Fungi in aquatic ecosystems


Fungi are phylogenetically and functionally diverse ubiquitous components of almost all ecosystems on Earth, including aquatic environments stretching from high montane lakes down to the deep ocean. Aquatic ecosystems, however, remain frequently overlooked as fungal habitats, although fungi potentially hold important roles for organic matter cycling and food web dynamics. Recent methodological improvements have facilitated a greater appreciation of the importance of fungi in many aquatic systems, yet a conceptual framework is still missing. In this Review, we conceptualize the spatiotemporal dimensions, diversity, functions and organismic interactions of fungi in structuring aquatic food webs. We focus on currently unexplored fungal diversity, highlighting poorly understood ecosystems, including emerging artificial aquatic habitats.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Phylogeny of aquatic fungi.
Fig. 2: Natural environments for aquatic fungi.
Fig. 3: Artificial habitats for aquatic fungi.
Fig. 4: Images of saprophytic and symbiotic fungal interactions with different components of the aquatic food web of lakes.
Fig. 5: Ecological role of aquatic fungi.


  1. 1.

    Kagami, M., de Bruin, A., Ibelings, B. W. & Van Donk, E. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578, 113–129 (2007).

    Google Scholar 

  2. 2.

    Kagami, M., Miki, T. & Takimoto, G. Mycoloop: chytrids in aquatic food webs. Front. Microbiol. 5, 166 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Rasconi, S., Niquil, N. & Sime-Ngando, T. Phytoplankton chytridiomycosis: community structure and infectivity of fungal parasites in aquatic ecosystems. Environ. Microbiol. 14, 2151–2170 (2012).

    PubMed  Google Scholar 

  4. 4.

    Haraldsson, M. et al. Microbial parasites make cyanobacteria blooms less of a trophic dead end than commonly assumed. ISME J. 12, 1008 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Taylor, D. L. & Sinsabaugh, R. L. in Soil Microbiology, Ecology and Biochemistry (ed. Paul, E. A.) 4th edn 77–109 (Academic Press, 2015).

  6. 6.

    Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    Shearer, C. A. et al. Fungal biodiversity in aquatic habitats. Biodivers. Conserv. 16, 49–67 (2007).

    Google Scholar 

  8. 8.

    Wurzbacher, C. M., Bärlocher, F. & Grossart, H.-P. Fungi in lake ecosystems. Aquat. Microb. Ecol. 59, 125–149 (2010).

    Google Scholar 

  9. 9.

    Richards, T. A. et al. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc. Biol. Sci. 282, 20152243 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Grossart, H.-P. & Rojas-Jimenez, K. Aquatic fungi: targeting the forgotten in microbial ecology. Curr. Opin. Microbiol. 31, 140–145 (2016).

    PubMed  Google Scholar 

  11. 11.

    Taylor, J. D. & Cunliffe, M. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J. 10, 2118–2128 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Park, D. On the ecology of heterotrophic micro-organisms in fresh-water. Mycol. Res. 58, 291–299 (1972).

    Google Scholar 

  13. 13.

    Richards, T. A., Jones, M. D. M., Leonard, G. & Bass, D. Marine fungi: their ecology and molecular diversity. Annu. Rev. Mar. Sci. 4, 495–522 (2012).

    Google Scholar 

  14. 14.

    De Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    PubMed  Google Scholar 

  15. 15.

    Debroas, D. et al. Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. FEMS Microbiol. Ecol. 93, fix023 (2017).

    Google Scholar 

  16. 16.

    Krauss, G.-J. et al. Fungi in freshwaters: ecology, physiology and biochemical potential. FEMS Microbiol. Rev. 35, 620–651 (2011).

    CAS  PubMed  Google Scholar 

  17. 17.

    Fabian, J., Zlatanovic, S., Mutz, M. & Premke, K. Fungal–bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality. ISME J. 11, 415–425 (2017).

    CAS  PubMed  Google Scholar 

  18. 18.

    Taube, R., Ganzert, L., Grossart, H.-P., Gleixner, G. & Premke, K. Organic matter quality structures benthic fatty acid patterns and the abundance of fungi and bacteria in temperate lakes. Sci. Total Environ. 610, 469–481 (2018).

    PubMed  Google Scholar 

  19. 19.

    Nikolcheva, L. G. & Bärlocher, F. Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol. Prog. 3, 41–49 (2004).

    Google Scholar 

  20. 20.

    Grossart, H.-P., Wurzbacher, C., James, T. Y. & Kagami, M. Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol. 19, 28–38 (2016).

    Google Scholar 

  21. 21.

    Gulis, V., Suberkropp, K. & Rosemond, A. D. Comparison of fungal activities on wood and leaf litter in unaltered and nutrient-enriched headwater streams. Appl. Environ. Microbiol. 74, 1094–1101 (2008).

    CAS  PubMed  Google Scholar 

  22. 22.

    Wurzbacher, C., Rösel, S., Rychla, A. & Grossart, H.-P. Importance of saprotrophic freshwater fungi for pollen degradation. PLOS ONE 9, e94643 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Frenken, T. et al. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ. Microbiol. 19, 3802–3822 (2017).

    PubMed  Google Scholar 

  24. 24.

    Cunliffe, M., Hollingsworth, A., Bain, C. & Taylor, J. D. Algal polysaccharide utilisation by saprotrophic planktonic marine fungi. Fungal Ecol. 30, 135–138 (2017).

    Google Scholar 

  25. 25.

    Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Woyke, T. & Rubin, E. M. Searching for new branches on the tree of life. Science 346, 698–699 (2014).

    CAS  PubMed  Google Scholar 

  27. 27.

    Mukherjee, S. et al. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat. Biotechnol. 35, 676–683 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    Mangot, J.-F. et al. Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells. Sci. Rep. 7, 41498 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Heeger, F. et al. Long-read DNA metabarcoding of ribosomal rRNA in the analysis of fungi from aquatic environments. Mol. Ecol. Resour. 18, 1500–1514 (2018).

    CAS  PubMed  Google Scholar 

  30. 30.

    Khomich, M., Davey, M. L., Kauserud, H., Rasconi, S. & Andersen, T. Fungal communities in Scandinavian lakes along a longitudinal gradient. Fungal Ecol. 27, 36–46 (2017).

    Google Scholar 

  31. 31.

    Giner, C. R. et al. Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl. Environ. Microbiol. 82, 4757–4766 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Seto, K., Kagami, M. & Degawa, Y. Phylogenetic position of parasitic chytrids on diatoms: characterization of a novel clade in chytridiomycota. J. Eukaryot. Microbiol. 64, 383–393 (2017).

    CAS  PubMed  Google Scholar 

  33. 33.

    Van den Wyngaert, S., Rojas-Jimenez, K., Seto, K., Kagami, M. & Grossart, H.-P. Diversity and hidden host specificity of chytrids infecting colonial volvocacean algae. J. Eukaryot. Microbiol. 65, 870–881 (2018).

    PubMed  Google Scholar 

  34. 34.

    Reich, M. & Labes, A. How to boost marine fungal research: a first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry. Mar. Genomics 36, 57–75 (2017).

    PubMed  Google Scholar 

  35. 35.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Tedersoo, L., Tooming-Klunderud, A. & Anslan, S. PacBio metabarcoding of fungi and other eukaryotes: errors, biases and perspectives. New Phytol. 217, 1370–1385 (2018).

    CAS  PubMed  Google Scholar 

  37. 37.

    Liu, J., Wang, J., Gao, G., Bartlam, M. G. & Wang, Y. Distribution and diversity of fungi in freshwater sediments on a river catchment scale. Front. Microbiol. 6, 329 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wang, X. et al. Distribution and diversity of planktonic fungi in the west pacific warm pool. PLOS ONE 9, e101523 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Tisthammer, K. H., Cobian, G. M. & Ahmend, A. S. Global biogeography of marine fungi is shaped by the environment. Fungal Ecol. 19, 39–46 (2015).

    Google Scholar 

  40. 40.

    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    CAS  PubMed  Google Scholar 

  41. 41.

    Duarte, S., Bärlocher, F., Pascoal, C. & Cassio, F. Biogeography of aquatic hyphomycetes: current knowledge and future perspectives. Fungal Ecol. 19, 169–181 (2016).

    Google Scholar 

  42. 42.

    Monchy, S. et al. Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ. Microbiol. 13, 1433–1453 (2011).

    PubMed  Google Scholar 

  43. 43.

    Picard, K. T. Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol. 25, 1–13 (2017).

    Google Scholar 

  44. 44.

    Tedersoo, L., Bahram, M., Puusepp, R., Henrik Nilsson, R. & James, T. Y. Novel soil-inhabiting clades fill gaps in the fungal tree of life. Microbiome 5, 42 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Tedersoo, L. et al. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 90, 135–159 (2018).

    Google Scholar 

  46. 46.

    Wurzbacher, C. et al. Introducing ribosomal tandem repeat barcoding for fungi. Mol. Ecol. Resour. 19, 118–127 (2018).

    PubMed  Google Scholar 

  47. 47.

    Jones, E. B. G., Hyde, K. D. & Pang, K.-L. (eds) Freshwater Fungi: and Fungal-like Organisms (De Gruyter, 2014).

  48. 48.

    Comeau, A. M., Vincent, W. F., Bernier, L. & Lovejoy, C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci. Rep. 6, 30120 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Hassett, B. T., Ducluzeau, A. L., Collins, R. E. & Gradinger, R. Spatial distribution of aquatic marine fungi across the western Arctic and sub-arctic. Environ. Microbiol. 19, 475–484 (2017).

    CAS  PubMed  Google Scholar 

  50. 50.

    Rojas-Jimenez, K. et al. Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Sci. Rep. 7, e15348 (2017).

    Google Scholar 

  51. 51.

    Braun, A. Über Chytridium: eine Gattung einzelliger Schmarotzergewächse auf Algen und Infusorien [German] (Königl Akademie der Wissenschaften, 1856).

  52. 52.

    Sparrow, F. K. Aguatic Phycomycetes (Michigan Univ. Press, 1960).

  53. 53.

    Ingold, T. C. An lllustrated Guide to Aquatic Hyphomycetes Vol. 30 (Freshwater Biological Association, 1975).

  54. 54.

    Bärlocher, F. in The Ecology of Aquatic Hyphomycetes (ed. Bärlocher, F.) 1–15 (Spinger, Heidelberg, 1992).

  55. 55.

    Chauvet, E., Cornut, J., Sridhar, K. R., Selosse, M.-A. & Bärlocher, F. Beyond the water column: aquatic hyphomycetes outside their preferred habitat. Fungal Ecol. 19, 112–127 (2016).

    Google Scholar 

  56. 56.

    Roth, F. J. Jr, Orpurt, P. A. & Ahearn, D. G. Occurrence and distribution of fungi in a subtropical marine environment. Can. J. Bot. 42, 375–383 (1964).

    Google Scholar 

  57. 57.

    Raghukumar, C., Damare, S. R. & Singh, P. A review on deep-sea fungi: occurrence, diversity and adaptations. Botanica Marina 53, 479–492 (2010).

    Google Scholar 

  58. 58.

    Nagano, Y. & Nagahama, T. Fungal diversity in deep-sea extreme environments. Fungal Ecol. 5, 463–471 (2012).

    Google Scholar 

  59. 59.

    Zhang, X., Tang, G., Xu, X. Y., Nong, X. H. & Qi, S. H. Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLOS ONE 9, e109118 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Xu, W., Luo, Z.-H., Guo, S. & Pang, K.-L. Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions. Deep Sea Res. Part I Oceanogr. Res. Pap. 109, 51–60 (2016).

    CAS  Google Scholar 

  61. 61.

    Edgcomb, V. P., Beaudoin, D., Gast, R., Biddle, J. F. & Teske, A. Marine subsurface eukaryotes: the fungal majority. Environ. Microbiol. 13, 172–183 (2011).

    CAS  PubMed  Google Scholar 

  62. 62.

    Ivarsson, M., Bengtson, S. & Neubeck, A. The igneous oceanic crust–Earth’s largest fungal habitat? Fungal Ecol. 20, 249–255 (2016).

    Google Scholar 

  63. 63.

    Orsi, W., Biddle, J. F. & Edgcomb, V. Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLOS ONE 8, e56335 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    López-García, P., Vereshchaka, A. & Moreira, D. Eukaryotic diversity associated with carbonates and fluid–seawater interface in Lost City hydrothermal field. Environ. Microbiol. 9, 546–554 (2007).

    PubMed  Google Scholar 

  65. 65.

    Connell, L., Barrett, A., Templeton, A. & Staudigel, H. Fungal diversity associated with an active deep sea volcano: Vailulu’u Seamount, Samoa. Geomicrobiol. J. 26, 597–605 (2009).

    CAS  Google Scholar 

  66. 66.

    Le Calvez, T., Burgaud, G., Mahé, S., Barbier, G. & Vandenkoornhuyse, P. Fungal diversity in deep-sea hydrothermal ecosystems. Appl. Environ. Microbiol. 75, 6415–6421 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Kutty, S. N. & Philip, R. Marine yeasts — a review. Yeast 25, 465–483 (2008).

    CAS  PubMed  Google Scholar 

  68. 68.

    Li, L., Singh, P., Liu, Y., Pan, S. & Wang, G. Diversity and biochemical features of culturable fungi from the coastal waters of Southern China. AMB Express 4, 60 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Comic, L., Rankovic, B., Novevska, V. & Ostojic, A. Diversity and dynamics of the fungal community in Lake Ohrid. Aquat. Biol. 9, 169–176 (2010).

    Google Scholar 

  70. 70.

    Gonçalves, V. N., Vaz, A. B. M., Rosa, C. A. & Rosa, L. H. Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol. Ecol. 82, 459–471 (2012).

    PubMed  Google Scholar 

  71. 71.

    Gunde-Cimerman, N. et al. Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys. Chem. Earth 28, 1273–1278 (2003).

    Google Scholar 

  72. 72.

    Hoshino, T. et al. Antifreeze proteins from snow mold fungi. Can. J. Bot. 81, 1175–1181 (2003).

    CAS  Google Scholar 

  73. 73.

    Miyamoto, T., Koda, K., Kawaguchi, A. & Uraki, Y. Ligninolytic activity at 0°C of fungi on oak leaves under snow cover in a mixed forest in Japan. Microb. Ecol. 74, 322–331 (2017).

    CAS  PubMed  Google Scholar 

  74. 74.

    Jones, E. B. G. & Pang, K. L. Tropical aquatic fungi. Biodivers. Conserv. 21, 2403–2423 (2012).

    Google Scholar 

  75. 75.

    Zhang, T., Wang, N. F., Zhang, Y. Q., Liu, H. Y. & Yu, L. Y. Diversity and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic). Microb. Ecol. 71, 543–554 (2016).

    PubMed  Google Scholar 

  76. 76.

    Nagano, Y. et al. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau. Deep Sea Res. Part II Top. Stud. Oceanogr. 146, 59–67 (2017).

    Google Scholar 

  77. 77.

    Sohlberg, E. et al. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland. Front. Microbiol. 6, 573 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Nawaz, A. et al. Superimposed pristine limestone aquifers with marked hydrochemical differences exhibit distinct fungal communities. Front. Microbiol. 7, 666 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Nawaz, A. et al. First insights into the living groundwater mycobiome of the terrestrial biogeosphere. Water Res. 145, 50–61 (2018).

    CAS  PubMed  Google Scholar 

  80. 80.

    Brad, T., Braster, M., van Breukelen, B. M., van Straalen, N. M. & Rölinget, W. F. M. Eukaryotic diversity in an anaerobic aquifer polluted with landfill leachate. Appl. Environ. Microbiol. 74, 3959–3968 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Fasanella, C. C. et al. The selection exerted by oil contamination on mangrove fungal communities. Water Air Soil Pollut. 223, 4233–4243 (2012).

    CAS  Google Scholar 

  82. 82.

    Simister, R. L. et al. Degradation of oil by fungi isolated from Gulf of Mexico beaches. Mar. Pollut. Bull. 100, 327–333 (2015).

    CAS  PubMed  Google Scholar 

  83. 83.

    Lepere, C., Boucher, D., Jardillier, L., Domaizon, I. & Debroas, D. Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). Appl. Environ. Microbiol. 72, 2971–2981 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Jobard, M., Rasconi, S., Solinhac, L., Cauchie, H. M. & Sime-Ngando, T. Molecular and morphological diversity of fungi and the associated functions in three European nearby lakes. Environ. Microbiol. 14, 2480–2494 (2012).

    CAS  PubMed  Google Scholar 

  85. 85.

    Ishida, S., Nozaki, D., Grossart, H.-P. & Kagami, M. Novel basal, fungal lineages from freshwater phytoplankton and lake samples. Environ. Microbiol. Rep. 7, 435–441 (2015).

    PubMed  Google Scholar 

  86. 86.

    Panzer, K. et al. Identification of habitat-specific biomes of aquatic fungal communities using a comprehensive nearly full-length 18S rRNA dataset enriched with contextual data. PLOS ONE 10, e0134377 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Wurzbacher, C. et al. High habitat-specificity in fungal communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany). MycoKeys 16, 17–44 (2016).

    Google Scholar 

  88. 88.

    Lazarus, K. L. & James, T. Y. Surveying the biodiversity of the Cryptomycota using a targeted PCR approach. Fungal Ecol. 14, 62–70 (2015).

    Google Scholar 

  89. 89.

    Jeffries, T. C. et al. Partitioning of fungal assemblages across different marine habitats. Environ. Microbiol. Rep. 8, 235–238 (2016).

    PubMed  Google Scholar 

  90. 90.

    Wang, Y. et al. Distinct seasonality of chytrid-dominated benthic fungal communities in the neritic oceans (Bohai Sea and North Yellow Sea). Fungal Ecol. 30, 55–66 (2017).

    Google Scholar 

  91. 91.

    Naff, C. S., Darcy, J. L. & Schmidt, S. K. Phylogeny and biogeography of an uncultured clade of snow chytrids. Environ. Microbiol. 15, 2672–2680 (2013).

    CAS  PubMed  Google Scholar 

  92. 92.

    Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).

    CAS  PubMed  Google Scholar 

  93. 93.

    Rämä, T., Hassett, B. T. & Bubnova, E. Arctic marine fungi: from filaments and flagella to operational taxonomic units and beyond. Botanica Marina 60, 433–452 (2017).

    Google Scholar 

  94. 94.

    Gilbert, J. A. & Stephens, B. Microbiology of the built environment. Nat. Rev. Microbiol. 16, 661–670 (2018).

    CAS  PubMed  Google Scholar 

  95. 95.

    Babič, M. N., Zalar, P., Ženko, B., Džeroski, S. & Gunde-Cimerman, N. Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances. Fungal Ecol. 20, 30–39 (2016).

    Google Scholar 

  96. 96.

    Hervé, V., Leroy, B., Pires, A. D. S. & Lopez, P. J. Aquatic urban ecology at the scale of a capital: community structure and interactions in street gutters. ISME J. 12, 253–266 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Becker, J. G. & Shaw, C. G. Fungi in domestic sewage-treatment plants. Appl. Microbiol. 3, 173–180 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Evans, T. N. & Seviour, R. J. Estimating biodiversity of fungi in activated sludge communities using culture-independent methods. Microb. Ecol. 63, 773–786 (2012).

    PubMed  Google Scholar 

  99. 99.

    Chouari, R. et al. Eukaryotic molecular diversity at different steps of the wastewater treatment plant process reveals more phylogenetic novel lineages. World J. Microbiol. Biotechnol. 33, 44 (2017).

    PubMed  Google Scholar 

  100. 100.

    Hirakata, Y., Hatamoto, M., Oshiki, M., Araki, N. & Yamaguchi, T. in Frontiers International Conference on Wastewater Treatment and Modelling (ed. Mannina, G.) 218–224 (Springer International Publishing, 2017).

  101. 101.

    Miyaoka, Y., Hatamoto, M., Yamaguchi, T. & Syutsubo, K. Eukaryotic community shift in response to organic loading rate of an aerobic trickling filter (down-flow hanging sponge reactor) treating domestic sewage. Microb. Ecol. 73, 801–814 (2017).

    CAS  PubMed  Google Scholar 

  102. 102.

    Maza-Márquez, P. et al. Community structure, population dynamics and diversity of fungi in a full-scale membrane bioreactor (MBR) for urban wastewater treatment. Water Res. 105, 507–519 (2016).

    PubMed  Google Scholar 

  103. 103.

    Hofmann, U. et al. Evaluation of the applicability of the aquatic ascomycete Phoma sp. UHH 5-1-03 for the removal of pharmaceutically active compounds from municipal wastewaters using membrane bioreactors. Eng. Life Sci. 18, 510–519 (2018).

    CAS  Google Scholar 

  104. 104.

    Seppälä, S., Knop, D., Solomon, K. V. & O’Malley, M. A. The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown. Metab. Eng. 44, 45–59 (2017).

    PubMed  Google Scholar 

  105. 105.

    Zhou, W. et al. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl. Biochem. Biotechnol. 167, 214–228 (2012).

    CAS  PubMed  Google Scholar 

  106. 106.

    Letcher, P. M. et al. Characterization of amoeboaphelidium protococcarum, an algal parasite new to the cryptomycota isolated from an outdoor algal pond used for the production of biofuel. PLOS ONE 8, e56232 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Beyter, D. et al. Diversity, productivity and stability of an industrial microbial ecosystem. Appl. Environ. Microbiol. 82, 2494–2505 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Shurin, J. B. et al. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production. Ecol. Lett. 16, 1393–1404 (2013).

    PubMed  Google Scholar 

  109. 109.

    Carney, L. T. & Lane, T. W. Parasites in algae mass culture. Front. Microbiol. 5, 278 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Letcher, P. M. et al. Morphological, molecular, and ultrastructural characterization of Rozella rhizoclosmatii, a new species in Cryptomycota. Fungal Biol. 121, 1–10 (2017).

    CAS  PubMed  Google Scholar 

  111. 111.

    Lightner, D. V. & Redman, R. M. Shrimp diseases and current diagnostic methods. Aquaculture 164, 201–220 (1998).

    Google Scholar 

  112. 112.

    Nylund, S., Nylund, A., Watanabe, K., Arnesen, C. E. & Karlsbakk, E. Paranucleospora theridion n. gen., n. sp. (Microsporidia, Enterocytozoonidae) with a life cycle in the salmon louse (Lepeophtheirus salmonis, Copepoda) and Atlantic salmon (Salmo salar). J. Eukaryot. Microbiol. 57, 95–114 (2010).

    PubMed  Google Scholar 

  113. 113.

    Bartelme, R. P., Oyserman, B. O., Blom, J. E., Sepulveda-Villet, O. J. & Newton, R. J. Stripping away the soil: plant growth promoting microbiology opportunities in aquaponics. Front. Microbiol. 9, 8 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Nobu, M. K. et al. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J. 9, 1710–1722 (2015).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Zhdanova, N. N., Zakharchenko, V. A., Vember, V. V. & Nakonechnaya, L. T. Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol. Res. 104, 1421–1426 (2000).

    Google Scholar 

  116. 116.

    Neu, L. et al. Ugly ducklings-the dark side of plastic materials in contact with potable water. NPJ Biofilms Microbiomes 4, 7 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Kettner, M. T., Rojas-Jimenez, K., Oberbeckmann, S., Labrenz, M. & Grossart, H.-P. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ. Microbiol. 19, 4447–4459 (2017).

    CAS  PubMed  Google Scholar 

  118. 118.

    Arias-Andres, M., Klümper, U., Rojas-Jimenez, K. & Grossart, H.-P. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ. Pollut. 237, 253–261 (2018).

    CAS  PubMed  Google Scholar 

  119. 119.

    Herrero, N., Sánchez Márquez, S. & Zabalgogeazcoa, I. Mycoviruses are common among different species of endophytic fungi of grasses. Arch. Virol. 154, 327–330 (2009).

    CAS  PubMed  Google Scholar 

  120. 120.

    Nerva, L. et al. Multiple approaches for the detection and characterization of viral and plasmid symbionts from a collection of marine fungi. Virus Res. 219, 22–38 (2016).

    CAS  PubMed  Google Scholar 

  121. 121.

    Gulis, V. & Suberkropp, K. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquat. Microb. Ecol. 30, 149–157 (2003).

    Google Scholar 

  122. 122.

    Park, S. T., Collingwood, A. M., St-Hilaire, S. & Sheridan, P. P. Inhibition of batrachochytrium dendrobatidis caused by bacteria isolated from the skin of Boreal toads, Anaxyrus (Bufo) boreas boreas, from Grand Teton National Park, WY, USA. Microbiol. Insights 7, 1–8 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Mille-Lindblom, C. & Tranvik, L. J. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb. Ecol. 45, 173–182 (2003).

    CAS  PubMed  Google Scholar 

  124. 124.

    Schorn, S. & Cypionka, H. A. Crispy diet: grazers of achromatium oxaliferum in Lake Stechlin sediments. Microb. Ecol. 76, 584–587 (2018).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Bengtsson, G. Interactions between fungi, bacteria and beech leaves in a stream microcosm. Oecologia 89, 542–549 (1992).

    PubMed  Google Scholar 

  126. 126.

    Senga, M., Yabe, S., Nakamura, T. & Kagami, M. Influence of parasitic chytrids on the quantity and quality of algal dissolved organic matter (AOM). Water Res. 145, 346–353 (2018).

    CAS  PubMed  Google Scholar 

  127. 127.

    Deveau, A. et al. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352 (2018).

    CAS  PubMed  Google Scholar 

  128. 128.

    Corsaro, D. et al. New insights from molecular phylogenetics of amoebophagous fungi (Zoopagomycota, Zoopagales). Parasitol. Res. 117, 157–167 (2018).

    PubMed  Google Scholar 

  129. 129.

    Canter-Lund, H. & Lund, J. W. G. Freshwater Algae: their Microscopic World Explored (Biopress Ltd, Bristol, UK,1995).

  130. 130.

    Lee, S. S., Ha, J. K. & Cheng, K. J. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl. Environ. Microbiol. 66, 3807–3813 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Lueders, T., Wagner, B., Claus, P. & Friedrich, M. W. Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environ. Microbiol. 6, 60–72 (2004).

    CAS  PubMed  Google Scholar 

  132. 132.

    Song, C. et al. Molecular and chemical dialogues in bacteria-protozoa interactions. Sci. Rep. 5, 12837 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Gleason, F. H., Marano, A. V., Lilje, O. & Lange, L. What has happened to the “aquatic phycomycetes” (sensu Sparrow)? Part I: a brief historical perspective. Fungal Biol. Rev. 32, 26–33 (2018).

    Google Scholar 

  134. 134.

    Raghukumar, C. in Seaweed Taxonomic Identification, Aquaculture, Resource Environment, Fouling and Disease (ed. Tewari, A.) 366–385 (Central Salt and Marine Chemicals Research Institute, 2006).

  135. 135.

    Canter, H. M. & Lund, J. W. G. The parasitism of planktonic desmids by fungi. Österreichische Bot. Zeitschrift 116, 351–377 (1969).

    Google Scholar 

  136. 136.

    Hanic, L., Sekimoto, A. S. & Bates, S. S. Oomycete and chytrid infections of the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae) from Prince Edward Island, Canada. Botany 87, 1096–1105 (2009).

    CAS  Google Scholar 

  137. 137.

    Czeczuga, B., Godlewska, A. & Kozłowska, M. Zoosporic fungi growing on the carapaces of dead zooplankton organisms. Limnologica 30, 37–43 (2000).

    Google Scholar 

  138. 138.

    Willsey, T., Chatterton, S. & Cárcamo, H. Interactions of root-feeding insects with fungal and oomycete plant pathogens. Front. Plant Sci. 8, 1764 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Picard, K. T., Letcher, P. M. & Powell, M. J. Evidence for a facultative mutualist nutritional relationship between the green coccoid alga Bracteacoccus sp.(Chlorophyceae) and the zoosporic fungus Rhizidium phycophilum (Chytridiomycota). Fungal. Biol. 117, 319–328 (2013).

    Google Scholar 

  140. 140.

    Allen, J. L. et al. Allelopathic inhibition of primary producer growth and photosynthesis by aquatic fungi. Fungal Ecol. 29, 133–138 (2017).

    Google Scholar 

  141. 141.

    Hawksworth, D. L. in Aquatic Mycology across the Millennium (eds Hyde, K. D., Ho, W. & Pointing, S. B.) 1–7 (Fungal Diversity Press, 2000).

  142. 142.

    Hom, E. F. Y. & Murray, A. W. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science 345, 94 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Gomes, F. C. et al. The diversity and extracellular enzymatic activities of yeasts isolated from water tanks of Vriesea minarum, an endangered bromeliad species in Brazil, and the description of Occultifur brasiliensis fa, sp. nov. Antonie Van Leeuwenhoek 107, 597–611 (2015).

    CAS  PubMed  Google Scholar 

  144. 144.

    Marins, J. F. D. & Carrenho, R. Arbuscular mycorrhizal fungi and dark septate fungi in plants associated with aquatic environments. Acta Bot. Brasil. 31, 295–308 (2017).

    Google Scholar 

  145. 145.

    Suryanarayanan, T. S., Kumaresan, V. & Johnson, J. A. Foliar fungal endophytes from two species of the mangrove Rhizophora. Can. J. Microbiol. 44, 1003–1006 (1998).

    CAS  Google Scholar 

  146. 146.

    Viterbo, A. & Horwitz, B. in Cellular and Molecular Biology of Filamentous Fungi (eds Borkovich, K. & Ebbole, D.) 676–693 (ASM Press, Washington, 2010).

  147. 147.

    Letcher, P. M. Morphology, ultrastructure, and molecular phylogeny of Rozella multimorpha, a new species in cryptomycota. J. Eukaryot. Microbiol. 65, 180–190 (2018).

    CAS  PubMed  Google Scholar 

  148. 148.

    Howe, M. J. & Suberkropp, K. Effects of mycoparasitism on an aquatic hyphomycete growing on leaf litter. Mycologia 85, 898–901 (1993).

    Google Scholar 

  149. 149.

    Skerratt, L. F. et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. Ecohealth 4, 125 (2007).

    Google Scholar 

  150. 150.

    Ebert, D. Ecology, Epidemiology, and Evolution of Parasitism in Daphnia (National Center for Biotechnology Information, Bethesda (MD), US, 2005).

  151. 151.

    Johnson, P. T. J., Ives, A. R., Lathrop, R. C. & Carpenter, S. R. Long-term disease dynamics in lakes: causes and consequences of chytrid infections in Daphnia populations. Ecology 90, 132–144 (2009).

    PubMed  Google Scholar 

  152. 152.

    Yarden, O. Fungal association with sessile marine invertebrates. Front. Microbiol. 5, 228–228 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Whisler, H. C., Zebold, S. L. & Shemanchuk, J. A. Life history of Coelomomyces psorophorae. Proc. Natl Acad. Sci. USA 72, 693–696 (1975).

    CAS  PubMed  Google Scholar 

  154. 154.

    Kagami, M., von Elert, E., Ibelings, B. W., de Bruin, A. & Van Donk, E. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc. Biol. Sci. 274, 1561–1566 (2007).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Schmeller, D. S. et al. Microscopic aquatic predators strongly affect infection dynamics of a globally emerged pathogen. Curr. Biol. 24, 176–180 (2014).

    CAS  PubMed  Google Scholar 

  156. 156.

    McCreadie, J. W., Adler, P. H. & Beard, C. E. Ecology of symbiotes of larval black flies (diptera: simuliidae): distribution, diversity, and scale. Environ. Entomol. 40, 289–302 (2011).

    Google Scholar 

  157. 157.

    Lichtwardt, R. W. The Trichomycetes: Fungal Associates of Arthropods (Springer-Verlag, NY, 1986).

    Google Scholar 

  158. 158.

    Wijayawardene, N. N. et al. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). Fungal Divers. 92, 43–129 (2018).

    Google Scholar 

  159. 159.

    Paterson, R. A. Observations on two species of Rhizophydium from Northern Michigan. Mycol. Res. 46, 530–536 (1963).

    Google Scholar 

  160. 160.

    Chamberlain, S. A., Bronstein, J. L. & Rudgers, J. A. How context dependent are species interactions? Ecol. Lett. 17, 881–890 (2014).

    PubMed  Google Scholar 

  161. 161.

    Thompson, J. N. The Geographic Mosaic of Coevolution (Chicago Univ. Press, 2005).

  162. 162.

    Anderson, J. L. & Shearer, C. A. Population genetics of the aquatic fungus tetracladium marchalianum over space and time. PLOS ONE 6, e15908 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Gleason, F. H. et al. Ecological functions of zoosporic hyperparasites. Front. Microbiol. 5, 244 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. 164.

    Parratt, S. R. & Laine, A.-L. The role of hyperparasitism in microbial pathogen ecology and evolution. ISME J. 10, 1815–1822 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Lefèvre, E., Letcher, P. M. & Powell, M. J. Temporal variation of the small eukaryotic community in two freshwater lakes: emphasis on zoosporic fungi. Aquat. Microb. Ecol. 67, 91–105 (2012).

    Google Scholar 

  166. 166.

    Lepelletier, F. et al. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates. Protist 165, 230–244 (2014).

    PubMed  Google Scholar 

  167. 167.

    Gutiérrez, D. et al. Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Appl. Environ. Microbiol. 78, 8547–8554 (2012).

    PubMed  PubMed Central  Google Scholar 

  168. 168.

    Gleason, F. H., Kagami, M., Lefèvre, E. & Sime-Ngando, T. The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biol. Rev. 22, 17–25 (2008).

    Google Scholar 

  169. 169.

    Sime-Ngando, T. Phytoplankton chytridiomycosis: fungal parasites of phytoplankton and their imprints on the food web dynamics. Front. Microbiol. 12, 361 (2012).

    Google Scholar 

  170. 170.

    Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. Algal diseases: spotlight on a black box. Trends Plant Sci. 15, 633–640 (2010).

    CAS  PubMed  Google Scholar 

  171. 171.

    Harms, H., Schlosser, D. & Wick, L. Y. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 9, 177–192 (2011).

    CAS  PubMed  Google Scholar 

  172. 172.

    Suberkropp, K. & Klug, M. J. The maceration of deciduous leaf litter by aquatic hyphomycetes. Can. J. Bot. 58, 1025–1031 (1980).

    CAS  Google Scholar 

  173. 173.

    Crowther, T. W. & Grossart, H.-P. in Trophic Ecology: Bottom-Up and Top-Down Interactions Across Aquatic and Terrestrial Systems (eds Hanley, T. C. & La Pierre, K. J.) 260–287 (Cambridge Univ. Press, 2015).

  174. 174.

    Grami, B. et al. Functional effects of parasites on food web properties during the spring diatom bloom in Lake Pavin: a linear inverse modeling analysis. PLOS ONE 6, e23273 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Bochdansky, A. B., Clouse, M. A. & Herndl, G. J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 11, 362–373 (2017).

    PubMed  Google Scholar 

  176. 176.

    Scholz, B., Küpper, F. C., Vyverman, W. & Karsten, U. Eukaryotic pathogens (Chytridiomycota and Oomycota) infecting marine microphytobenthic diatoms–a methodological comparison. J. Phycol. 50, 1009–1019 (2014).

    PubMed  Google Scholar 

  177. 177.

    Attermeyer, K., Premke, K., Hornick, T., Hilt, S. & Grossart, H.-P. Ecosystem-level studies of terrestrial carbon reveal contrasting bacterial metabolism in different aquatic habitats. Ecology 94, 2754–2766 (2013).

    PubMed  Google Scholar 

  178. 178.

    Brouard, O. et al. Understorey environments influence functional diversity in tank-bromeliad ecosystems. Freshw. Biol. 57, 815–823 (2012).

    Google Scholar 

  179. 179.

    Dethier, M. N. Degrading detritus: changes in food quality of aging kelp tissue varies with species. J. Exp. Mar. Biol. Ecol. 460, 72–79 (2014).

    Google Scholar 

  180. 180.

    Raja, H. A., Shearer, C. A. & Tsui, C. K.-M. Freshwater fungi. eLS (2018).

    Article  Google Scholar 

  181. 181.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    Google Scholar 

  182. 182.

    Biswas, S. & Wagner, H. Landscape contrast: a solution to hidden assumptions in the metacommunity concept? Landscape Ecol. 27, 621–631 (2012).

    Google Scholar 

  183. 183.

    Battin, T. J., Wille, A., Psenner, R. & Richter, A. Large-scale environmental controls on microbial biofilms in high-alpine streams. Biogeosciences 1, 159–171 (2004).

    CAS  Google Scholar 

  184. 184.

    Ortiz-Álvarez, R., Triadó-Margarit, X., Camarero, L., Casamayor, E. O. & Catalan, J. High planktonic diversity in mountain lakes contains similar contributions of autotrophic, heterotrophic and parasitic eukaryotic life forms. Sci. Rep. 8, 4457 (2018).

    PubMed  PubMed Central  Google Scholar 

  185. 185.

    Miura, A. & Urabe, J. Changes in epilithic fungal communities under different light conditions in a river: a field experimental study. Limnol. Oceanogr. 62, 579–591 (2017).

    Google Scholar 

  186. 186.

    Fabian, J. et al. Environmental control on microbial turnover of leaf carbon in streams – ecological function of phototrophic-heterotrophic interactions. Front. Microbiol. 9, 1044 (2018).

    PubMed  PubMed Central  Google Scholar 

  187. 187.

    Mohamed, D. J. & Martiny, J. B. H. Patterns of fungal diversity and composition along a salinity gradient. ISME J. 5, 379–388 (2011).

    PubMed  Google Scholar 

  188. 188.

    Junk, W. J., Bayley, P. B. & Sparks, R. E. in Proceedings of the International Large River Symposium (LARS) (ed. Dodge, D. P.) 110–127 (Canadian Special Publication of Fisheries and Aquatic Sciences, 1989).

  189. 189.

    Cole, J. J. et al. Differential support of lake food webs by three types of terrestrial organic carbon. Ecol. Lett. 9, 558–568 (2006).

    PubMed  Google Scholar 

  190. 190.

    Rösel, S., Rychla, A., Wurzbacher, C. & Grossart, H.-P. Effects of pollen leaching and microbial degradation on organic carbon and nutrient availability in lake water. Aquat. Sci. 74, 87–99 (2012).

    Google Scholar 

  191. 191.

    Sommer, U. et al. Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43, 429–448 (2012).

    Google Scholar 

  192. 192.

    Truong, C. et al. How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytol. 214, 913–919 (2017).

    PubMed  Google Scholar 

  193. 193.

    Tkacz, A., Hortala, M. & Poole, P. S. Absolute quantitation of microbiota abundance in environmental samples. Microbiome 6, 110 (2018).

    PubMed  PubMed Central  Google Scholar 

  194. 194.

    West, P. T., Probst, A., Grigoriev, I. V., Thomas, B. C. & Banfield, J. F. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res. 28, 569–580 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Ahrendt, S. R. et al. Leveraging single-cell genomics to expand the fungal tree of life. Nat. Microbiol. 3, 1417–1428 (2018).

    CAS  PubMed  Google Scholar 

  196. 196.

    Garcia, S. L. et al. Model communities hint at promiscuous metabolic linkages between ubiquitous free-living freshwater bacteria. mSphere 3, e00202-18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197.

    Mondo, S. J. et al. Widespread adenine N6-methylation of active genes in fungi. Nat. Genet. 49, 964–968 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. 198.

    Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. 199.

    Haag, K. L. et al. Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites. Proc. Natl Acad. Sci. USA 111, 15480–15485 (2014).

    CAS  PubMed  Google Scholar 

  200. 200.

    Agha, R., Gross, A., Gerphagnon, M., Rohrlack, T. & Wolinska, J. Fitness and eco-physiological response of a chytrid fungal parasite infecting planktonic cyanobacteria to thermal and host genotype variation. Parasitology 145, 1279–1286 (2018).

    PubMed  Google Scholar 

  201. 201.

    Orsi, W. D. Ecology and evolution of seafloor and subseafloor microbial communities. Nat. Rev. Microbiol. 16, 671–683 (2018).

    CAS  PubMed  Google Scholar 

  202. 202.

    Wankel, S. D. et al. Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments. Nat. Commun. 8, 15595 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Drake, H. et al. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nat. Commun. 8, 55 (2017).

    PubMed  PubMed Central  Google Scholar 

  204. 204.

    Jobard, M., Rasconi, S. & Sime-Ngando, T. Fluorescence in situ hybridization of uncultured zoosporic fungi: Testing with clone-FISH and application to freshwater samples using CARD-FISH. J. Microbiol. Methods 83, 236–243 (2010).

    CAS  PubMed  Google Scholar 

  205. 205.

    Karpov, S. A. et al. Monoblepharidomycetes diversity includes new parasitic and saprotrophic species with highly intronized rDNA. Fungal Biol. 121, 729–741 (2017).

    CAS  PubMed  Google Scholar 

  206. 206.

    Turchetti, B. et al. Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov. Extremophiles 15, 573–586 (2011).

    CAS  PubMed  Google Scholar 

  207. 207.

    Frank, J. L., Coffan, R. A. & Southworth, D. Aquatic gilled mushrooms: Psathyrella fruiting in the Rogue River in southern Oregon. Mycologia 102, 93–107 (2010).

    CAS  PubMed  Google Scholar 

Download references


The authors thank J. Salazar for help designing the draft figures. H.P.G. was supported by Deutsche Forschungsgemeinschaft (DFG) grants GR1540/23-1 and GR1540/ 30–1, S.V.d.W. by DFG grant WY175/1-1 and M.C. by European Research Council (ERC) grant MYCO-CARB 772584. They thank the reviewers for their valuable comments and suggestions.

Reviewer information

Nature Reviews Microbiology thanks L. Tedersoo and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information




H.P.G. researched data for the article. H.P.G., S.V.d.W., M.K., C.W., M.C. and K.R-J. wrote the article, contributed substantially to discussion of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Hans-Peter Grossart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information



Fungi that are well adapted and constantly active in aquatic habitats.

Periodic immigrants

Fungi that are less adapted to and only periodically active in aquatic habitats.

Versatile immigrants

Fungi that are little adapted to and only sporadically active in aquatic habitats.

Carbon pump

A mechanism whereby atmospheric carbon is sequestered by vertical transfer to deep waters and sediments.

Short-term disturbances

Pulsed event-based disturbances referring to strong single events such as storms and droughts.

Long-term anthropogenic disturbances

Gradually increasing press disturbances such as global climate change or urbanization, both leading to species loss and shifts in community composition.


A fungus in symbiosis with a vascular plant via the root in the rhizosphere.


Fungi parasitizing on other fungi.


Parasites of a host that is also a parasite.

Precursor rRNA

The precursor ribosomal RNA (rRNA) is a prespliced, full-length transcribed ribosomal operon including all functional and spacer regions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grossart, HP., Van den Wyngaert, S., Kagami, M. et al. Fungi in aquatic ecosystems. Nat Rev Microbiol 17, 339–354 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing