Review Article | Published:

Bacterial quorum sensing in complex and dynamically changing environments

Nature Reviews Microbiologyvolume 17pages371382 (2019) | Download Citation

Abstract

Quorum sensing is a process of bacterial cell-to-cell chemical communication that relies on the production, detection and response to extracellular signalling molecules called autoinducers. Quorum sensing allows groups of bacteria to synchronously alter behaviour in response to changes in the population density and species composition of the vicinal community. Quorum-sensing-mediated communication is now understood to be the norm in the bacterial world. Elegant research has defined quorum-sensing components and their interactions, for the most part, under ideal and highly controlled conditions. Indeed, these seminal studies laid the foundations for the field. In this Review, we highlight new findings concerning how bacteria deploy quorum sensing in realistic scenarios that mimic nature. We focus on how quorums are detected and how quorum sensing controls group behaviours in complex and dynamically changing environments such as multi-species bacterial communities, in the presence of flow, in 3D non-uniform biofilms and in hosts during infection.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006).

  2. 2.

    Aguilar, C., Vlamakis, H., Losick, R. & Kolter, R. Thinking about Bacillus subtilis as a multicellular organism. Curr. Opin. Microbiol. 10, 638–643 (2007).

  3. 3.

    Engebrecht, J., Nealson, K. & Silverman, M. Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri. Cell 32, 773–781 (1983).

  4. 4.

    Bassler, B. L., Wright, M. & Silverman, M. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol. 13, 273–286 (1994).

  5. 5.

    de Kievit, T. R. & Iglewski, B. H. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68, 4839–4849 (2000).

  6. 6.

    Bronesky, D. et al. Staphylococcus aureus RNAIII and its regulon link quorum sensing, stress responses, metabolic adaptation, and regulation of virulence gene expression. Annu. Rev. Microbiol. 70, 299–316 (2016).

  7. 7.

    Barnard, A. M. L. et al. Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Phil. Trans. R. Soc. B Biol. Sci. 362, 1165–1183 (2007).

  8. 8.

    Kleerebezem, M., Quadri, L. E., Kuipers, O. P. & de Vos, W. M. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol. Microbiol. 24, 895–904 (1997).

  9. 9.

    Okada, M. et al. Structure of the Bacillus Subtilis quorum-sensing peptide pheromone ComX. Nat. Chem. Biol. 1, 23–24 (2005).

  10. 10.

    Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001).

  11. 11.

    Hammer, B. K. & Bassler, B. L. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50, 101–114 (2003).

  12. 12.

    Papenfort, K. & Bassler, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576–588 (2016).

  13. 13.

    Rutherford, S. T. & Bassler, B. L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2, a012427 (2014).

  14. 14.

    Henke, J. M. & Bassler, B. L. Bacterial social engagements. Trends Cell Biol. 14, 648–656 (2004).

  15. 15.

    Novick, R. P. & Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Genet. 42, 541–564 (2008).

  16. 16.

    Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

  17. 17.

    Svenningsen, S. L., Tu, K. C. & Bassler, B. L. Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing. EMBO J. 28, 429–439 (2009).

  18. 18.

    Lenz, D. H. et al. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118, 69–82 (2004).

  19. 19.

    Ng, W.-L. & Bassler, B. L. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43, 197–222 (2009).

  20. 20.

    Feng, L. et al. A Qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics. Cell 160, 228–240 (2015).This work shows how regulatory RNAs rely on multiple molecular mechanisms to precisely and dynamically control quorum-sensing behaviours in Vibrio spp.

  21. 21.

    Rutherford, S. T., Kessel, Van, J. C., Shao, Y. & Bassler, B. L. AphA and LuxR / HapR reciprocally control quorum sensing in vibrios. Genes Dev. 25, 397–408 (2011).

  22. 22.

    Lenz, D. H., Miller, M. B., Zhu, J., Kulkarni, R. V. & Bassler, B. L. CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol. Microbiol. 58, 1186–1202 (2005).

  23. 23.

    Lenz, D. H. & Bassler, B. L. The small nucleoid protein Fis is involved in Vibrio cholerae quorum sensing. Mol. Microbiol. 63, 859–871 (2007).

  24. 24.

    Thompson, L. S., Webb, J. S., Rice, S. A. & Kjelleberg, S. The alternative sigma factor RpoN regulates the quorum sensing gene rhlI in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 220, 187–195 (2003).

  25. 25.

    Donlan, R. M. & Costerton, J. W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193 (2002).

  26. 26.

    Kolter, R. & Greenberg, E. P. The superficial life of microbes. Nature 441, 300–302 (2006).

  27. 27.

    Tolker-Nielsen, T. Biofilm development. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MB-0001-2014 (2015).

  28. 28.

    Rybtke, M., Hultqvist, L. D., Givskov, M. & Tolker-Nielsen, T. Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. J. Mol. Biol. 427, 3628–3645 (2015).

  29. 29.

    Escudié, R., Cresson, R., Delgenès, J. P. & Bernet, N. Control of start-up and operation of anaerobic biofilm reactors: an overview of 15 years of research. Water Res. 45, 1–10 (2011).

  30. 30.

    Pintelon, T. R. R., Picioreanu, C., van Loosdrecht, M. C. M. & Johns, M. L. The effect of biofilm permeability on bio-clogging of porous media. Biotechnol. Bioeng. 109, 1031–1042 (2012).

  31. 31.

    Branda, S. S., Vik, Å., Friedman, L. & Kolter, R. Biofilms: the matrix revisited. Trends Microbiol. 13, 20–26 (2005).

  32. 32.

    Flemming, H. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

  33. 33.

    Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199–210 (2008).

  34. 34.

    Drescher, K., Shen, Y., Bassler, B. L. & Stone, H. A. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proc. Natl Acad. Sci. USA 110, 4345–4350 (2013).

  35. 35.

    Rusconi, R., Garren, M. & Stocker, R. Microfluidics expanding the frontiers of microbial ecology. Annu. Rev. Biophys. 43, 65–91 (2014).

  36. 36.

    Kim, M. K. et al. Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nat. Microbiol. 2, 17080 (2017).This study develops methods to coat surfaces with pro-quorum-sensing and anti-quorum-sensing compounds to manipulate bacterial group behaviours.

  37. 37.

    Kirisits, M. J. et al. Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms. J. Bacteriol. 189, 8357–8360 (2007).

  38. 38.

    Meyer, A. et al. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions. Phys. Biol. 9, 026007 (2012).

  39. 39.

    Purevdorj, B., Costerton, J. W. & Stoodley, P. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 68, 4457–4464 (2002).

  40. 40.

    Kim, M. K., Ingremeau, F., Zhao, A., Bassler, B. L. & Stone, H. A. Local and global consequences of flow on bacterial quorum sensing. Nat. Microbiol. 1, 15005 (2016).This study shows that fluid flow and surface topography influence quorum-sensing outputs in V. cholerae and S. aureus in non-intuitive ways.

  41. 41.

    Siryaporn, A., Kim, M. K., Shen, Y., Stone, H. A. & Gitai, Z. Colonization, competition, and dispersal of pathogens in fluid flow networks. Curr. Biol. 25, 1201–1207 (2015).

  42. 42.

    Darch, S. E. et al. Spatial determinants of quorum signaling in a Pseudomonas aeruginosa infection model. Proc. Natl Acad. Sci. USA 115, 4779–4784 (2018).

  43. 43.

    Benjamin, M. A., Lu, J., Donnelly, G., Dureja, P. & McKay, D. M. Changes in murine jejunal morphology evoked by the bacterial superantigen Staphylococcus aureus enterotoxin B are mediated by CD4+T cells. Infect. Immun. 66, 2193–2199 (1998).

  44. 44.

    Bronner, S., Monteil, H. & Prévost, G. Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol. Rev. 28, 183–200 (2004).

  45. 45.

    Cárcamo-Oyarce, G., Lumjiaktase, P., Kümmerli, R. & Eberl, L. Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms. Nat. Commun. 6, 5945 (2015).

  46. 46.

    Pradhan, B. B. & Chatterjee, S. Reversible non-genetic phenotypic heterogeneity in bacterial quorum sensing. Mol. Microbiol. 92, 557–569 (2014).

  47. 47.

    Plener, L. et al. The phosphorylation flow of the Vibrio harveyi quorum-sensing cascade determines levels of phenotypic heterogeneity in the population. J. Bacteriol. 197, 1747–1756 (2015).

  48. 48.

    Grote, J., Krysciak, D. & Streit, W. R. Phenotypic heterogeneity, a phenomenon that may explain why quorum sensing does not always result in truly homogenous cell behavior. Appl. Environ. Microbiol. 81, 5280–5289 (2015).

  49. 49.

    Anetzberger, C., Pirch, T. & Jung, K. Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio harveyi. Mol. Microbiol. 73, 267–277 (2009).

  50. 50.

    Pérez, P. D. & Hagen, S. J. Heterogeneous response to a quorum-sensing signal in the luminescence of individual Vibrio fischeri. PLOS ONE 5, e15473 (2010).

  51. 51.

    Boedicker, J. Q., Vincent, M. E. & Ismagilov, R. F. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew. Chemie Int. Ed. Engl. 48, 5908–5911 (2009).

  52. 52.

    Sandoz, K. M., Mitzimberg, S. M. & Schuster, M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc. Natl Acad. Sci. USA 104, 15876–15881 (2007).

  53. 53.

    Dandekar, A. A., Chugani, S. & Greenberg, E. P. Bacterial quorum sensing and metabolic incentives to cooperate. Science 338, 264–267 (2012).

  54. 54.

    Veening, J.-W., Smits, W. K. & Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008).

  55. 55.

    Fujimoto, K. & Sawai, S. A design principle of group-level decision making in cell populations. PLOS Comput. Biol. 9, e1003110 (2013).

  56. 56.

    Dockery, J. D. & Keener, J. P. A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull. Math. Biol. 63, 95–116 (2001).

  57. 57.

    Goryachev, A. B. et al. Transition to quorum sensing in an agrobacterium population: a stochastic model. PLOS Comput. Biol. 1, e37 (2005).

  58. 58.

    Pérez-Velázquez, J., Gölgeli, M. & García-Contreras, R. Mathematical modelling of bacterial quorum sensing: a review. Bull. Math. Biol. 78, 1585–1639 (2016).

  59. 59.

    Veening, J.-W. et al. Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl Acad. Sci. USA 105, 4393–4398 (2008).

  60. 60.

    Bauer, M., Knebel, J., Lechner, M., Pickl, P. & Frey, E. Ecological feedback in quorum-sensing microbial populations can induce heterogeneous production of autoinducers. eLife 6, e25773 (2017).

  61. 61.

    Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 2–5 (2004).

  62. 62.

    Popat, R. et al. Quorum-sensing and cheating in bacterial biofilms. Proc. Biol. Sci. 279, 4765–4771 (2012).

  63. 63.

    Cordero, O. X., Ventouras, L.-A., DeLong, E. F. & Polz, M. F. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc. Natl Acad. Sci. USA 109, 20059–20064 (2012).

  64. 64.

    Bruger, E. & Waters, C. Sharing the sandbox: evolutionary mechanisms that maintain bacterial cooperation. F1000Res. 4, 1504 (2015).

  65. 65.

    Darch, S. E., West, S. A., Winzer, K. & Diggle, S. P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc. Natl Acad. Sci. USA 109, 8259–8263 (2012).

  66. 66.

    West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006).

  67. 67.

    Oshri, R. D., Zrihen, K. S., Shner, I., Bendori, S. O. & Eldar, A. Selection for increased quorum-sensing cooperation in Pseudomonas aeruginosa through the shut-down of a drug resistance pump. ISME J. 12, 2458–2469 (2018).

  68. 68.

    Bruger, E. L. & Waters, C. M. Bacterial quorum sensing stabilizes cooperation by optimizing growth strategies. Appl. Environ. Microbiol. 82, 6498–6506 (2016).

  69. 69.

    Bruger, E. L. & Waters, M. Maximizing growth yield and dispersal via quorum sensing promotes cooperation in vibrio bacteria. Appl. Environ. Microbiol. 84, 1–13 (2018).

  70. 70.

    Drescher, K., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24, 50–55 (2014).

  71. 71.

    Meibom, K. L. et al. The Vibrio cholerae chitin utilization program. Proc. Natl Acad. Sci. USA 101, 2524–2529 (2004).

  72. 72.

    Nadell, C. D., Ricaurte, D., Yan, J., Drescher, K. & Bassler, B. L. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms. eLife 6, e21855 (2017).

  73. 73.

    Sakuragi, Y. & Kolter, R. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J. Bacteriol. 189, 5383–5386 (2007).

  74. 74.

    Rusconi, R., Lecuyer, S., Autrusson, N., Guglielmini, L. & Stone, H. A. Secondary flow as a mechanism for the formation of biofilm streamers. Biophys. J. 100, 1392–1399 (2011).

  75. 75.

    Mund, A., Diggle, S. P. & Harrison, F. The fitness of Pseudomonas aeruginosa quorum sensing signal cheats is influenced by the diffusivity of the environment. mBio 8, e00353–17 (2017).

  76. 76.

    Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. & Iglewski, B. H. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185, 2080–2095 (2003).

  77. 77.

    Wang, M., Schaefer, A. L., Dandekar, A. A. & Greenberg, E. P. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc. Natl Acad. Sci. USA 112, 2187–2191 (2015).

  78. 78.

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).

  79. 79.

    Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

  80. 80.

    Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol. 14, e1002533 (2016).

  81. 81.

    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

  82. 82.

    Sommer, F. & Bäckhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

  83. 83.

    Hsiao, A. et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515, 423–426 (2014).

  84. 84.

    Thompson, J., Oliveira, R., Djukovic, A., Ubeda, C. & Xavier, K. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. 10, 1861–1871 (2015).

  85. 85.

    Papenfort, K. et al. A Vibrio cholerae autoinducer-receptor pair that controls biofilm formation. Nat. Chem. Biol. 13, 551–557 (2017).This manuscript reports a novel Vibrio spp. autoinducer, called DPO, and its receptor, called VqmR, and that the DPO–VqmR complex controls biofilm formation via the action of a regulatory RNA called VqmR.

  86. 86.

    Piewngam, P. et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562, 532–537 (2018).This study reports that probiotic Bacillus spp. produce fengycin lipopeptides that antagonize S. aureus quorum sensing and inhibit S. aureus colonization of mice.

  87. 87.

    Ismail, A. S., Valastyan, J. S. & Bassler, B. L. A. Host-produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host Microbe 19, 470–480 (2016).This manuscript reports that bacteria respond to an AI-2 mimic produced by human epithelial cells.

  88. 88.

    Bosch, T. C. G. Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu. Rev. Microbiol. 67, 499–518 (2013).

  89. 89.

    Pietschke, C. et al. Host modification of a bacterial quorum-sensing signal induces a phenotypic switch in bacterial symbionts. Proc. Natl Acad. Sci. USA 114, E8488–E8497 (2017).This study demonstrates that Hydra , a genus of metazoans, modify the autoinducers of the primary bacterial colonizer of hydra, Curvibacter spp., and in so doing alter their quorum-sensing behaviours.

  90. 90.

    Harder, T., Campbell, A. H., Egan, S. & Steinberg, P. D. Chemical mediation of ternary interactions between marine holobionts and their environment as exemplified by the red alga Delisea pulchra. J. Chem. Ecol. 38, 442–450 (2012).

  91. 91.

    Chun, C. K., Ozer, E. A., Welsh, M. J., Zabner, J. & Greenberg, E. P. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natl Acad. Sci. USA 101, 3587–3590 (2004).

  92. 92.

    Stoltz, D. A. et al. Drosophila are protected from Pseudomonas aeruginosa lethality by transgenic expression of paraoxonase-1. J. Clin. Invest. 118, 3123–3131 (2008).

  93. 93.

    DeLeon, S. et al. Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an In vitro wound model. Infect. Immun. 82, 4718–4728 (2014).

  94. 94.

    Kessler, E., Safrin, M., Olson, J. C. & Ohman, D. E. Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J. Biol. Chem. 268, 7503–7508 (1993).

  95. 95.

    Dietrich, L. E. P., Price-Whelan, A., Petersen, A., Whiteley, M. & Newman, D. K. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 61, 1308–1321 (2006).

  96. 96.

    Smith, A. C. et al. Albumin inhibits Pseudomonas aeruginosa quorum sensing and alters polymicrobial interactions. Infect. Immun. 85, e00116–17 (2017).

  97. 97.

    Peterson, M. M. et al. Apolipoprotein B is an innate barrier against invasive Staphylococcus aureus infection. Cell Host Microbe 4, 555–566 (2008).

  98. 98.

    Cornforth, D. M. et al. Pseudomonas aeruginosa transcriptome during human infection. Proc. Natl Acad. Sci. USA 115, E5125–E5134 (2018).

  99. 99.

    Yawata, Y., Nguyen, J., Stocker, R. & Rusconi, R. Microfluidic studies of biofilm formation in dynamic environments. J. Bacteriol. 198, 2589–2595 (2016).

  100. 100.

    Norman, T. M., Lord, N. D., Paulsson, J. & Losick, R. Stochastic switching of cell fate in microbes. Annu. Rev. Microbiol. 69, 381–403 (2015).

  101. 101.

    Kevin Kim, M., Drescher, K., Shun Pak, O., Bassler, B. L. & Stone, H. A. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers. New J. Phys. 16, 065024 (2014).

  102. 102.

    Eickhoff, M. J. & Bassler, B. L. SnapShot: bacterial quorum sensing. Cell 174, 1328–1328.e1 (2018).

Download references

Acknowledgements

This work was supported by the Howard Hughes Medical Institute, US National Institutes of Health (NIH) grant 5R37GM065859 and National Science Foundation grant MCB-1713731 (to B.L.B.), as well as by a Life Science Research Foundation Postdoctoral Fellowship through the Gordon and Betty Moore Foundation through grant GBMF2550.06 and NIH grant 1K99GM129424-01 to S.M.

Author information

Affiliations

  1. Princeton University, Department of Molecular Biology, Princeton, NJ, USA

    • Sampriti Mukherjee
    •  & Bonnie L. Bassler
  2. Howard Hughes Medical Institute, Chevy Chase, MD, USA

    • Bonnie L. Bassler

Authors

  1. Search for Sampriti Mukherjee in:

  2. Search for Bonnie L. Bassler in:

Contributions

Both authors researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Bonnie L. Bassler.

Supplementary information

Glossary

Phenotypic heterogeneity

Nongenetic variations in traits between individual cells in an isogenic population.

Bet hedging

A strategy that enables diversification of phenotypes within a population with the consequence of reducing the overall risk of death of all the cells in the population. Thus, bet hedging increases fitness under temporally varying conditions.

Social policing

A strategy in which quorum-sensing bacteria link production of costly private goods to production of public goods to punish nonproducers and thereby prevent emergence of social cheaters.

Dysbiosis

A microbial imbalance on or inside a host in which the normal microbiota is disrupted, for example, after treatment with antibiotics.

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/s41579-019-0186-5