotent stem cells and tumors. Proc. Natl Acad. Sci. USA 114, E6642–E6651 (2017). This paper describes the discovery and functional characterization of an unusual ERV-encoded Env expressed as a secreted protein in placental tissues and in the blood of pregnant women.

    CAS  PubMed  Google Scholar 

  109. Barnett, A. L., Davey, R. A. & Cunningham, J. M. Modular organization of the Friend murine leukemia virus envelope protein underlies the mechanism of infection. Proc. Natl Acad. Sci. USA 98, 4113–4118 (2001).

    CAS  PubMed  Google Scholar 

  110. Brody, B. A., Rhee, S. S. & Hunter, E. Postassembly cleavage of a retroviral glycoprotein cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. J. Virol. 68, 4620–4627 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Rein, A., Mirro, J., Haynes, J. G., Ernst, S. M. & Nagashima, K. Function of the cytoplasmic domain of a retroviral transmembrane protein: p15E-p2E cleavage activates the membrane fusion capability of the murine leukemia virus Env protein. J. Virol. 68, 1773–1781 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Taylor, G. M., Gao, Y. & Sanders, D. A. Fv-4: identification of the defect in Env and the mechanism of resistance to ecotropic murine leukemia virus. J. Virol. 75, 11244–11248 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ito, J., Baba, T., Kawasaki, J. & Nishigaki, K. Ancestral mutations acquired in refrex-1, a restriction factor against feline retroviruses, during its cooption and domestication. J. Virol. 90, 1470–1485 (2015).

    PubMed  Google Scholar 

  114. Bénit, L., Calteau, A. & Heidmann, T. Characterization of the low-copy HERV-Fc family: evidence for recent integrations in primates of elements with coding envelope genes. Virology 312, 159–168 (2003).

    PubMed  Google Scholar 

  115. Bonnaud, B. et al. Evidence of selection on the domesticated ERVWE1 env retroviral element involved in placentation. Mol. Biol. Evol. 21, 1895–1901 (2004).

    CAS  PubMed  Google Scholar 

  116. Nakaya, Y. & Miyazawa, T. The roles of syncytin-like proteins in ruminant placentation. Viruses 7, 2928–2942 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Goff, S. P. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 6th edn 1424–1473 (Lippincott Williams and Wilkins, 2013).

  118. Marco, A. & Marín, I. CGIN1: a retroviral contribution to mammalian genomes. Mol. Biol. Evol. 26, 2167–2170 (2009).

    CAS  PubMed  Google Scholar 

  119. Best, S., Le Tissier, P., Towers, G. & Stoye, J. P. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382, 826–829 (1996).

    CAS  PubMed  Google Scholar 

  120. Pincus, T., Hartley, J. W. & Rowe, W. P. A major genetic locus affecting resistance to infection with murine leukemia viruses. I. Tissue culture studies of naturally occurring viruses. J. Exp. Med. 133, 1219–1233 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bénit, L. et al. Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with a gag coding sequence closely related to the Fv1 restriction gene. J. Virol. 71, 5652–5657 (1997).

    PubMed  PubMed Central  Google Scholar 

  122. Boso, G., Buckler-White, A. & Kozak, C. A. Ancient evolutionary origin and positive selection of the retroviral restriction factor Fv1 in muroid rodents. J. Virol. https://doi.org/10.1128/JVI.00850-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Young, G. R., Yap, M. W., Michaux, J. R., Steppan, S. J. & Stoye, J. P. Evolutionary journey of the retroviral restriction gene Fv1. Proc. Natl Acad. Sci. USA 115, 10130–10135 (2018).

    CAS  PubMed  Google Scholar 

  124. Yap, M. W., Colbeck, E., Ellis, S. A. & Stoye, J. P. Evolution of the retroviral restriction gene Fv1: inhibition of non-MLV retroviruses. PLOS Pathog. 10, e1003968 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. Mortuza, G. B. et al. High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 431, 481–485 (2004).

    CAS  PubMed  Google Scholar 

  126. Mura, M. et al. Late viral interference induced by transdominant Gag of an endogenous retrovirus. Proc. Natl Acad. Sci. USA 101, 11117–11122 (2004).

    CAS  PubMed  Google Scholar 

  127. Arnaud, F., Murcia, P. R. & Palmarini, M. Mechanisms of late restriction induced by an endogenous retrovirus. J. Virol. 81, 11441–11451 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Monde, K., Contreras-Galindo, R., Kaplan, M. H., Markovitz, D. M. & Ono, A. Human endogenous retrovirus K Gag coassembles with HIV-1 Gag and reduces the release efficiency and infectivity of HIV-1. J. Virol. 86, 11194–11208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Campillos, M., Doerks, T., Shah, P. K. & Bork, P. Computational characterization of multiple Gag-like human proteins. Trends Genet. 22, 585–589 (2006).

    CAS  PubMed  Google Scholar 

  130. Pastuzyn, E. D. et al. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell 172, 275–288 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ashley, J. et al. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 172, 262–274 (2018). This paper and that of Pastuzyn et al. (2018) describe neuronal proteins that are related to retroviral Gag proteins and that form capsid-like structures that package RNA and are released extracellularly.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Bernard, D. et al. Identification and characterization of a novel retroviral-like aspartic protease specifically expressed in human epidermis. J. Invest. Dermatol. 125, 278–287 (2005).

    CAS  PubMed  Google Scholar 

  133. Katzourakis, A., Gifford, R. J., Tristem, M., Gilbert, M. T. P. & Pybus, O. G. Macroevolution of complex retroviruses. Science 325, 1512–1512 (2009).

    CAS  PubMed  Google Scholar 

  134. Frankel, W. N., Rudy, C., Coffin, J. M. & Huber, B. T. Linkage of Mls genes to endogenous mammary tumour viruses of inbred mice. Nature 349, 526–528 (1991).

    CAS  PubMed  Google Scholar 

  135. Ross, S. R. Mouse mammary tumor virus molecular biology and oncogenesis. Viruses 2, 2000–2012 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Golovkina, T. V., Chervonsky, A., Dudley, J. P. & Ross, S. R. Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 69, 637–645 (1992).

    CAS  PubMed  Google Scholar 

  137. Mertz, J. A., Simper, M. S., Lozano, M. M., Payne, S. M. & Dudley, J. P. Mouse mammary tumor virus encodes a self-regulatory RNA export protein and is a complex retrovirus. J. Virol. 79, 14737–14747 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hofacre, A. & Fan, H. Jaagsiekte sheep retrovirus biology and oncogenesis. Viruses 2, 2618–2648 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Magin, C., Löwer, R. & Löwer, J. cORF and RcRE, the Rev/Rex and RRE/RxRE homologues of the human endogenous retrovirus family HTDV/HERV-K. J. Virol. 73, 9496–9507 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Yang, J. et al. An ancient family of human endogenous retroviruses encodes a functional homolog of the HIV-1 Rev protein. Proc. Natl Acad. Sci. USA 96, 13404–13408 (1999).

    CAS  PubMed  Google Scholar 

  142. Yang, Z. & Bielawski, J. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. (Amst.) 15, 496–503 (2000).

    CAS  Google Scholar 

  143. Katzourakis, A. & Gifford, R. J. Endogenous viral elements in animal genomes. PLOS Genet. 6, e1001191 (2010).

    PubMed  PubMed Central  Google Scholar 

  144. Aswad, A. & Katzourakis, A. Paleovirology and virally derived immunity. Trends Ecol. Evol. (Amst.) 27, 627–636 (2012).

    Google Scholar 

  145. Kozak, C. A. Origins of the endogenous and infectious laboratory mouse gammaretroviruses. Viruses 7, 1–26 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. Anai, Y. et al. Infectious endogenous retroviruses in cats and emergence of recombinant viruses. J. Virol. 86, 8634–8644 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Jern, P. & Coffin, J. M. Effects of retroviruses on host genome function. Annu. Rev. Genet. 42, 709–732 (2008).

    CAS  PubMed  Google Scholar 

  148. Cohen, C. J., Lock, W. M. & Mager, D. L. Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448, 105–114 (2009).

    CAS  PubMed  Google Scholar 

  149. Thompson, P. J., Macfarlan, T. S. & Lorincz, M. C. Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol. Cell 62, 766–776 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Fuentes, D. R., Swigut, T. & Wysocka, J. Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. eLife 7, e35989 (2018). This study uses a modified CRISPR system to induce or silence multiple HERV-K(HML2) LTRs in parallel, revealing long-range effects on expression of hundreds of genes.

    PubMed  PubMed Central  Google Scholar 

  151. Santoni, F. A., Guerra, J. & Luban, J. HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology 9, 111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kapusta, A. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLOS Genet. 9, e1003470 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Fort, A. et al. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat. Genet. 46, 558–566 (2014).

    CAS  PubMed  Google Scholar 

  154. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).

    CAS  PubMed  Google Scholar 

  155. Lynch, V. J. A copy-and-paste gene regulatory network. Science 351, 1029–1030 (2016).

    CAS  PubMed  Google Scholar 

  156. Khodosevich, K., Lebedev, Y. & Sverdlov, E. Endogenous retroviruses and human evolution. Comp. Funct. Genomics 3, 494–498 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, T. et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl Acad. Sci. USA 104, 18613–18618 (2007). This paper and that of Chuong et al. (2016) reveal that co-option of ERV LTRs contributed to concerted evolution of interferon-regulated gene networks and many p53 regulated genes, respectively.

    CAS  PubMed  Google Scholar 

  159. Ito, J. et al. Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLOS Genet. 13, e1006883 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. Simonti, C. N., Pavlicev, M. & Capra, J. A. Transposable element exaptation into regulatory regions is rare, influenced by evolutionary age, and subject to pleiotropic constraints. Mol. Biol. Evol. 34, 2856–2869 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008).

    CAS  PubMed  Google Scholar 

  162. Monteiro, A. & Podlaha, O. Wings, horns, and butterfly eyespots: how do complex traits evolve? PLOS Biol. 7, e37 (2009).

    PubMed  Google Scholar 

  163. Lesbats, P., Engelman, A. N. & Cherepanov, P. Retroviral DNA integration. Chem. Rev. 116, 12730–12757 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Hughes, J. F. & Coffin, J. M. Human endogenous retroviral elements as indicators of ectopic recombination events in the primate genome. Genetics 171, 1183–1194 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Kijima, T. E. & Innan, H. On the estimation of the insertion time of LTR retrotransposable elements. Mol. Biol. Evol. 27, 896–904 (2010).

    CAS  PubMed  Google Scholar 

  166. Trombetta, B., Fantini, G., D’Atanasio, E., Sellitto, D. & Cruciani, F. Evidence of extensive non-allelic gene conversion among LTR elements in the human genome. Sci. Rep. 6, 28710 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Schlesinger, S. & Goff, S. P. Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol. Cell. Biol. 35, 770–777 (2015).

    PubMed  PubMed Central  Google Scholar 

  168. Cullen, B. R., Lomedico, P. T. & Ju, G. Transcriptional interference in avian retroviruses — implications for the promoter insertion model of leukaemogenesis. Nature 307, 241–245 (1984).

    CAS  PubMed  Google Scholar 

  169. Hughes, J. F. & Coffin, J. M. Human endogenous retrovirus K solo-LTR formation and insertional polymorphisms: implications for human and viral evolution. Proc. Natl Acad. Sci. USA 101, 1668–1672 (2004).

    CAS  PubMed  Google Scholar 

  170. Belshaw, R. et al. Rate of recombinational deletion among human endogenous retroviruses. J. Virol. 81, 9437–9442 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Martin, J., Kabat, P., Herniou, E. & Tristem, M. Characterization and complete nucleotide sequence of an unusual reptilian retrovirus recovered from the order Crocodylia. J. Virol. 76, 4651–4654 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Henzy, J. E., Gifford, R. J., Johnson, W. E. & Coffin, J. M. A novel recombinant retrovirus in the genomes of modern birds combines features of avian and mammalian retroviruses. J. Virol. 88, 2398–2405 (2014).

    PubMed  PubMed Central  Google Scholar 

  173. de Souza, F. S. J., Franchini, L. F. & Rubinstein, M. Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong? Mol. Biol. Evol. 30, 1239–1251 (2013).

    PubMed  PubMed Central  Google Scholar 

  174. Hobbs, M. et al. Long-read genome sequence assembly provides insight into ongoing retroviral invasion of the koala germline. Sci. Rep. 7, 15838 (2017).

    PubMed  PubMed Central  Google Scholar 

  175. Montesion, M., Bhardwaj, N., Williams, Z. H., Kuperwasser, C. & Coffin, J. M. Mechanisms of HERV-K (HML-2) transcription during human mammary epithelial cell transformation. J. Virol. 92, e01258–17 (2018).

    PubMed  Google Scholar 

  176. Niu, D. et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303–1307 (2017). This paper describes the parallel inactivation of two dozen related porcine ERV (PERV) loci in a single fetal fibroblast cell using a customized CRISPR–Cas9 protocol followed by nuclear transfer to create a line of pigs free of functional PERV loci.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Ellermann, V. & Bang, O. Experimentelle leukämie bei hühnern [German]. Zentralbl. Bakteriol. Parasitenkd. Infectionskr. Hyg. Abt. Orig. 46, 595–609 (1908).

    Google Scholar 

  178. Rous, P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 13, 397–411 (1911).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Dietrich, M. R. in Evolutionary Genetics: Concepts and Case Studies (eds Wolf, J. B. & Fox, C. W.) (Oxford Univ. Press, 2006).

  180. Krupovic, M. et al. Ortervirales: new virus order unifying five families of reverse-transcribing viruses. J. Virol. 92, e00515–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks J. Butler, B. Howell and the organizers of the 2018 Boston College Intersections Villa Faculty Writing Retreat for the opportunity to complete major portions of this manuscript; R. Gifford, L. Mulder and J. Henzy for helpful discussions; S. Whelan and V. Simon for providing offices for writing while on sabbatical leave at Harvard Medical School and the Icahn School of Medicine at Mount Sinai, respectively. Work in the author’s laboratory is supported by grants from the US National Institutes of Health (AI083118) and the US Department of Defense/Congressionally Directed Medical Research Programs (PR172274).

Reviewer information

Nature Reviews Microbiology thanks A. Dupressoir, C. Feschotte, J. Frank and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Welkin E. Johnson.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Endogenous retrovirus

(ERV). Heritable retrovirus-derived sequence elements found in the genomes of most or all vertebrates; ERVs usually originate as proviruses integrated into germline DNA.

Loss

Refers to the case when an allelic variant of a locus disappears from the population over time.

Fixation

Refers to the case in which an allelic variant of a locus achieves a frequency of 100% in the population, thereby displacing all other alleles at that locus.

Random genetic drift

Refers to the change in frequency of an allele over time owing to random chance (in the absence of selection).

Long-terminal repeats

(LTRs). Direct identical repeats found at the 5ʹ and 3ʹ ends of a DNA provirus generated during reverse transcription of the retroviral RNA genome.

CAAT box

A cis-acting transcription-factor-binding site frequently found upstream of eukaryotic promoters and in retroviral long-terminal repeats.

Accessory genes

Viral genes that are dispensable for the essential steps of the viral replication cycle but that provide one or more functions that contribute to optimal viral fitness in vivo, such as antagonizing intrinsic and innate immune defences or modifying the metabolic state of the host cell.

Solo-LTRs

Solitary long-terminal repeats (LTRs) lacking any other proviral sequence that usually arise by homologous recombination between the 5ʹ and 3ʹ LTRs of an ERV locus.

Retrotransposition

The amplification of a genomic DNA sequence by reverse transcription of an RNA intermediate followed by integration of the new DNA copies.

Segmental duplications

Stretches of initially identical or nearly identical genomic sequences that arise by DNA duplication.

Exaptation

A trait that evolved on the basis of one function that has subsequently evolved to provide a different function.

Superinfection interference

A phenomenon by which prior infection of a cell renders it resistant to reinfection by retroviruses using the same entry receptor; often mediated by the viral Env glycoprotein.

Syncytins

Glycoproteins of retroviral origin that fulfil cellular functions involving receptor-mediated membrane fusion; thus far, all reported syncytins function as placental syncytins.

Syncytiotrophoblast

A multinuclear layer that forms through fusion of mononuclear cytotrophoblasts.

Restriction factors

Host-encoded factors that have evolved by natural selection to suppress or prevent viral replication at the cellular level.

Purifying selection

A component of natural selection; refers to selection that eliminates deleterious or suboptimal variants of a gene or sequence that arise by mutation.

R peptides

The last 17–20 residues of the cytoplasmic carboxyl termini of gammaretroviral Env proteins, which are cleaved off by the viral protease during virion maturation to activate fusogenic potential.

ERV-L elements

An ancient family of related endogenous retrovirus (ERV) elements found in the genomes of all mammals; distantly related to spumaretroviruses.

Exogenous virus

A horizontally transmitted virus, as distinguished from endogenous viruses.

Positive selection

The selection that favours fixation of changes in a gene, such as when a virus escapes from virus-specific antibodies through changes in a target epitope.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, W.E. Origins and evolutionary consequences of ancient endogenous retroviruses. Nat Rev Microbiol 17, 355–370 (2019). https://doi.org/10.1038/s41579-019-0189-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-019-0189-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing