Methane is a key compound in the global carbon cycle that influences both nutrient cycling and the Earth’s climate. A limited number of microorganisms control the flux of biologically generated methane, including methane-metabolizing archaea that either produce or consume methane. Methanogenic and methanotrophic archaea belonging to the phylum Euryarchaeota share a genetically similar, interrelated pathway for methane metabolism. The key enzyme in this pathway, the methyl-coenzyme M reductase (Mcr) complex, catalyses the last step in methanogenesis and the first step in methanotrophy. The discovery of mcr and divergent mcr-like genes in new euryarchaeotal lineages and novel archaeal phyla challenges long-held views of the evolutionary origin of this metabolism within the Euryarchaeota. Divergent mcr-like genes have recently been shown to oxidize short-chain alkanes, indicating that these complexes have evolved to metabolize substrates other than methane. In this Review, we examine the diversity, metabolism and evolutionary history of mcr-containing archaea in light of these recent discoveries.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Reeburgh, W. Biogeochemistry, oceanic methane. Chem. Rev. 107, 486–513 (2007).

  2. 2.

    Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).

  3. 3.

    Thauer, R., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008). This paper presents a comprehensive review of the biochemical mechanisms that methanogens use for methanogenesis.

  4. 4.

    McGlynn, S. E. Energy metabolism during anaerobic methane oxidation in ANME archaea. Microbes Environ. 32, 5–13 (2017).

  5. 5.

    Timmers, P. et al. Reverse methanogenesis and respiration in methanotrophic archaea. Archaea 2017, 1654237 (2017).

  6. 6.

    Cord-Ruwisch, R., Seitz, H. & Conrad, R. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149, 350–357 (1988).

  7. 7.

    Sieber, J. R., McInerney, M. J. & Gunsalus, R. P. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu. Rev. Microbiol. 66, 429–452 (2012).

  8. 8.

    Jackson, B. E. & McInerney, M. J. Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415, 454–456 (2002).

  9. 9.

    Hinrichs, K. & Boetius, A. in Ocean Margin System (eds Wefer, G., Billet, D., Hebbeln, D., Jørgensen, B. B. & Schlüter, M.) 457–477 (Springer, 2002).

  10. 10.

    Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewert, P. G. & DeLong, E. F. Methane-consuming archaebacteria in marine sediments. Nature 398, 802–805 (1999).

  11. 11.

    Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

  12. 12.

    Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl Acad. Sci. USA 99, 7663–7668 (2002).

  13. 13.

    Holler, T. et al. Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction. Proc. Natl Acad. Sci. USA 108, E1484–E1490 (2011).

  14. 14.

    Murrell, J. in Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K.) 1953–1966 (Springer, 2010).

  15. 15.

    Adam, P., Borrel, G., Brochier-Armanet, C. & Gribaldo, S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 11, 2407–2425 (2017).

  16. 16.

    Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).

  17. 17.

    Nobu, M., Narihiro, T., Kuroda, K., Mei, R. & Liu, W. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 10, 2478–2487 (2016).

  18. 18.

    Bapteste, E., Brochier, C. & Boucher, Y. Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1, 353–363 (2005).

  19. 19.

    Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc. Natl Acad. Sci. USA 109, 20537–20542 (2012).

  20. 20.

    Enzmann, F., Mayer, F., Rother, M. & Holtmann, D. Methanogens: biochemical background and biotechnological applications. AMB Express 8, 1 (2018).

  21. 21.

    Sorokin, D. et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2, 1–11 (2017).

  22. 22.

    Borrel, G. et al. Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake. Int. J. Syst. Evol. Microbiol. 62, 1625–1629 (2012).

  23. 23.

    Brauer, S. L., Cadillo-Quiroz, H., Yashiro, E., Yavitt, J. B. & Zinder, S. H. Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442, 192–194 (2006).

  24. 24.

    Boone, D. R. et al. Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int. J. Syst. Bacteriol. 43, 430–437 (1993).

  25. 25.

    Sprenger, W. W., van Belzen, M. C., Rosenberg, J., Hackstein, J. H. & Keltjens, J. T. Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int. J. Syst. Evol. Microbiol. 50, 1989–1999 (2000).

  26. 26.

    Dridi, B., Fardeau, M.-L., Ollivier, B., Raoult, D. & Drancourt, M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62, 1902–1907 (2012).

  27. 27.

    Ma, K., Liu, X. & Dong, X. Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. Int. J. Syst. Evol. Microbiol. 56, 127–131 (2006).

  28. 28.

    Mayumi, D. et al. Methane production from coal by a single methanogen. Science 354, 222–225 (2016). This paper demonstrates methanogenesis by a methanogen directly from coal rather than by reliance on bacterial fermentation end products.

  29. 29.

    Sakai, S. et al. Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl. Environ. Microbiol. 73, 4326–4331 (2007).

  30. 30.

    Jabłonski, S., Rodowicz, P. & Łukaszewicz, M. Methanogenic archaea database containing physiological and biochemical characteristics. Int. J. Syst. Evol. Microbiol. 65, 1360–1368 (2015).

  31. 31.

    Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144, 2377–2406 (1998).

  32. 32.

    Thauer, R. K. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr. Opin. Microbiol. 14, 292–299 (2011).

  33. 33.

    Ermler, U., Grabarse, W., Shima, S., Goubeaud, M. & Thauer, R. K. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278, 1457–1462 (1997).

  34. 34.

    Zheng, K., Ngo, P. D., Owens, V. L., Yang, X. P. & Mansoorabadi, S. O. The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Science 354, 339–342 (2016).

  35. 35.

    Moore, S. J. et al. Elucidation of the biosynthesis of the methane catalyst coenzyme F430. Nature 543, 78–82 (2017).

  36. 36.

    Wongnate, T. & Ragsdale, S. W. The reaction mechanism of methyl-coenzyme M reductase. J. Biol. Chem. 290, 9322–9334 (2015).

  37. 37.

    Wongnate, T. et al. The radical mechanism of biological methane synthesis by methylcoenzyme M reductase. Science 352, 953–958 (2016).

  38. 38.

    Springer, E., Sachs, M. S., Woese, C. R. & Boone, D. R. Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. Int. J. Syst. Evol. Microbiol. 45, 554–559 (1995).

  39. 39.

    Luton, P. E., Wayne, J. M., Sharp, R. J. & Riley, P. W. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148, 3521–3530 (2002).

  40. 40.

    Girguis, P. R., Orphan, V. J., Hallam, S. J. & DeLong, E. F. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl. Environ. Microbiol. 69, 5472–5482 (2003).

  41. 41.

    Friedrich, M. W. Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods Enzym. 397, 428–442 (2005).

  42. 42.

    Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009).

  43. 43.

    Evans, P. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015). This is the first study to show that mcr is present in archaea other than the Euryarchaeota.

  44. 44.

    Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 16170 (2016).

  45. 45.

    Laso-Pérez, R. et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539, 396–401 (2016). This paper describes the first cultivation of mcr-containing an archaeon that oxidizes alkanes rather than forming or oxidizing methane.

  46. 46.

    Garcia, J. L., Patel, B. K. C. & Ollivier, B. Taxanomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6, 205–226 (2000).

  47. 47.

    Liu, Y. C. & Whitman, W. B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. NY Acad. Sci. 1125, 171–189 (2008).

  48. 48.

    Hoedt, E. et al. Differences downunder: alcohol-fueled methanogenesis in the foregut of the Australian Macropdids. ISME J. 10, 2376–2388 (2016).

  49. 49.

    Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).

  50. 50.

    Ragsdale, S. W. Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann. NY Acad. Sci. 1125, 129–136 (2008).

  51. 51.

    Hippler, B. & Thauer, R. K. The energy conserving methyltetrahydromethanopterin:coenzyme M methyltransferase complex from methanogenic archaea: function of the subunit MtrH. FEBS Lett. 449, 165–168 (1999).

  52. 52.

    Gottschalk, G. & Thauer, R. K. The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim. Biophys. Acta 1505, 28–36 (2001).

  53. 53.

    Welander, P. V. & Metcalf, W. W. Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway. Proc. Natl Acad. Sci. USA 102, 10664–10669 (2005).

  54. 54.

    Kaster, A.-K., Moll, J., Parey, K. & Thauer, R. K. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc. Natl Acad. Sci. USA 108, 2981–2986 (2011).

  55. 55.

    Lie, T. J. et al. Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis. Proc. Natl Acad. Sci. USA 109, 15473–15478 (2012).

  56. 56.

    Schlegel, K., Leone, V., Faraldo-Gómez, J. D. & Müller, V. Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proc. Natl Acad. Sci. USA 109, 947–952 (2012).

  57. 57.

    Grüber, G., Manimekalai, M. S. S., Mayer, F. & Müller, V. ATP synthases from archaea: the beauty of a molecular motor. Biochim. Biophys. Acta 1837, 940–952 (2014).

  58. 58.

    Wagner, T., Wegner, C.-E., Kahnt, J., Ermler, U. & Shima, S. Phylogenetic and structural comparisons of the three types of methyl-coenzyme M reductase from Methanococcales and Methanobacteriales. J. Bacteriol. 199, e00197-17 (2017).

  59. 59.

    Fricke, W. F. et al. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J. Bacteriol. 188, 642–658 (2006).

  60. 60.

    Fournier, G. Horizontal gene transfer and the evolution of methanogenic pathways. Methods Mol. Biol. 532, 163–179 (2009).

  61. 61.

    Welte, C. & Deppenmeier, U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim. Biophys. Acta 1837, 1130–1147 (2014).

  62. 62.

    Ferry, J. G. Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr. Opin. Biotechnol. 22, 351–357 (2011).

  63. 63.

    Welte, C. & Deppenmeier, U. Membrane-bound electron transport in Methanosaeta thermophila. J. Bacteriol. 193, 2868–2870 (2011).

  64. 64.

    Schlegel, K. & Müller, V. Evolution of Na+ and H+ bioenergetics in methanogenic archaea. Biochem. Soc. Trans. 41, 421–426 (2013).

  65. 65.

    Lang, K. et al. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of ‘Candidatus Methanoplasma termitum’. Appl. Environ. Microbiol. 81, 1338–1352 (2015).

  66. 66.

    Borrel, G. et al. Unique characteristics of the pyrrolysine system in the 7th order of methanogens: Implications for the evolution of a genetic code expansion cassette. Archaea 2014, 374146 (2014).

  67. 67.

    Kröninger, L., Berger, S., Welte, C. & Deppenmeier, U. Evidence for the involvement of two heterodisulfide reductases in the energy-conserving system of Methanomassiliicoccus luminyensis. FEBS J. 283, 472–483 (2016).

  68. 68.

    Welander, P. V. & Metcalf, W. W. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway. J. Bacteriol. 190, 1928–1936 (2008).

  69. 69.

    Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA 113, 12792–12796 (2016).

  70. 70.

    Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009).

  71. 71.

    Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013). This is a metagenomic study of ANME methanotrophs that reduce nitrate. The results imply that the global carbon and nitrogen cycles are linked.

  72. 72.

    Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).

  73. 73.

    McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015). This paper shows interspecies electron transfer between ANME and sulfate-reducing bacterial partners using a combination of nanoscale secondary ion mass spectrometry and fluorescence in situ hybridization techniques.

  74. 74.

    Meyerdierks, A. et al. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ. Microbiol. 12, 422–439 (2010).

  75. 75.

    Wang, F.-P. et al. Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J. 8, 1069–1078 (2014).

  76. 76.

    Arshad, A. et al. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea. Front. Microbiol. 6, 1423 (2015).

  77. 77.

    Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–546 (2012).

  78. 78.

    Deppenmeier, U., Lienard, T. & Gottschalk, G. Novel Reactions involved in energy conservation by methanogeneic archaea. FEBS Lett. 457, 291–297 (1999).

  79. 79.

    Ferry, J. G. Methane from acetate. J. Bacteriol. 174, 5489–5495 (1992).

  80. 80.

    Hallam, S. J., Girguis, P. R., Preston, C. M., Richardson, P. M. & DeLong, E. F. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl. Environ. Microbiol. 69, 5483–5491 (2003).

  81. 81.

    Grobkopf, R., Janssen, P. H. & Liesack, W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl. Environ. Microbiol. 64, 960–969 (1998).

  82. 82.

    Kemnitz, D., Kolb, S. & Conrad, R. Phenotypic characterization of Rice Cluster III archaea without prior isolation by applying quantitative polymerase chain reaction to an enrichment culture. Environ. Microbiol. 7, 553–565 (2005).

  83. 83.

    Fry, J. C. et al. Prokaryotic populations and activities in an interbedded coal deposit, including a previously deeply buried section (1.6–2.3 km) above ~150 Ma basement rock. Geomicrobiol. J. 26, 163–178 (2009).

  84. 84.

    Steinberg, L. M. & Regan, J. M. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl. Environ. Microbiol. 74, 6663–6671 (2008).

  85. 85.

    Narihiro, T. et al. The impact of aridification and vegetation type on changes in the community structure of methane-cycling microorganisms in Japanese wetland soils. Biosci. Biotechnol. Biochem. 75, 1727–1734 (2011).

  86. 86.

    Li, W. et al. Microbial community characteristics of petroleum reservoir production water amended with n-alkanes and incubated under nitrate-, sulfate-reducing and methanogenic conditions. Int. Biodeterior. Biodegrad. 69, 87–96 (2012).

  87. 87.

    Biddle, J. et al. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J. 6, 1018–1031 (2012).

  88. 88.

    McKay, L. J., Hatzenpichler, R., Inskeep, W. P. & Fields, M. W. Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments. Sci. Rep. 7, 7252 (2017). This paper finds that there are many previously divergent mcr genes present in the environment, likely in archaeal lineages that are currently unrecognized.

  89. 89.

    Erkel, C., Kube, M., Reinhardt, R. & Liesack, W. Genome of Rice Cluster I archaea — the key methane producers in the rice rhizosphere. Science 313, (370–372 (2006).

  90. 90.

    Mondav, R. et al. Discovery of a novel methanogen prevalent in thawing permafrost. Nat. Commun. 5, 3212 (2014).

  91. 91.

    He, Y. et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat. Microbiol. 1, 16035 (2016).

  92. 92.

    Kubo, K. et al. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J. 6, 1949–1965 (2012).

  93. 93.

    Gagen, E. J., Huber, H., Meador, T., Hinrichs, K.-U. & Thomm, M. Novel cultivation-based approach to understanding the Miscellaneous Crenarchaeotic Group (MCG) archaea from sedimentary ecosystems. Appl. Environ. Microbiol. 79, 6400–6406 (2013).

  94. 94.

    Lazar, C. et al. Environmental controls on intragroup diversity of the uncultured benthic archaea of the Miscellaneous Crenarchaeotal Group lineage naturally enriched in anoxic sediments of the White Oak River Estuary (North Carolina, USA). Environ. Microbiol. 17, 2228–2238 (2015).

  95. 95.

    Lazar, C. S. et al. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ. Microbiol. 18, 1200–1211 (2016).

  96. 96.

    Colman, D. R., Poudel, S., Stamps, B. W., Boyd, E. S. & Spear, J. R. The deep, hot biosphere: Twenty-five years of retrospection. Proc. Natl Acad. Sci. USA 114, 6895–6903 (2017).

  97. 97.

    Spang, A., Caceres, E. F. & Ettema, T. J. G. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357, eaaf3883 (2017).

  98. 98.

    Mendes, S. D. et al. Marine microbes rapidly adapt to consume ethane, propane, and butane within the dissolved hydrocarbon plume of a natural seep. J. Geophys. Res. Oceans 120, 1937–1953 (2015).

  99. 99.

    Boyd, J., Woodcroft, B. & Tyson, G. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 46, e59 (2018).

  100. 100.

    Nunoura, T. et al. Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilin. Microbes Environ. 28, 228–235 (2013).

  101. 101.

    Gribaldo, S. & Brochier-Armanet, C. The origin and evolution of Archaea: a state of the art. Phil. Trans. R. Soc. 361, 1007–1022 (2006).

  102. 102.

    Ferry, J. G. & House, C. H. The stepwise evolution of early life driven by energy conservation. Mol. Biol. Evol. 23, 1286–1292 (2006).

  103. 103.

    Makarova, K. S., Sorokin, A. V., Novichkov, P. S., Wolf, Y. I. & Koonin, E. V. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol. Direct 2, 33 (2007).

  104. 104.

    Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Phil. Trans. R. Soc. 362, 1887–1925 (2007).

  105. 105.

    Kelly, S., Wickstead, B. & Gull, K. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc. Biol. Sci. 278, 1009–1018 (2011).

  106. 106.

    Liu, Y., Beer, L. L. & Whitman, W. B. Methanogens: a window into ancient sulfur metabolism. Trends Microbiol. 20, 251–258 (2012).

  107. 107.

    Davín, A. A. et al. Gene transfers can date the tree of life. Nat. Ecol. Evol. 2, 904–909 (2018).

  108. 108.

    Wolfe, J. M. & Fournier, G. P. Horizontal gene transfer constrains the timing of methanogen evolution. Nat. Ecol. Evol. 2, 897–903 (2018).

  109. 109.

    Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. USA 114, E4602–E4611 (2017). This paper demonstrates the usefulness of phylogenomic studies, specifically to understand the ancestral metabolic capabilities in archaea.

  110. 110.

    Petitjean, C., Deschamps, P., López-Garciá, P. & Moreira, D. Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Genome Biol. Evol. 7, 191–204 (2014).

  111. 111.

    Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil. Trans. R. Soc. B 364, 2197–2207 (2009).

  112. 112.

    Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).

  113. 113.

    Borrel, G., Adam, P. & Gribaldo, S. Methanogenesis and the Wood-Ljungdahl pathway: an ancient, versatile, and fragile association. Genome Biol. Evol. 8, 1706–1711 (2016).

  114. 114.

    Klenk, H. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997).

  115. 115.

    Müller, A. L., Kjeldsen, K. U., Rattei, T., Pester, M. & Loy, A. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME J. 9, 1152–1165 (2015).

  116. 116.

    Borrel, G. et al. Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol. Evol. 5, 1769–1780 (2013).

  117. 117.

    Mwirichia, R. et al. Metabolic traits of an uncultured archaeal lineage-MSBL1-from brine pools of the Red Sea. Sci. Rep. 6, 19181 (2016).

  118. 118.

    Baker, B. J. et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat. Microbiol. 1, 16002 (2016).

  119. 119.

    Adam, P. S., Borrel, G. & Gribaldo, S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. Proc. Natl Acad. Sci. USA 115, E1166–E1173 (2018).

  120. 120.

    Seitz, K. W., Lazar, C. S., Hinrichs, K. U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 10, 1696–1705 (2016).

  121. 121.

    Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 16034 (2016).

  122. 122.

    Rastogi, S. & Liberles, D. A. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol. Biol. 5, 28 (2005).

  123. 123.

    Petitjean, C., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Extreme deviations from expected evolutionary rates in archaeal protein families. Genome Biol. Evol. 9, 2791–2811 (2017).

  124. 124.

    Groussin, M. et al. Gene acquisitions from bacteria at the origins of major archaeal clades are vastly overestimated. Mol. Biol. Evol. 33, 305–310 (2016).

  125. 125.

    Becker, E. A. et al. Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. PLOS Genet. 10, e1004784 (2014).

  126. 126.

    Dombrowski, N., Seitz, K. W., Teske, A. P. & Baker, B. J. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 5, 106 (2017).

  127. 127.

    Sousa, F. et al. Early bioenergetic evolution. Phil. Trans. R. Soc. 368, 20130088 (2013).

  128. 128.

    Nayak, D. D. & Metcalf, W. W. Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans. Proc. Natl Acad. Sci. USA 114, 2976–2981 (2017). In this study, targeted transformation of genes into a methanogen using CRISPR–Cas9 establishes this technique for genetic manipulation in methanogens.

  129. 129.

    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

  130. 130.

    Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

  131. 131.

    Inagaki, F. et al. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl. Environ. Microbiol. 70, 7445–7455 (2004).

  132. 132.

    Losekann, T. et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl. Environ. Microbiol. 73, 3348–3362 (2007).

Download references


This work was supported by the Genomic Science Program of the US Department of Energy Office of Biological and Environmental Research, grants DE-FOA-0001458 and DE-SC0016440. P.N.E. is supported by Australian Research Council (ARC) Discovery Early Career Researcher Award 170100428. B.J.W. is supported by ARC Discovery Early Career Researcher Award 160100248. A.O.L. and J.A.B. are supported through ARC Postgraduate awards. P.H. is supported through an ARC Laureate Fellowship Award. G.W.T. is supported through a University of Queensland Vice Chancellor Research Focused Fellowship.

Author information


  1. Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia

    • Paul N. Evans
    • , Joel A. Boyd
    • , Andy O. Leu
    • , Ben J. Woodcroft
    • , Donovan H. Parks
    • , Philip Hugenholtz
    •  & Gene W. Tyson


  1. Search for Paul N. Evans in:

  2. Search for Joel A. Boyd in:

  3. Search for Andy O. Leu in:

  4. Search for Ben J. Woodcroft in:

  5. Search for Donovan H. Parks in:

  6. Search for Philip Hugenholtz in:

  7. Search for Gene W. Tyson in:


J.A.B, P.N.E., A.O.L., D.H.P., G.W.T. and B.J.W. researched data for the article. All authors contributed to discussion of the content, wrote the article and reviewed and edited the manuscript before submission.

Competing interests

The authors declare no conflicts of interest.

Corresponding author

Correspondence to Gene W. Tyson.



Archaea that gain energy by forming methane from 1-carbon and 2-carbon compounds such as CO2, acetate and methanol produced during microbial fermentation.

Syntrophic partners

Organisms that have a mutually beneficial relationship. In the case of methanogens, these organisms consume hydrogen produced by bacterial partners to form methane, which increases the energetic efficiency of biomass breakdown.

Anaerobic methanotrophy

The means by which archaea gain energy by the oxidation of methane to CO2 in anaerobic environments, with the electrons generated disposed of either by the reduction of inorganic electron acceptors or by transfer to a bacterial partner.


Refers to methanogens that use H2, and sometimes formate, as a source of electrons to reduce CO2 to methane in a stepwise reduction using cofactors such as methanofuran, tetrahydromethanopterin and coenzyme M.


Refers to methanogenesis that occurs by the dismutation of acetate to CO2 and transfer of a methyl group to the 1-carbon carrier tetrahydrosarcinapterin (H4SPT). The methyl-group–H4SPT complex is then reduced to methane.


Refers to methanogens with disproportionate methylated compounds such as methyl amine, methyl sulfide and methanol to form CO2 and methane. The oxidation of one molecule of these methylated compounds to CO2 via the 1-carbon carrier tetrahydrosarcinapterin provides electrons required to reduce further a three-methyl group to methane.

H2-dependent methylotrophic

A type of methanogenesis that occurs by the oxidation of methylated compounds to methane with electrons generated from H2 oxidation instead of by disproportionation of methyl groups to CO2.

About this article

Publication history