Viewpoint | Published:

Climate change microbiology — problems and perspectives


The signs of climate change are undeniable, and the inevitable impact for Earth and all its inhabitants is a serious concern. Ice is melting, sea levels are rising, biodiversity is declining, precipitation has increased, atmospheric levels of carbon dioxide and greenhouse gases are alarmingly high, and extreme weather conditions are becoming increasingly common. But what role do microorganisms have in this global challenge? In this Viewpoint article, several experts in the field discuss the microbial contributions to climate change and consider the effects of global warming, extreme weather, flooding and other consequences of climate change on microbial communities in the ocean and soil, on host–microbiota interactions and on the global burden of infectious diseases and ecosystem processes, and they explore open questions and research needs.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Hutchins, D. A. & Fu, F. X. Microorganisms and ocean global change. Nat. Microbiol. 2, 17508 (2017).

  2. 2.

    Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change. Glob. Change Biol. 24, 2239–2261 (2018).

  3. 3.

    Jansson, J. K. & Tas, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).

  4. 4.

    Tas, N. et al. Landscape topography structures the soil microbiome in arctic polygonal tundra. Nat. Commun. 9, 777 (2018).

  5. 5.

    Christensen, T. R. et al. Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys. Res. Lett. 31, L04501 (2004).

  6. 6.

    Hodgkins, S. B. et al. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc. Natl Acad. Sci. USA 111, 5819–5824 (2014).

  7. 7.

    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

  8. 8.

    Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558 (2018).

  9. 9.

    McCalley, C. K. et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514, 478–481 (2014).

  10. 10.

    Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

  11. 11.

    Wik, M. et al. Multiyear measurements of ebullitive methane flux from three subarctic lakes. J. Geophys. Res. Biogeosci. 118, 1307–1321 (2013).

  12. 12.

    Singh, B. K. et al. Microorganisms and climate change: feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).

  13. 13.

    Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 12, 15684–15689 (2015).

  14. 14.

    Sheik, C. S. et al. Effects of warming and drought on grassland microbial communities. ISME J. 5, 1692–1700 (2011).

  15. 15.

    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, e10541 (2016).

  16. 16.

    Delgado-Baquerizo, M. et al. Soil microbial community drives resistance of ecosystem multifunctionality to global change in dryland across the globe. Ecol. Lett. 20, 1295–1305 (2017).

  17. 17.

    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).

  18. 18.

    Hutchins, D. A. & Boyd, P. W. Marine phytoplankton and the changing ocean iron cycle. Nat. Clim. Chang. 6, 1071–1079 (2016).

  19. 19.

    Wubs, E. R. J. et al. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107 (2016).

  20. 20.

    Maestre, F., Sole, R. & Singh, B. K. Microbial biotechnology as a tool to restore degraded drylands. Microb. Biotechnol. 10, 1250–1253 (2017).

  21. 21.

    Hu, H. W. et al. Microbial nitrous oxide emissions in dryland ecosystems: mechanisms, microbiome and mitigation. Environ. Microbiol. 19, 4808–4828 (2017).

  22. 22.

    Mellby, B. L. et al. Quorum quenching of Nitrogbacter winogradskyi suggests that quorum sensing regulates of nitrogen oxide(s) during nitrification. mBio 7, e01753–16 (2016).

  23. 23.

    Jansson, J. K. & Hofmockel, K. S. The soil microbiome — from metagenomics to metaphenomics. Curr. Opin. Microbiol. 43, 162–168 (2018).

  24. 24.

    Angle, J. C. et al. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat. Commun. 8, 1567 (2017).

Download references

Author information

Competing interests

The authors declare no competing interests.

Correspondence to David A. Hutchins or Janet K. Jansson or Justin V. Remais or Virginia I. Rich or Brajesh K. Singh or Pankaj Trivedi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark