Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Climate change microbiology — problems and perspectives

Abstract

The signs of climate change are undeniable, and the inevitable impact for Earth and all its inhabitants is a serious concern. Ice is melting, sea levels are rising, biodiversity is declining, precipitation has increased, atmospheric levels of carbon dioxide and greenhouse gases are alarmingly high, and extreme weather conditions are becoming increasingly common. But what role do microorganisms have in this global challenge? In this Viewpoint article, several experts in the field discuss the microbial contributions to climate change and consider the effects of global warming, extreme weather, flooding and other consequences of climate change on microbial communities in the ocean and soil, on host–microbiota interactions and on the global burden of infectious diseases and ecosystem processes, and they explore open questions and research needs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hutchins, D. A. & Fu, F. X. Microorganisms and ocean global change. Nat. Microbiol. 2, 17508 (2017).

    Article  Google Scholar 

  2. Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change. Glob. Change Biol. 24, 2239–2261 (2018).

    Article  Google Scholar 

  3. Jansson, J. K. & Tas, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).

    Article  CAS  Google Scholar 

  4. Tas, N. et al. Landscape topography structures the soil microbiome in arctic polygonal tundra. Nat. Commun. 9, 777 (2018).

    Article  Google Scholar 

  5. Christensen, T. R. et al. Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys. Res. Lett. 31, L04501 (2004).

    Article  Google Scholar 

  6. Hodgkins, S. B. et al. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc. Natl Acad. Sci. USA 111, 5819–5824 (2014).

    Article  CAS  Google Scholar 

  7. Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

    Article  CAS  Google Scholar 

  8. Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558 (2018).

    Article  CAS  Google Scholar 

  9. McCalley, C. K. et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514, 478–481 (2014).

    Article  CAS  Google Scholar 

  10. Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    Article  CAS  Google Scholar 

  11. Wik, M. et al. Multiyear measurements of ebullitive methane flux from three subarctic lakes. J. Geophys. Res. Biogeosci. 118, 1307–1321 (2013).

    Article  Google Scholar 

  12. Singh, B. K. et al. Microorganisms and climate change: feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).

    Article  CAS  Google Scholar 

  13. Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 12, 15684–15689 (2015).

    Google Scholar 

  14. Sheik, C. S. et al. Effects of warming and drought on grassland microbial communities. ISME J. 5, 1692–1700 (2011).

    Article  CAS  Google Scholar 

  15. Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, e10541 (2016).

    Article  Google Scholar 

  16. Delgado-Baquerizo, M. et al. Soil microbial community drives resistance of ecosystem multifunctionality to global change in dryland across the globe. Ecol. Lett. 20, 1295–1305 (2017).

    Article  Google Scholar 

  17. Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).

    Article  CAS  Google Scholar 

  18. Hutchins, D. A. & Boyd, P. W. Marine phytoplankton and the changing ocean iron cycle. Nat. Clim. Chang. 6, 1071–1079 (2016).

    Article  Google Scholar 

  19. Wubs, E. R. J. et al. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107 (2016).

    Article  Google Scholar 

  20. Maestre, F., Sole, R. & Singh, B. K. Microbial biotechnology as a tool to restore degraded drylands. Microb. Biotechnol. 10, 1250–1253 (2017).

    Article  Google Scholar 

  21. Hu, H. W. et al. Microbial nitrous oxide emissions in dryland ecosystems: mechanisms, microbiome and mitigation. Environ. Microbiol. 19, 4808–4828 (2017).

    Article  CAS  Google Scholar 

  22. Mellby, B. L. et al. Quorum quenching of Nitrogbacter winogradskyi suggests that quorum sensing regulates of nitrogen oxide(s) during nitrification. mBio 7, e01753–16 (2016).

    Google Scholar 

  23. Jansson, J. K. & Hofmockel, K. S. The soil microbiome — from metagenomics to metaphenomics. Curr. Opin. Microbiol. 43, 162–168 (2018).

    Article  CAS  Google Scholar 

  24. Angle, J. C. et al. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat. Commun. 8, 1567 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David A. Hutchins, Janet K. Jansson, Justin V. Remais, Virginia I. Rich, Brajesh K. Singh or Pankaj Trivedi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutchins, D.A., Jansson, J.K., Remais, J.V. et al. Climate change microbiology — problems and perspectives. Nat Rev Microbiol 17, 391–396 (2019). https://doi.org/10.1038/s41579-019-0178-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-019-0178-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology