Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biofilm-associated infection by enterococci

An Author Correction to this article was published on 20 November 2018

This article has been updated

Abstract

Enterococci are ubiquitous members of the human gut microbiota and frequent causes of biofilm-associated opportunistic infections. Enterococci cause 25% of all catheter-associated urinary tract infections, are frequently isolated in wounds and are increasingly found in infective endocarditis, and all of these infections are associated with biofilms. Enterococcal biofilms are intrinsically tolerant to antimicrobials and thus are a serious impediment for treating infections. In this Review, we describe the spatiotemporal development of enterococcal biofilms and the factors that promote or inhibit biofilm formation. We discuss how the environment, including the host and other co-colonizing microorganisms, affects biofilm development. Finally, we provide an overview of current and future interventions to limit enterococcal biofilm-associated infections. Overall, enterococcal biofilms remain a pressing clinical problem, and there is an urgent need to better understand their development and persistence and to identify novel treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stages of biofilm development in enterococci.
Fig. 2: Differences and similarities between factors involved in E. faecalis and E. faecium biofilm formation.
Fig. 3: Interactions of enterococci with other species in polymicrobial biofilms.

Similar content being viewed by others

Change history

  • 20 November 2018

    In the section on initial attachment and in Figure 1 it was erroneously indicated that enterococcal surface protein (Esp) binds collagen and fibrinogen. The text and figure were changed to remove this binding interaction both online and in the pdf. The authors apologize for any confusion caused.

References

  1. Landete, J. M., Peiroten, A., Medina, M., Arques, J. L. & Rodriguez-Minguez, E. Virulence and antibiotic resistance of Enterococci isolated from healthy breastfed infants. Microb. Drug Resist. 24, 63–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Aslangul, E. et al. Acquired gentamicin resistance by permeability impairment in Enterococcus faecalis. Antimicrob. Agents Chemother. 50, 3615–3621 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abat, C., Raoult, D. & Rolain, J. M. Low level of resistance in Enterococci isolated in four hospitals, Marseille, France. Microb. Drug Resist. 22, 218–222 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Duez, C. et al. The penicillin resistance of Enterococcus faecalis JH2-2r results from an overproduction of the low-affinity penicillin-binding protein PBP4 and does not involve a psr-like gene. Microbiology 147, 2561–2569 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Murray, B. E. Vancomycin-resistant enterococci. Am. J. Med. 102, 284–293 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics 1–7 (WHO, 2017).

  7. Pillai, S. K. et al. Effects of glucose on fsr-mediated biofilm formation in Enterococcus faecalis. J. Infect. Dis. 190, 967–970 (2004).

    Article  CAS  Google Scholar 

  8. Keogh, D. et al. Enterococcal metabolite cues facilitate interspecies niche modulation and polymicrobial infection. Cell Host Microbe 20, 493–503 (2016). This paper shows that ornithine release by E. faecalis augments E. coli growth in iron-limiting environments by inducing siderophore production in the latter, increasing mixed-species biofilm biomass.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Samaranayake, Y. H. et al. Enteric gram-negative bacilli suppress Candida biofilms on Foley urinary catheters. APMIS 122, 47–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Wright, E., Neethirajan, S. & Weng, X. Microfluidic wound model for studying the behaviors of Pseudomonas aeruginosa in polymicrobial biofilms. Biotechnol. Bioengineer. 112, 2351–2359 (2015).

    Article  CAS  Google Scholar 

  11. Park, A. J. et al. A temporal examination of the planktonic and biofilm proteome of whole cell Pseudomonas aeruginosa PAO1 using quantitative mass spectrometry. Mol. Cell. Proteomics 13, 1095–1105 (2014).

    Article  CAS  Google Scholar 

  12. Klausen, M., Gjermansen, M., Kreft, J. U. & Tolker-Nielsen, T. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms. FEMS Microbiol. Lett. 261, 1–11 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. & Kolter, R. Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 11, 157–168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mielich-Suss, B. & Lopez, D. Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environ. Microbiol. 17, 555–565 (2015).

    Article  PubMed  Google Scholar 

  15. Dunny, G. M., Hancock, L. E. & Shankar, N. in Enterococci: From Commensals to Leading Causes of Drug Resistant Infection (ed. Gilmore, M. S.) (Massachusetts Eye and Ear Infirmary, Boston, 2014).

  16. Garsin, D. A. et al. in Enterococci: From Commensals to Leading Causes of Drug Resistant Infection (ed. Gilmore, M. S.) (Massachusetts Eye and Ear Infirmary, Boston, 2014).

  17. Nallapareddy, S. R. et al. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J. Clin. Invest. 116, 2799–2807 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bourgogne, A., Thomson, L. C. & Murray, B. E. Bicarbonate enhances expression of the endocarditis and biofilm associated pilus locus, ebpR-ebpABC, in Enterococcus faecalis. BMC Microbiol. 10, 17 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nallapareddy, S. R. et al. Conservation of Ebp-type pilus genes among Enterococci and demonstration of their role in adherence of Enterococcus faecalis to human platelets. Infect. Immun. 79, 2911–2920 (2011).

    Article  CAS  Google Scholar 

  20. Nallapareddy, S. R., Singh, K. V., Sillanpaa, J., Zhao, M. & Murray, B. E. Relative contributions of Ebp Pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect. Immun. 79, 2901–2910 (2011).

    Article  CAS  Google Scholar 

  21. Singh, K. V., Nallapareddy, S. R. & Murray, B. E. Importance of the ebp (endocarditis- and biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. J. Infect. Dis. 195, 1671–1677 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen, H. V. et al. The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection. MBio 3, e00177–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nielsen, H. V. et al. Pilin and sortase residues critical for endocarditis- and biofilm-associated pilus biogenesis in Enterococcus faecalis. J. Bacteriol. 195, 4484–4495 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mohamed, J. A., Teng, F., Nallapareddy, S. R. & Murray, B. E. Pleiotrophic effects of 2 Enterococcus faecalis sagA-like genes, salA and salB, which encode proteins that are antigenic during human infection, on biofilm formation and binding to collagen type i and fibronectin. J. Infect. Dis. 193, 231–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Rozdzinski, E., Marre, R., Susa, M., Wirth, R. & Muscholl-Silberhorn, A. Aggregation substance-mediated adherence of Enterococcus faecalis to immobilized extracellular matrix proteins. Microb. Pathog. 30, 211–220 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Sussmuth, S. D. et al. Aggregation substance promotes adherence, phagocytosis, and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst. Infect. Immun. 68, 4900–4906 (2000).

    Article  CAS  Google Scholar 

  27. Sillanpaa, J. et al. Characterization of the ebp(fm) pilus-encoding operon of Enterococcus faecium and its role in biofilm formation and virulence in a murine model of urinary tract infection. Virulence 1, 236–246 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Toledo-Arana, A. et al. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl. Environ. Microbiol. 67, 4538–4545 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shankar, N. et al. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect. Immun. 69, 4366–4372 (2001).

    Article  CAS  Google Scholar 

  30. Nallapareddy, S. R., Qin, X., Weinstock, G. M., Hook, M. & Murray, B. E. Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect. Immun. 68, 5218–5224 (2000).

    Article  CAS  Google Scholar 

  31. Nallapareddy, S. R., Singh, K. V., Duh, R. W., Weinstock, G. M. & Murray, B. E. Diversity of ace, a gene encoding a microbial surface component recognizing adhesive matrix molecules, from different strains of Enterococcus faecalis and evidence for production of ace during human infections. Infect. Immun. 68, 5210–5217 (2000).

    Article  CAS  Google Scholar 

  32. Kowalski, W. J. et al. Enterococcus faecalis adhesin, Ace, mediates attachment to particulate dentin. J. Endod 32, 634–637 (2006).

    Article  PubMed  Google Scholar 

  33. Singh, K. V., Nallapareddy, S. R., Sillanpaa, J. & Murray, B. E. Importance of the collagen adhesin ace in pathogenesis and protection against Enterococcus faecalis experimental endocarditis. PLOS Pathog. 6, e1000716 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lebreton, F. et al. Ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect. Immun. 77, 2832–2839 (2009).

    Article  CAS  Google Scholar 

  35. Waters, C. M. et al. An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol. Microbiol. 52, 1159–1171 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Johnson, J. R., Clabots, C., Hirt, H., Waters, C. & Dunny, G. Enterococcal aggregation substance and binding substance are not major contributors to urinary tract colonization by Enterococcus faecalis in a mouse model of ascending unobstructed urinary tract infection. Infect. Immun. 72, 2445–2448 (2004).

    Article  CAS  Google Scholar 

  37. Theilacker, C. et al. Glycolipids are involved in biofilm accumulation and prolonged bacteraemia in Enterococcus faecalis. Mol. Microbiol. 71, 1055–1069 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Monds, R. D. & O’Toole, G. A. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 17, 73–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Barnes, A. M. T. et al. Enterococcus faecalis readily colonizes the entire gastrointestinal tract and forms biofilms in a germ-free mouse model. Virulence 8, 282–296 (2017). This study shows E. faecalis biofilm colonization in the gut of germ-free mice, providing the first visual evidence of microcolony formation in vivo.

    Article  CAS  PubMed  Google Scholar 

  40. Dale, J. L., Nilson, J. L., Barnes, A. M. T. & Dunny, G. M. Restructuring of Enterococcus faecalis biofilm architecture in response to antibiotic-induced stress. NPJ Biofilms Microbiomes 3, 15 (2017). This paper shows that E. faecalis biofilms restructure in response to antibiotic stimuli and that this is linked to glycotransferases producing rhamnopolysaccharides.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Dale, J. L., Cagnazzo, J., Phan, C. Q., Barnes, A. M. & Dunny, G. M. Multiple roles for Enterococcus faecalis glycosyltransferases in biofilm-associated antibiotic resistance, cell envelope integrity, and conjugative transfer. Antimicrob. Agents Chemother. 59, 4094–4105 (2015). Screen of E. faecalis transposon mutants identifies that glycosyltransferases are important for biofilm formation in presence of antibiotics. Deletion of epaOX and epaI abrogates biofilm formation, sensitizes E. faecalis to daptomycin and reduces cell envelope stability by increasing CPRG hydrolysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barnes, A. M., Ballering, K. S., Leibman, R. S., Wells, C. L. & Dunny, G. M. Enterococcus faecalis produces abundant extracellular structures containing DNA in the absence of cell lysis during early biofilm formation. MBio 3, e00193–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guiton, P. S. et al. Contribution of autolysin and sortase a during Enterococcus faecalis DNA-dependent biofilm development. Infect. Immun. 77, 3626–3638 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thomas, V. C. et al. A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. Mol. Microbiol. 72, 1022–1036 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vorkapic, D., Pressler, K. & Schild, S. Multifaceted roles of extracellular DNA in bacterial physiology. Curr. Genet. 62, 71–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Gloag, E. S. et al. Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc. Natl Acad. Sci. USA 110, 11541–11546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fabretti, F. et al. Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect. Immun. 74, 4164–4171 (2006).

    Article  CAS  Google Scholar 

  48. Hufnagel, M., Koch, S., Creti, R., Baldassarri, L. & Huebner, J. A putative sugar-binding transcriptional regulator in a novel gene locus in Enterococcus faecalis contributes to production of biofilm and prolonged bacteremia in mice. J. Infect. Dis. 189, 420–430 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Creti, R., Koch, S., Fabretti, F., Baldassarri, L. & Huebner, J. Enterococcal colonization of the gastro-intestinal tract: role of biofilm and environmental oligosaccharides. BMC Microbiol. 6, 60 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bao, Y. et al. Role of mprF1 and mprF2 in the pathogenicity of Enterococcus faecalis. PLOS ONE 7, e38458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chong, K. K. L. et al. Enterococcus faecalis modulates immune activation and slows healing during wound infection. J. Infect. Dis. 216, 1644–1654 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Waters, C. M., Antiporta, M. H., Murray, B. E. & Dunny, G. M. Role of the Enterococcus faecalis GelE protease in determination of cellular chain length, supernatant pheromone levels, and degradation of fibrin and misfolded surface proteins. J. Bacteriol. 185, 3613–3623 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qin, X., Singh, K. V., Xu, Y., Weinstock, G. M. & Murray, B. E. Effect of disruption of a gene encoding an autolysin of Enterococcus faecalis OG1RF. Antimicrob. Agents Chemother. 42, 2883–2888 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kristich, C. J. et al. Development and use of an efficient system for random mariner transposon mutagenesis to identify novel genetic determinants of biofilm formation in the core Enterococcus faecalis genome. Appl. Environ. Microbiol. 74, 3377–3386 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hancock, L. E. & Perego, M. Systematic inactivation and phenotypic characterization of two-component signal transduction systems of Enterococcus faecalis V583. J. Bacteriol. 186, 7951–7958 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kristich, C. J., Li, Y. H., Cvitkovitch, D. G. & Dunny, G. M. Esp-independent biofilm formation by Enterococcus faecalis. J. Bacteriol. 186, 154–163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thurlow, L. R. et al. Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infect. Immun. 78, 4936–4943 (2010).

    Article  CAS  Google Scholar 

  58. Thomas, V. C., Thurlow, L. R., Boyle, D. & Hancock, L. E. Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J. Bacteriol. 190, 5690–5698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pinkston, K. L. et al. The Fsr quorum-sensing system of Enterococcus faecalis modulates surface display of the collagen-binding MSCRAMM Ace through regulation of gelE. J. Bacteriol. 193, 4317–4325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krasteva, P. V., Giglio, K. M. & Sondermann, H. Sensing the messenger: the diverse ways that bacteria signal through c-di-GMP. Protein Sci. 21, 929–948 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Camilli, A. & Bassler, B. L. Bacterial small-molecule signaling pathways. Science 311, 1113–1116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cook, L. C. & Federle, M. J. Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol. Rev. 38, 473–492 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Li, Y. H. & Tian, X. Quorum sensing and bacterial social interactions in biofilms. Sensors 12, 2519–2538 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cook, L. et al. Biofilm growth alters regulation of conjugation by a bacterial pheromone. Mol. Microbiol. 81, 1499–1510 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Antiporta, M. H. & Dunny, G. M. ccfA, the genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis OG1RF. J. Bacteriol. 184, 1155–1162 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dunny, G. M. The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: cell-cell signalling, gene transfer, complexity and evolution. Phil. Trans. R. Soc. Series B Biol. Sci. 362, 1185–1193 (2007).

    Article  CAS  Google Scholar 

  67. Chen, Y. et al. Mechanisms of peptide sex pheromone regulation of conjugation in Enterococcus faecalis. Microbiologyopen 6, e00492 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  68. Hirt, H. et al. Enterococcus faecalis sex pheromone cCF10 enhances conjugative plasmid transfer in vivo. MBio 9, e00037–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. An, F. Y., Sulavik, M. C. & Clewell, D. B. Identification and characterization of a determinant (eep) on the Enterococcus faecalis chromosome that is involved in production of the peptide sex pheromone cAD1. J. Bacteriol. 181, 5915–5921 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chandler, J. R. & Dunny, G. M. Characterization of the sequence specificity determinants required for processing and control of sex pheromone by the intramembrane protease Eep and the plasmid-encoded protein PrgY. J. Bacteriol. 190, 1172–1183 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Varahan, S., Iyer, V. S., Moore, W. T. & Hancock, L. E. Eep confers lysozyme resistance to enterococcus faecalis via the activation of the extracytoplasmic function sigma factor SigV. J. Bacteriol. 195, 3125–3134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Frank, K. L. et al. AhrC and Eep are biofilm infection-associated virulence factors in Enterococcus faecalis. Infect. Immun. 81, 1696–1708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Frank, K. L. et al. Evaluation of the Enterococcus faecalis biofilm-associated virulence factors AhrC and Eep in rat foreign body osteomyelitis and in vitro biofilm-associated antimicrobial resistance. PLOS ONE 10, e0130187 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Frank, K. L. et al. Use of recombinase-based in vivo expression technology to characterize Enterococcus faecalis gene expression during infection identifies in vivo-expressed antisense RNAs and implicates the protease Eep in pathogenesis. Infect. Immun. 80, 539–549 (2012).

    Article  CAS  Google Scholar 

  75. Ali, L. et al. Molecular mechanism of quorum-sensing in Enterococcus faecalis: its role in virulence and therapeutic approaches. Int. J. Mol. Sci. 18, 960 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  76. Hancock, L. E. & Perego, M. The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J. Bacteriol. 186, 5629–5639 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nakayama, J. et al. Revised model for Enterococcus faecalis fsr quorum-sensing system: the small open reading frame fsrD encodes the gelatinase biosynthesis-activating pheromone propeptide corresponding to staphylococcal agrd. J. Bacteriol. 188, 8321–8326 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shao, C. et al. LuxS-dependent AI-2 regulates versatile functions in Enterococcus faecalis V583. J. Proteome Res. 11, 4465–4475 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. He, Z. et al. Effect of the quorum-sensing luxS gene on biofilm formation by Enterococcus faecalis. Eur. J. Oral Sci. 124, 234–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Lim, S. Y., Teh, C. S. J. & Thong, K. L. Biofilm-related diseases and omics: global transcriptional profiling of Enterococcus faecium reveals different gene expression patterns in the biofilm and planktonic cells. OMICS 21, 592–602 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Sava, I. G., Heikens, E. & Huebner, J. Pathogenesis and immunity in enterococcal infections. Clin. Microbiol. Infect. 16, 533–540 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Hendrickx, A. P. et al. SgrA, a nidogen-binding LPXTG surface adhesin implicated in biofilm formation, and EcbA, a collagen binding MSCRAMM, are two novel adhesins of hospital-acquired Enterococcus faecium. Infect. Immun. 77, 5097–5106 (2009).

    Article  CAS  Google Scholar 

  83. Sillanpaa, J. et al. Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium. Microbiology 154, 3199–3211 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Montealegre, M. C. et al. Role of the Emp pilus subunits of Enterococcus faecium in biofilm formation, adherence to host extracellular matrix components, and experimental infection. Infect. Immun. 84, 1491–1500 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Almohamad, S., Somarajan, S. R., Singh, K. V., Nallapareddy, S. R. & Murray, B. E. Influence of isolate origin and presence of various genes on biofilm formation by Enterococcus faecium. FEMS Microbiol. Lett. 353, 151–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Heikens, E. et al. Contribution of the enterococcal surface protein Esp to pathogenesis of Enterococcus faecium endocarditis. Microbes Infect. 13, 1185–1190 (2011).

    CAS  Google Scholar 

  87. Top, J. et al. The Enterococcus faecium enterococcal biofilm regulator, EbrB, regulates the esp operon and is implicated in biofilm formation and intestinal colonization. PLOS ONE 8, e65224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Heikens, E. et al. Enterococcal surface protein Esp is not essential for cell adhesion and intestinal colonization of Enterococcus faecium in mice. BMC Microbiol. 9, 19 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Paganelli, F. L. et al. Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release. MBio 4, e00154 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kajfasz, J. K. et al. The Spx regulator modulates stress responses and virulence in Enterococcus faecalis. Infect. Immun. 80, 2265–2275 (2012).

    Article  CAS  Google Scholar 

  91. Pamp, S. J., Frees, D., Engelmann, S., Hecker, M. & Ingmer, H. Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococcus aureus. J. Bacteriol. 188, 4861–4870 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lebreton, F. et al. AsrR is an oxidative stress sensing regulator modulating Enterococcus faecium opportunistic traits, antimicrobial resistance, and pathogenicity. PLOS Pathog. 8, e1002834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gaca, A. O. et al. Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response. MBio 4, e00646–13 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Maisonneuve, E. & Gerdes, K. Molecular mechanisms underlying bacterial persisters. Cell 157, 539–548 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Durfee, T., Hansen, A. M., Zhi, H., Blattner, F. R. & Jin, D. J. Transcription profiling of the stringent response in. Escherichia coli. J. Bacteriol. 190, 1084–1096 (2008).

    CAS  PubMed  Google Scholar 

  96. Honsa, E. S. et al. RelA mutant Enterococcus faecium with multiantibiotic tolerance arising in an immunocompromised host. MBio 8, e02124–16 (2017). This paper uses consecutive sequencing of hospital VRE isolated from a patient undergoing antibiotic therapy to show the emergence of a missense mutation in relA resulting in elevated levels of the alarmone ppGpp and triggering the stringent response. The RelA mutant showed reduced biofilm formation than wild type but increased tolerance to antibiotics and was killed by only an experimental ClpP-activating antibiotic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu, S. et al. Variable persister gene interactions with (p)ppGpp for persister formation in Escherichia coli. Front. Microbiol. 8, 1795 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Komiyama, E. Y. et al. Enterococcus species in the oral cavity: prevalence, virulence factors and antimicrobial susceptibility. PLOS ONE 11, e0163001 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Soares, R. O., Fedi, A. C., Reiter, K. C., Caierao, J. & d’Azevedo, P. A. Correlation between biofilm formation and gelE, esp, and agg genes in Enterococcus spp. clinical isolates. Virulence 5, 634–637 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rosa, R. et al. Relationship between biofilm formation, the enterococcal surface protein (Esp) and gelatinase in clinical isolates of Enterococcus faecalis and Enterococcus faecium. FEMS Microbiol. Lett. 256, 145–150 (2006).

    Article  PubMed  CAS  Google Scholar 

  101. Torelli, R. et al. Different effects of matrix degrading enzymes towards biofilms formed by E. faecalis and E. faecium clinical isolates. Colloids Surf. B Biointerfaces 158, 349–355 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Hashem, Y. A., Amin, H. M., Essam, T. M., Yassin, A. S. & Aziz, R. K. Biofilm formation in enterococci: genotype-phenotype correlations and inhibition by vancomycin. Sci. Rep. 7, 5733 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Holmberg, A. & Rasmussen, M. Mature biofilms of Enterococcus faecalis and Enterococcus faecium are highly resistant to antibiotics. Diagn. Microbiol. Infect. Dis. 84, 19–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Billings, N. et al. The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLOS Pathog. 9, e1003526 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lister, J. L. & Horswill, A. R. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 4, 178 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rossmann, F. S. et al. Phage-mediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing. PLOS Pathog. 11, e1004653 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McCormick, J. K., Tripp, T. J., Dunny, G. M. & Schlievert, P. M. Formation of vegetations during infective endocarditis excludes binding of bacterial-specific host antibodies to Enterococcus faecalis. J. Infect. Dis. 185, 994–997 (2002).

    Article  PubMed  Google Scholar 

  108. Seneviratne, C. J. et al. Transcriptomics analysis reveals putative genes involved in biofilm formation and biofilm-associated drug resistance of Enterococcus faecalis. J. Endodont. 43, 949–955 (2017).

    Article  Google Scholar 

  109. Shettigar, K., Bhat, D. V., Satyamoorthy, K. & Murali, T. S. Severity of drug resistance and co-existence of Enterococcus faecalis in diabetic foot ulcer infections. Folia Microbiol. 63, 115–122 (2018).

    Article  CAS  Google Scholar 

  110. La Rosa, S. L., Montealegre, M. C., Singh, K. V. & Murray, B. E. Enterococcus faecalis Ebp pili are important for cell-cell aggregation and intraspecies gene transfer. Microbiology 162, 798–802 (2016).

    Article  PubMed  CAS  Google Scholar 

  111. Bhatty, M. et al. Enterococcus faecalis pCF10-encoded surface proteins PrgA, PrgB (aggregation substance) and PrgC contribute to plasmid transfer, biofilm formation and virulence. Mol. Microbiol. 95, 660–677 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Weigel, L. M. et al. High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob. Agents Chemother. 51, 231–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Werner, G. et al. Host range of enterococcal vanA plasmids among Gram-positive intestinal bacteria. J. Antimicrob. Chemother. 66, 273–282 (2010).

    Article  PubMed  CAS  Google Scholar 

  114. Dworniczek, E. et al. Enterococcus in wound infections: virulence and antimicrobial resistance. Acta Microbiol. Immunol. Hung. 59, 263–269 (2012).

    Article  CAS  Google Scholar 

  115. Giacometti, A. et al. Epidemiology and microbiology of surgical wound infections. J. Clin. Microbiol. 38, 918–922 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Azevedo, A. S., Almeida, C., Melo, L. F. & Azevedo, N. F. Interaction between atypical microorganisms and E. coli in catheter-associated urinary tract biofilms. Biofouling 30, 893–902 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Macleod, S. M. & Stickler, D. J. Species interactions in mixed-community crystalline biofilms on urinary catheters. J. Med. Microbiol. 56, 1549–1557 (2007).

    Article  PubMed  Google Scholar 

  118. Galvan, E. M., Mateyca, C. & Ielpi, L. Role of interspecies interactions in dual-species biofilms developed in vitro by uropathogens isolated from polymicrobial urinary catheter-associated bacteriuria. Biofouling 32, 1067–1077 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Holá, V., Ruzicka, F. & Horka, M. Microbial diversity in biofilm infections of the urinary tract with the use of sonication techniques. FEMS Immunol. Med. Microbiol. 59, 525–528 (2010).

    Article  PubMed  CAS  Google Scholar 

  120. Wolcott, R. D. et al. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing. Wound Repair Regen. 24, 163–174 (2016).

    Article  PubMed  Google Scholar 

  121. Bowler, P., Duerden, B. & Armstrong, D. G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 14, 244–269 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Citron, D. M., Goldstein, E. J., Merriam, C. V., Lipsky, B. A. & Abramson, M. A. Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J. Clin. Microbiol. 45, 2819–2828 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Han, S. K., Shin, M. S., Park, H. E., Kim, S. Y. & Lee, W. K. Screening of bacteriocin-producing Enterococcus faecalis strains for antagonistic activities against Clostridium perfringens. Korean J. Food Sci. Anim. Resour. 34, 614–621 (2014).

    Article  Google Scholar 

  124. Krüger, M., Shehata, A. A., Schrödl, W. & Rodloff, A. Glyphosate suppresses the antagonistic effect of Enterococcus spp. on Clostridium botulinum. Anaerobe 20, 74–78 (2013).

    Article  PubMed  CAS  Google Scholar 

  125. Suzuki, N. et al. Enterococcus faecium WB2000 inhibits biofilm formation by oral cariogenic Streptococci. Int. J. Dent. 2011, 834151 (2011).

    Article  CAS  Google Scholar 

  126. Cruz, M. R., Graham, C. E., Gagliano, B. C., Lorenz, M. C. & Garsin, D. A. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect. Immun. 81, 189–200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Graham, C. E., Cruz, M. R., Garsin, D. A. & Lorenz, M. C. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc. Natl Acad. Sci. USA 114, 4507–4512 (2017). This paper shows that E. faecalis antagonizes C. albicans across kingdoms as a result of E. faecalis inhibition of C. albicans hyphal morphogenesis and biofilm formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hughes, E. R. & Winter, S. E. Enterococcus faecalis: E. coli’s siderophore-inducing sidekick. Cell Host Microbe 20, 411–412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tien, B. Y. Q. et al. Enterococcus faecalis promotes innate immune suppression and polymicrobial catheter-associated urinary tract infection. Infect. Immun. 85, e00378–17 (2017). This paper shows that E. faecalis suppresses immune responses to E. coli in vitro and in vivo, promoting the virulence of otherwise non-pathogenic E. coli in a mixed species CAUTI infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Laganenka, L. & Sourjik, V. Autoinducer 2-dependent Escherichia coli biofilm formation is enhanced in a dual-species co-culture. Appl. Environ. Microbiol. 84, e02638–17 (2017).

    Google Scholar 

  131. Mottola, C. et al. Polymicrobial biofilms by diabetic foot clinical isolates. Folia Microbiol. (Praha) 61, 35–43 (2016).

    Article  CAS  Google Scholar 

  132. Lee, K., Lee, K. M., Kim, D. & Yoon, S. S. Molecular determinants of the thickened matrix in a dual-species Pseudomonas aeruginosa and Enterococcus faecalis biofilm. Appl. Environ. Microbiol. 83, e01182–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Tipton, C. D. et al. Temporal dynamics of relative abundances and bacterial succession in chronic wound communities. Wound Repair Regen. 25, 673–679 (2017).

    Article  PubMed  Google Scholar 

  134. Dalton, T. et al. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLOS ONE 6, e27317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhou, C. et al. In vivo anti-biofilm and anti-bacterial non-leachable coating thermally polymerized on cylindrical catheter. ACS Appl. Mater. Interfaces 9, 36269–36280 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Dubey, N. et al. Graphene onto medical grade titanium: an atom-thick multimodal coating that promotes osteoblast maturation and inhibits biofilm formation from distinct species. Nanotoxicology 12, 274–289 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Hess, D. J., Henry-Stanley, M. J. & Wells, C. L. The natural surfactant glycerol monolaurate significantly reduces development of Staphylococcus aureus and Enterococcus faecalis biofilms. Surg. Infect. (Larchmt) 16, 538–542 (2015).

    Article  Google Scholar 

  138. Montero, J. F. et al. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK). Mater. Sci. Eng. C Mater. Biol. Appl. 70, 456–460 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci. Transl Med. 6, 254ra127 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Flores-Mireles, A. L. et al. Antibody-based therapy for Enterococcal catheter-associated urinary tract infections. MBio 7, e01653–16 (2016). This paper shows that immunization with the EbpA amino-terminal domain protects mice from CAUTI by triggering production of antibodies that interfere with binding of Ebp to host fibrinogen deposited on urinary catheters irrespective of Ebp diversity and expression levels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pinkston, K. L. et al. Targeting pili in enterococcal pathogenesis. Infect. Immun. 82, 1540–1547 (2014). This paper shows that passive transfer of monoclonal antibodies against EbpC prevents endocarditis in rats and specifically labels the site of infection in vivo.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Thieme, L. et al. In vitro synergism and anti-biofilm activity of ampicillin, gentamicin, ceftaroline and ceftriaxone against Enterococcus faecalis. J. Antimicrob. Chemother. 73, 1553–1561 (2018).

    Article  PubMed  CAS  Google Scholar 

  143. Holmberg, A., Morgelin, M. & Rasmussen, M. Effectiveness of ciprofloxacin or linezolid in combination with rifampicin against Enterococcus faecalis in biofilms. J. Antimicrob. Chemother. 67, 433–439 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Holmberg, A. & Rasmussen, M. Antibiotic regimens with rifampicin for treatment of Enterococcus faecium in biofilms. Int. J. Antimicrob. Agents 44, 78–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Bridier, A., Briandet, R., Thomas, V. & Dubois-Brissonnet, F. Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27, 1017–1032 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Rosen, E., Tsesis, I., Elbahary, S., Storzi, N. & Kolodkin-Gal, I. Eradication of Enterococcus faecalis biofilms on human dentin. Front. Microbiol. 7, 2055 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. da Silva Fernandes, M. et al. Formation of multi-species biofilms by Enterococcus faecium. Enterococcus faecalis, and Bacillus cereus isolated from ricotta processing and effectiveness of chemical sanitation procedures. Int. Dairy J. 72, 23–28 (2017).

    Article  CAS  Google Scholar 

  148. Bukhari, S., Kim, D., Liu, Y., Karabucak, B. & Koo, H. Novel endodontic disinfection approach using catalytic nanoparticles. J. Endod. 44, 806–812 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Chen, L. et al. The effect of berberine hydrochloride on Enterococcus faecalis biofilm formation and dispersion in vitro. Microbiol. Res. 186–187, 44–51 (2016).

    Article  PubMed  CAS  Google Scholar 

  150. Khalifa, L. et al. Targeting Enterococcus faecalis biofilms with phage therapy. Appl. Environ. Microbiol. 81, 2696–2705 (2015). This paper shows that the Myoviridae phage EFDG1 isolated from sewage effluent lyses both planktonic and biofilm stages of six E. faecalis and five E. faecium strains and is able to prevent ex vivo root canal infection by E. faecalis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Loc-Carrillo, C. & Abedon, S. T. Pros and cons of phage therapy. Bacteriophage 1, 111–114 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Knoll, B. M. & Mylonakis, E. Antibacterial bioagents based on principles of bacteriophage biology: an overview. Clin. Infect. Dis. 58, 528–534 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Chua, S. L. et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat. Commun. 5, 4462 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Gonzalez, S. et al. The behavior of Staphylococcus aureus dual-species biofilms treated with bacteriophage phiIPLA-RODI depends on the accompanying microorganism. Appl. Environ. Microbiol. 83, e02821–16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Piggot, A. M., Klaus, J. S., Johnson, S., Phillips, M. C. & Solo-Gabriele, H. M. Relationship between enterococcal levels and sediment biofilms at recreational beaches in South Florida. Appl. Environ. Microbiol. 78, 5973–5982 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Asmat, A., Dada, A. C. & Gires, U. Biofilm formation, gel and esp gene carriage among recreational beach Enterococci. Glob. J. Health Sci. 6, 241–253 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Jha, A. K., Bais, H. P. & Vivanco, J. M. Enterococcus faecalis mammalian virulence-related factors exhibit potent pathogenicity in the Arabidopsis thaliana plant model. Infect. Immun. 73, 464–475 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Jahan, M. & Holley, R. A. Incidence of virulence factors in enterococci from raw and fermented meat and biofilm forming capacity at 25 degrees C and 37 degrees C. Int. J. Food Microbiol. 170, 65–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Medeiros, A. W. et al. Molecular detection of virulence factors among food and clinical Enterococcus faecalis strains in south Brazil. Braz. J. Microbiol. 45, 327–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Arias, C. A. & Murray, B. E. The rise of the Enterococcus: beyond vancomycin resistance. Nat. Rev. Microbiol. 10, 266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cattoir, V. & Leclercq, R. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? J. Antimicrob. Chemother. 68, 731–742 (2013).

    Article  CAS  Google Scholar 

  162. O’Driscoll, T. & Crank, C. W. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect. Drug Resist. 8, 217–230 (2015).

    PubMed  PubMed Central  Google Scholar 

  163. Werner, G., Strommenger, B. & Witte, W. Acquired vancomycin resistance in clinically relevant pathogens. Future Microbiol. 3, 547–562 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Xu, X. G. et al. vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob. Agents Chemother. 54, 4643–4647 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kinnebrew, M. A. et al. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J. Infect. Dis. 201, 534–543 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Ubeda, C. et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 120, 4332–4341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Snyder, G. M. et al. Detection of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on the gowns and gloves of healthcare workers. Infect. Control Hosp. Epidemiol. 29, 583–589 (2008).

    Article  Google Scholar 

  168. Ahmed, M. O. & Baptiste, K. E. Vancomycin-resistant Enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb. Drug Resist. 24, 590–606 (2017).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the Kline laboratory related to this article is supported by the Ministry of Education Singapore under its Research Centre of Excellence Program and by the Ministry of Education Singapore under its Tier 2 programme (MOE2014-T2-2-124) and the National Institutes of Health (NIH; 1 R21 AI126023-01).

Reviewer information

Nature Reviews Microbiology thanks D. Garsin, M. Gilmore and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.-H.C., K.K.L.C., L.N.L. and J.J.W. researched data for the article. All authors made substantial contributions to discussions of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Kimberly A. Kline.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Glossary

Endocarditis

The potentially deadly inflammation of the heart valves and endocardium; infectious endocarditis is characterized by the formation of vegetations composed of platelets, fibrin and microorganisms.

Quorum sensing

A cell density-dependent gene regulatory response, which results in beneficial phenotypes to the population as a whole.

Catheter-associated UTI

(CAUTI). A urinary tract infection (UTI) that is associated with the use of urinary catheters, which increase the risk of infection of bladder and kidneys.

Pheromone

A secreted chemical that is used to communicate between cells of the same species and triggers a population response.

Minimum biofilm eradication concentration

(MBEC). The minimum concentration of an antimicrobial compound required to kill all cells in a preformed biofilm; the test is typically performed in vitro using biofilm grown on a Calgary biofilm device.

Horizontal gene transfer

The transfer of genetic material between organisms that are not parent-offspring, also known as lateral gene transfer.

Endodontic infection

A bacterial infection of the dental pulp located within the teeth and root canals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ch’ng, JH., Chong, K.K.L., Lam, L.N. et al. Biofilm-associated infection by enterococci. Nat Rev Microbiol 17, 82–94 (2019). https://doi.org/10.1038/s41579-018-0107-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-018-0107-z

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology