Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cyanobacterial blooms

Abstract

Cyanobacteria can form dense and sometimes toxic blooms in freshwater and marine environments, which threaten ecosystem functioning and degrade water quality for recreation, drinking water, fisheries and human health. Here, we review evidence indicating that cyanobacterial blooms are increasing in frequency, magnitude and duration globally. We highlight species traits and environmental conditions that enable cyanobacteria to thrive and explain why eutrophication and climate change catalyse the global expansion of cyanobacterial blooms. Finally, we discuss management strategies, including nutrient load reductions, changes in hydrodynamics and chemical and biological controls, that can help to prevent or mitigate the proliferation of cyanobacterial blooms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cyanobacterial blooms.

Images in parts b and c courtesy of the European Space Agency, © ESA 2011, CC-BY-SA-3.0 IGO. Image in part d courtesy of L. Krienitz, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Germany. Image in part f courtesy of S. Flury, EAWAG, Switzerland.

Fig. 2: Six common bloom-forming cyanobacteria.

Image in part a courtesy of W. van Egmond, Netherlands. Images in parts b–d courtesy of A. Ballot, Norwegian Institute for Water Research (NIVA), Norway. Image in part e courtesy of M. Stomp, University of Amsterdam, Netherlands.

Fig. 3: The CO2-concentrating mechanism of cyanobacteria.
Fig. 4: Climate change will affect cyanobacterial blooms in multiple ways.

Part a adapted from ref.143, Macmillan Publishers Limited.

Fig. 5: Strategies for the prevention and control of cyanobacterial blooms.

Similar content being viewed by others

References

  1. Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).

    Article  CAS  Google Scholar 

  2. Nutman, A. P., Bennett, V. C., Friend, C. R. L., Van Kranendonk, M. J. & Chivas, A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535–538 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. Schirrmeister, B. E., Gugger, M. & Donoghue, P. C. Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology 58, 769–785 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stomp, M. et al. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10, 290–298 (2007).

    Article  PubMed  Google Scholar 

  5. Six, C. et al. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol. 8, R259 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chorus, I. & Bartram, J. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management (E & FN Spon, London, 1999). This book is a landmark publication that provides an excellent overview of the problems caused by toxic cyanobacteria and puts toxic cyanobacteria on the agenda of water management.

    Book  Google Scholar 

  7. Huisman, J., Matthijs, H. C. P. & Visser, P. M. Harmful Cyanobacteria. (Springer, Berlin, 2005).

    Book  Google Scholar 

  8. Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: causes, consequences and controls. Microb. Ecol. 65, 995–1010 (2013).

    Article  PubMed  CAS  Google Scholar 

  9. Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B. & Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8, 275–279 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. Rabalais, N. N. et al. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619 (2010).

    Article  CAS  Google Scholar 

  11. Izaguirre, G. & Taylor, W. D. A guide to geosmin- and MIB-producing cyanobacteria in the United States. Water Sci. Technol. 49, 19–24 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. Jüttner, F. & Watson, S. B. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl. Environ. Microbiol. 73, 4395–4406 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Carmichael, W. W. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum. Ecol. Risk Assess. 7, 1393–1407 (2001).

    Article  Google Scholar 

  14. Metcalf, J. S. & Codd, G. A. in Ecology of Cyanobacteria II: Their Diversity in Space and Time (ed. Whitton, B. A.) 651–675. (Springer, Berlin, 2012).

    Chapter  Google Scholar 

  15. Merel, S. et al. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59, 303–327 (2013).

    Article  PubMed  CAS  Google Scholar 

  16. Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008). This concise perspective is one of the first to point out that global warming will favour cyanobacterial blooms.

    Article  PubMed  CAS  Google Scholar 

  17. Jöhnk, K. D. et al. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Chang. Biol. 14, 495–512 (2008). This study couples a hydrodynamic model and phytoplankton competition model to investigate how an extreme summer heat wave favours surface blooms of harmful cyanobacteria.

    Article  Google Scholar 

  18. Paerl, H. W. & Huisman, J. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1, 27–37 (2009).

    Article  PubMed  CAS  Google Scholar 

  19. Wagner, C. & Adrian, R. Cyanobacteria dominance: quantifying the effects of climate change. Limnol. Oceanogr. 54, 2460–2468 (2009).

    Article  Google Scholar 

  20. Elliott, J. A. The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Glob. Chang. Biol. 16, 864–876 (2010).

    Article  Google Scholar 

  21. O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: potential role of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).

    Article  CAS  Google Scholar 

  22. Kosten, S. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Chang. Biol. 18, 118–126 (2012). This study compares cyanobacterial abundance in 143 lakes along a latitudinal transect from the subarctic to the tropics and shows that the per cent cyanobacteria increases steeply with temperature.

    Article  Google Scholar 

  23. Beaulieu, M., Pick, F. & Gregory-Eaves, I. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnol. Oceanogr. 58, 1736–1746 (2013).

    Article  CAS  Google Scholar 

  24. Michalak, A. M. et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl Acad. Sci. USA 110, 6448–6452 (2013). This study reports how a wet spring causing high nutrient run-off from agriculture, followed by a long, warm summer, led to one of the largest cyanobacterial blooms in the history of Lake Erie.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Verspagen, J. M. H. et al. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PLOS ONE 9, e104325 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Taranu, Z. E. et al. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol. Lett. 18, 375–384 (2015). This study analyses more than 100 sedimentary records and shows that cyanobacterial dominance has increased over the past 200 years in temperate and subarctic lakes across the northern hemisphere.

    Article  PubMed  Google Scholar 

  27. Visser, P. M. et al. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54, 145–159 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. Chapra, S. C. et al. Climate change impacts on harmful algal blooms in US freshwaters: a screening-level assessment. Environ. Sci. Technol. 51, 8933–8943 (2017).

    Article  PubMed  CAS  Google Scholar 

  29. Przytulska, A., Bartosiewicz, M. & Vincent, W. F. Increased risk of cyanobacterial blooms in northern high-latitude lakes through climate warming and phosphorus enrichment. Freshwater Biol. 62, 1986–1996 (2017).

    Article  CAS  Google Scholar 

  30. Shi, K. et al. Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: responses to nutrient enrichment and meteorological factors. Sci. Rep. 7, 40326 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLOS Biol. 16, e2003446 (2018). This study reports on field experiments demonstrating that warming and CO 2 enrichment of a marine ecosystem boost the growth of benthic cyanobacteria, which in turn reduces energy flow to higher trophic levels in the food web.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Qin, B. et al. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ. Manag. 45, 105–112 (2010).

    Article  Google Scholar 

  33. Guo, L. Doing battle with the green monster of Taihu Lake. Science 317, 1166–1166 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. Duan, H. et al. Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ. Sci. Technol. 43, 3522–3528 (2009).

    Article  PubMed  CAS  Google Scholar 

  35. Makarewicz, J. C. Phytoplankton biomass and species composition in Lake Erie, 1970 to 1987. J. Great Lakes Res. 19, 258–274 (1993).

    Article  Google Scholar 

  36. Nicholls, K. H. & Hopkins, G. J. Recent changes in Lake Erie (north shore) phytoplankton: cumulative impacts of phosphorus loading reductions and zebra mussel introduction. J. Great Lakes Res. 19, 637–647 (1993).

    Article  Google Scholar 

  37. Stumpf, R. P., Wynne, T. T., Baker, D. B. & Fahnenstiel, G. L. Interannual variability of cyanobacterial blooms in Lake Erie. PLOS ONE 7, e42444 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Rinta-Kanto, J. M. et al. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol. 39, 4198–4205 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. Bullerjahn, G. S. et al. Global solutions to regional problems: collecting global expertise to address the problem of harmful cyanobacterial blooms, a Lake Erie case study. Harmful Algae 54, 223–238 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bianchi, T. S. et al. Cyanobacterial blooms in the Baltic Sea: natural or human-induced? Limnol. Oceanogr. 45, 716–726 (2000).

    Article  CAS  Google Scholar 

  41. Finni, T., Kononen, K., Olsonen, R. & Wallström, K. The history of cyanobacterial blooms in the Baltic Sea. AMBIO 30, 172–178 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. Suikkanen, S., Laamanen, M. & Huttunen, M. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuarine Coastal Shelf Sci. 71, 580–592 (2007).

    Article  Google Scholar 

  43. Kahru, M. & Elmgren, R. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11, 3619–3633 (2014). This study illustrates how satellite remote sensing contributes to long-term monitoring of cyanobacterial blooms.

    Article  Google Scholar 

  44. Bergman, B., Sandh, G., Lin, S., Larsson, J. & Carpenter, E. J. Trichodesmium: a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 37, 286–302 (2013).

    Article  PubMed  CAS  Google Scholar 

  45. Spatharis, S., Skliris, N., Meziti, A. & Kormas, K. A. First record of a Trichodesmium erythraeum bloom in the Mediterranean Sea. Can. J. Fish. Aquat. Sci. 69, 1444–1455 (2012).

    Article  Google Scholar 

  46. Paul, V. J., Thacker, R. W., Banks, K. & Golubic, S. Benthic cyanobacterial bloom impacts the reefs of South Florida (Broward County, USA). Coral Reefs 24, 693–697 (2005).

    Article  Google Scholar 

  47. Ford, A. K. et al. Reefs under siege: the rise, putative drivers, and consequences of benthic cyanobacterial mats. Front. Mar. Sci. 5, 18 (2018).

    Article  Google Scholar 

  48. De Bakker, D. M. et al. 40 Years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: the rise of slimy cyanobacterial mats. Coral Reefs 36, 355–367 (2017).

    Article  Google Scholar 

  49. Gallon, J. R. Reconciling the incompatible: N2 fixation and O2. New Phytol. 122, 571–609 (1992).

    Article  CAS  Google Scholar 

  50. Muro-Pastor, A. M. & Hess, W. R. Heterocyst differentiation: from single mutants to global approaches. Trends Microbiol. 20, 548–557 (2012).

    Article  PubMed  CAS  Google Scholar 

  51. Stal, L. J. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature? Environ. Microbiol. 11, 1632–1645 (2009).

    Article  PubMed  CAS  Google Scholar 

  52. Walsby, A. E. The permeability of heterocysts to the gases nitrogen and oxygen. Proc. R. Soc. B Biol. Sci. 226, 345–366 (1985).

    Article  CAS  Google Scholar 

  53. Brauer, V. S. et al. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece. ISME J. 7, 2105–2115 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Breitbarth, E., Oschlies, A. & La Roche, J. Physiological constraints on the global distribution of Trichodesmium: effects of temperature on diazotrophy. Biogeosciences 4, 53–61 (2007).

    Article  CAS  Google Scholar 

  55. Ibelings, B. W. & Maberly, S. C. Photoinhibition and the availability of inorganic carbon restrict photosynthesis by surface blooms of cyanobacteria. Limnol. Oceanogr. 43, 408–419 (1998).

    Article  CAS  Google Scholar 

  56. Price, G. D., Badger, M. R., Woodger, F. J. & Long, B. M. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J. Exp. Bot. 59, 1441–1461 (2008). This study provides an excellent review of the CCMs of cyanobacteria by pioneers in this field.

    Article  PubMed  CAS  Google Scholar 

  57. Burnap, R. L., Hagemann, M. & Kaplan, A. Regulation of CO2 concentrating mechanism in cyanobacteria. Life 5, 348–371 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sandrini, G., Matthijs, H. C. P., Verspagen, J. M. H., Muyzer, G. & Huisman, J. Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. ISME J. 8, 589–600 (2014).

    Article  PubMed  CAS  Google Scholar 

  59. Sandrini, G. et al. Rapid adaptation of harmful cyanobacteria to rising CO2. Proc. Natl Acad. Sci. USA 112, 9315–9320 (2016). This study demonstrates with selection experiments and field data that increasing CO 2 concentrations induce rapid adaptive changes in the CCM of cyanobacterial blooms.

    Article  CAS  Google Scholar 

  60. Walsby, A. E. Gas vesicles. Microbiol. Rev. 58, 94–144 (1994). This classic review is a must-read for everyone interested in the gas vesicles of buoyant cyanobacteria.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nat. Rev. Microbiol. 10, 705–715 (2012).

    Article  PubMed  CAS  Google Scholar 

  62. Sommaruga, R., Chen, Y. & Liu, Z. Multiple strategies of bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters. Microb. Ecol. 57, 667–674 (2009).

    Article  PubMed  Google Scholar 

  63. Walsby, A. E., Hayes, P. K., Boje, R. & Stal, L. J. The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytol. 136, 407–417 (1997).

    Article  PubMed  Google Scholar 

  64. Huisman, J. et al. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85, 2960–2970 (2004).

    Article  Google Scholar 

  65. Reynolds, C. S., Oliver, R. L. & Walsby, A. E. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. NZ J. Mar. Freshwater Res. 21, 379–390 (1987).

    Article  Google Scholar 

  66. Visser, P. M., Passarge, J. & Mur, L. R. Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia 349, 99–109 (1997).

    Article  Google Scholar 

  67. Kromkamp, J. C. & Mur, L. R. Buoyant density changes in the cyanobacterium Microcystis aeruginosa due to changes in the cellular carbohydrate content. FEMS Microbiol. Lett. 25, 105–109 (1984).

    Article  CAS  Google Scholar 

  68. Ibelings, B. W., Mur, L. R. & Walsby, A. E. Diurnal changes in buoyancy and vertical distribution in populations of Microcystis in two shallow lakes. J. Plankton Res. 13, 419–436 (1991).

    Article  Google Scholar 

  69. Villareal, T. A. & Carpenter, E. J. Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium. Microb. Ecol. 45, 1–10 (2003).

    Article  PubMed  CAS  Google Scholar 

  70. Walsby, A. E., Schanz, F. & Schmid, M. The Burgundy-blood phenomenon: a model of buoyancy change explains autumnal waterblooms of Planktothrix rubescens in Lake Zurich. New Phytol. 169, 109–122 (2006).

    Article  PubMed  Google Scholar 

  71. Meriluoto, J., Spoof, L. & Codd, G. A. (eds). Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. (John Wiley & Sons, Inc., Chichester, 2017). This recent handbook includes reviews on cyanobacterial blooms and cyanotoxins, with standard operating procedures for their monitoring and analysis.

    Google Scholar 

  72. Hairston, Jr. N. G. et al. Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evolution 55, 2203–2214 (2001). This study hatches eggs of the water flea Daphnia from 35 years of sediment, demonstrating that Daphnia developed resistance to toxic cyanobacteria after they became dominant in Lake Constance.

    Article  PubMed  Google Scholar 

  73. Lemaire, V. et al. Genotype × genotype interactions between the toxic cyanobacterium Microcystis and its grazer, the waterflea Daphnia. Evol. Appl. 5, 168–182 (2012). This interesting study illustrates the co-evolutionary arms race between toxic cyanobacteria and their grazers.

    Article  PubMed  Google Scholar 

  74. Jiang, X., Gao, H., Zhang, L., Liang, H. & Zhu, X. Rapid evolution of tolerance to toxic Microcystis in two cladoceran grazers. Sci. Rep. 6, 25319 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Rantala, A. et al. Phylogenetic evidence for the early evolution of microcystin synthesis. Proc. Natl Acad. Sci. USA 101, 568–573 (2004).

    Article  PubMed  CAS  Google Scholar 

  76. Zilliges, Y. et al. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLOS ONE 6, e17615 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kardinaal, W. E. A. et al. Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquat. Microb. Ecol. 48, 1–12 (2007).

    Article  Google Scholar 

  78. Sabart, M. et al. Spatiotemporal variations in microcystin concentrations and in the proportions of microcystin-producing cells in several Microcystis aeruginosa populations. Appl. Environ. Microbiol. 76, 4750–4759 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Mantzouki, E. et al. Temperature effects explain continental scale distribution of cyanobacterial toxins. Toxins 10, 156 (2018). This recent study presents the first large inventory of the geographical distribution of cyanotoxins on a continental scale.

    Article  PubMed Central  Google Scholar 

  80. Rapala, J., Sivonen, K., Lyra, C. & Niemelä, S. I. Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl. Environ. Microbiol. 63, 2206–2212 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Wiedner, C. Effects of light on the microcystin content of Microcystis strain PCC 7806. Appl. Environ. Microbiol. 69, 1475–1481 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Van de Waal, D. B. et al. The ecological stoichiometry of toxins produced by harmful cyanobacteria an experimental test of the carbon–nutrient balance hypothesis. Ecol. Lett. 12, 1326–1335 (2009).

    Article  PubMed  Google Scholar 

  83. Kardinaal, W. E. A. & Visser, P. M. in Harmful Cyanobacteria (eds Huisman, J., Matthijs, H. C. P. & Visser, P. M.) 41–64. (Springer, Berlin, 2005).

    Google Scholar 

  84. Kurmayer, R., Christiansen, G., Fastner, J. & Börner, T. Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ. Microbiol. 6, 831–841 (2004).

    Article  PubMed  CAS  Google Scholar 

  85. MacKintosh, C., Beattie, K. A., Klumpp, S., Cohen, P. & Codd, G. A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264, 187–192 (1990).

    Article  PubMed  CAS  Google Scholar 

  86. Yoshizawa, S. et al. Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity. J. Cancer Res. Clin. Oncol. 116, 609–614 (1990).

    Article  PubMed  CAS  Google Scholar 

  87. Falconer, I. R., Beresford, A. M. & Runnegar, M. T. Evidence of liver damage by toxin from a bloom of the blue-green alga, Microcystis aeruginosa. Med. J. Aust. 1, 511–514 (1983).

    PubMed  CAS  Google Scholar 

  88. Jochimsen, E. M. et al. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med. 338, 873–878 (1998). This study tells the sad story of more than 50 patients who died from acute liver failure after haemodialysis using water contaminated with cyanotoxins.

    Article  PubMed  CAS  Google Scholar 

  89. Chen, L., Chen, J., Zhang, X. & Xie, P. A review of reproductive toxicity of microcystins. J. Hazard. Mater. 301, 381–399 (2016).

    Article  PubMed  CAS  Google Scholar 

  90. Miller, M. A. et al. Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin) transfer from land to sea otters. PLOS One 5, e12576 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Meissner, S., Fastner, J. & Dittmann, E. Microcystin production revisited: conjugate formation makes a major contribution. Environ. Microbiol. 15, 1810–1820 (2013).

    Article  PubMed  CAS  Google Scholar 

  92. Miles, C. O. et al. Conjugation of microcystins with thiols is reversible: base-catalyzed deconjugation for chemical analysis. Chem. Res. Toxicol. 29, 860–870 (2016).

    Article  PubMed  CAS  Google Scholar 

  93. Pearson, L., Mihali, T., Moffitt, M., Kellmann, R. & Neilan, B. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar. Drugs 8, 1650–1680 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Hawkins, P. R., Runnegar, M. T., Jackson, A. R. & Falconer, I. R. Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Appl. Environ. Microbiol. 50, 1292–1295 (1985).

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Padisák, J. Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol. Suppl. Algol. 107, 563–593 (1997).

    Google Scholar 

  96. Antunes, J. T., Leão, P. N. & Vasconcelos, V. M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Front. Microbiol. 6, 473 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wiese, M., D’Agostino, P. M., Mihali, T. K., Moffitt, M. C. & Neilan, B. A. Neurotoxic alkaloids: saxitoxin and its analogs. Mar. Drugs 8, 2185–2211 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Lobner, D., Piana, P. M. T., Salous, A. K. & Peoples, R. W. Beta-N-methylamino-L-alanine enhances neurotoxicity through multiple mechanisms. Neurobiol. Dis. 25, 360–366 (2007).

    Article  PubMed  CAS  Google Scholar 

  99. Cox, P. A., Banack, S. A. & Murch, S. J. Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc. Natl Acad. Sci. USA 100, 13380–13383 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Bradley, W. G. et al. Is exposure to cyanobacteria an environmental risk factor for amyotrophic lateral sclerosis and other neurodegenerative diseases? Amyotroph. Lateral Scler. Frontotemporal Degener. 13, 325–333 (2013).

    Article  CAS  Google Scholar 

  101. Durai, P., Batool, M. & Choi, S. Structure and effects of cyanobacterial lipopolysaccharides. Mar. Drugs 13, 4217–4230 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Neilan, B. A., Pearson, L. A., Muenchhoff, J., Moffitt, M. C. & Dittmann, E. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 15, 1239–1253 (2013).

    Article  PubMed  CAS  Google Scholar 

  103. Paerl, H. W. Transfer of N2 and CO2 fixation products from Anabaena oscillarioides to associated bacteria during inorganic carbon sufficiency and deficiency. J. Phycol. 20, 600–608 (1984).

    Article  CAS  Google Scholar 

  104. Brauer, V. S. et al. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community. Front. Microbiol. 5, 795 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ploug, H. et al. Carbon, nitrogen and O2 fluxes associated with the cyanobacterium Nodularia spumigena in the Baltic Sea. ISME J. 5, 1549–1558 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Hmelo, L. R., van Mooy, B. A. S. & Mincer, R. J. Characterization of bacterial epibionts on the cyanobacterium Trichodesmium. Aquat. Microb. Ecol. 67, 1–14 (2012).

    Article  Google Scholar 

  107. Alvarenga, D. O., Fiore, M. F. & Varani, A. M. A metagenomic approach to cyanobacterial genomics. Front. Microbiol. 8, 809 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Louati, I. et al. Structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus. PLOS One 10, e0140614 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Berg, C. et al. Dissection of microbial community functions during a cyanobacterial bloom in the Baltic Sea via metatranscriptomics. Front. Mar. Sci. 5, 55 (2018).

    Article  Google Scholar 

  110. Van Hannen, E. J. et al. Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl. Environ. Microbiol. 65, 795–801 (1999).

    PubMed  PubMed Central  Google Scholar 

  111. Shao, K. et al. The responses of the taxa composition of particle-attached bacterial community to the decomposition of Microcystis blooms. Sci. Total Environ. 488–489, 236–242 (2014).

    Article  PubMed  CAS  Google Scholar 

  112. Gerphagnon, M. et al. Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism. Environ. Microbiol. 17, 2573–2587 (2015).

    Article  PubMed  Google Scholar 

  113. Van Wichelen, J., Vanormelingen, P., Codd, G. A. & Vyverman, W. The common bloom-forming cyanobacterium Microcystis is prone to a wide array of microbial antagonists. Harmful Algae 55, 97–111 (2016).

    Article  PubMed  CAS  Google Scholar 

  114. Yoshida, M. Ecological dynamics of the toxic bloom-forming cyanobacterium Microcystis aeruginosa and its cyanophages in freshwater. Appl. Environ. Microbiol. 74, 3269–3273 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Coloma, S. E. et al. Newly isolated Nodularia phage influences cyanobacterial community dynamics. Environ. Microbiol. 19, 273–286 (2017).

    Article  PubMed  CAS  Google Scholar 

  116. Kagami, M., de Bruin, A., Ibelings, B. W. & Van Donk, E. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578, 113–129 (2007).

    Article  Google Scholar 

  117. Makarova, K. S., Wolf, Y. I., Snir, S. & Koonin, E. V. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J. Bacteriol. 193, 6039–6056 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kuno, S., Sako, Y. & Yoshida, T. Diversification of CRISPR within coexisting genotypes in a natural population of the bloom-forming cyanobacterium Microcystis aeruginosa. Microbiology 160, 903–916 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Rohrlack, T., Christiansen, G. & Kurmayer, R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus Planktothrix. Appl. Environ. Microbiol. 79, 2642–2647 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Kimura, S., Sako, Y. & Yoshida, T. Rapid gene diversification of Microcystis cyanophages revealed by long-and short-term genetic analysis of the tail sheath gene in a natural pond. Appl. Environ. Microbiol. 79, 2789–2795 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. DeMott, W. R., Gulati, R. D. & Van Donk, E. Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnol. Oceanogr. 46, 2054–2060 (2001).

    Article  Google Scholar 

  122. Gliwicz, Z. M. & Lampert, W. Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71, 691–702 (1990).

    Article  Google Scholar 

  123. Müller-Navarra, D. C., Brett, M. T., Liston, A. M. & Goldman, C. R. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403, 74–77 (2000).

    Article  PubMed  Google Scholar 

  124. Martin-Creuzburg, D., von Elert, E. & Hoffmann, K. H. Nutritional constraints at the cyanobacteria-Daphnia magna interface: the role of sterols. Limnol. Oceanogr. 53, 456–468 (2008).

    Article  Google Scholar 

  125. Rohrlack, T., Dittmann, E., Henning, M., Börner, T. & Kohl, J. G. Role of microcystins in poisoning and food ingestion inhibition of Daphnia galeata caused by the cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 65, 737–739 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  126. Sadler, T. & von Elert, E. Physiological interaction of Daphnia and Microcystis with regard to cyanobacterial secondary metabolites. Aquat. Toxicol. 156, 96–105 (2014).

    Article  PubMed  CAS  Google Scholar 

  127. Burian, A., Kainz, M. J., Schagerl, M. & Yasindi, A. Species-specific separation of lake plankton reveals divergent food assimilation patterns in rotifers. Freshwater Biol. 59, 1257–1265 (2014).

    Article  Google Scholar 

  128. Groendahl, S. & Fink, P. High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms. BMC Ecol. 17, 20 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Chislock, M. F., Sarnelle, O., Jernigan, L. M. & Wilson, A. E. Do high concentrations of microcystin prevent Daphnia control of phytoplankton? Water Res. 47, 1961–1970 (2013).

    Article  PubMed  CAS  Google Scholar 

  130. Vollenweider, R. A. Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters, with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication (OECD, Paris, 1968).

    Google Scholar 

  131. Schindler, D. W. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184, 897–899 (1974).

    Article  PubMed  CAS  Google Scholar 

  132. Jeppesen, E. et al. Lake responses to reduced nutrient loading: an analysis of contemporary long-term data from 35 case studies. Freshwater Biol. 50, 1747–1771 (2005).

    Article  CAS  Google Scholar 

  133. Fastner, J. et al. Combating cyanobacterial proliferation by avoiding or treating inflows with high P load: experiences from eight case studies. Aquat. Ecol. 50, 367–383 (2016). This study presents a very nice overview of eight lakes in which cyanobacterial blooms were successfully controlled through the reduction of phosphorus loads.

    Article  CAS  Google Scholar 

  134. Grizzetti, B., Bouraoui, F. & Aloe, A. Changes of nitrogen and phosphorus loads to European seas. Glob. Change Biol. 18, 769–782 (2012).

    Article  Google Scholar 

  135. Glibert, P. M., Maranger, R., Sobota, D. J. & Bouwman, L. The Haber Bosch–harmful algal bloom (HB–HAB) link. Environ. Res. Lett. 9, 105001 (2014).

    Article  CAS  Google Scholar 

  136. Donald, D. B., Bogard, M. J., Finlay, K. & Leavitt, P. R. Comparative effects of urea, ammonium, and nitrate on phytoplankton abundance, community composition, and toxicity in hypereutrophic freshwaters. Limnol. Oceanogr. 56, 2161–2175 (2011).

    Article  CAS  Google Scholar 

  137. Posch, T., Köster, O., Salcher, M. M. & Pernthaler, J. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat. Clim. Change 2, 809–813 (2012).

    Article  CAS  Google Scholar 

  138. Gobler, C. J. et al. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54, 87–97 (2016).

    Article  PubMed  CAS  Google Scholar 

  139. Shapiro, J. Current beliefs regarding dominance of bluegreens: the case for the importance of CO2 and pH. Verhandlungen Intern. Vereinig. Theoretische Angewandte Limnol. 24, 38–54 (1990).

    Google Scholar 

  140. Low-Décarie, E., Fussmann, G. F. & Bell, G. The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Glob. Change Biol. 17, 2525–2535 (2011).

    Article  Google Scholar 

  141. Ji, X., Verspagen, J. M. H., Stomp, M. & Huisman, J. Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why? J. Exp. Bot. 68, 3815–3828 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  142. Hutchins, D. A., Fu, F. X., Webb, E. A., Walworth, N. & Tagliabue, A. Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations. Nat. Geosci. 6, 790–795 (2013).

    Article  CAS  Google Scholar 

  143. Thomas, M. K. & Litchman, E. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia 763, 357–369 (2016).

    Article  Google Scholar 

  144. Taranu, Z. E., Zurawell, R. W., Pick, F. & Gregory-Eaves, I. Predicting cyanobacterial dynamics in the face of global change: the importance of scale and environmental context. Glob. Change Biol. 18, 3477–3490 (2012).

    Article  Google Scholar 

  145. Rigosi, A., Carey, C. C., Ibelings, B. W. & Brookes, J. D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 59, 99–114 (2014).

    Article  Google Scholar 

  146. Anneville, O., Domaizon, I., Kerimoglu, O., Rimet, F. & Jacquet, S. Blue-green algae in a “Greenhouse Century”? New insights from field data on climate change impacts on cyanobacteria abundance. Ecosystems 18, 441–458 (2015).

    Article  CAS  Google Scholar 

  147. Stocker, T. F. et al. Climate change 2013: The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5) (Cambridge Univ. Press, New York, 2013).

    Google Scholar 

  148. Reichwaldt, E. S. & Ghadouani, A. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics. Water Res. 46, 1372–1393 (2012).

    Article  PubMed  CAS  Google Scholar 

  149. Lehman, P. W. et al. Impacts of the 2014 severe drought on the Microcystis bloom in San Francisco Estuary. Harmful Algae 63, 94–108 (2017).

    Article  PubMed  CAS  Google Scholar 

  150. Søndergaard, M., Jensen, J. P. & Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506, 135–145 (2003).

    Article  Google Scholar 

  151. Ibelings, B. W. et al. Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems 10, 4–16 (2007).

    Article  CAS  Google Scholar 

  152. Lürling, M. & Faassen, E. J. Controlling toxic cyanobacteria: effects of dredging and phosphorus-binding clay on cyanobacteria and microcystins. Water Res. 46, 1447–1459 (2012).

    Article  PubMed  CAS  Google Scholar 

  153. Copetti, D. et al. Eutrophication management in surface waters using lanthanum modified bentonite: a review. Water Res. 97, 162–174 (2016).

    Article  PubMed  CAS  Google Scholar 

  154. Berg, U., Neumann, T., Donnert, D., Nüesch, R. & Stüben, D. Sediment capping in eutrophic lakes: efficiency of undisturbed calcite barriers to immobilize phosphorus. Appl. Geochem. 19, 1759–1771 (2004).

    Article  CAS  Google Scholar 

  155. Paerl, H. W. et al. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54, 213–222 (2016).

    Article  PubMed  Google Scholar 

  156. Visser, P. M., Ibelings, B. W., Van der Veer, B., Koedood, J. & Mur, L. R. Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, the Netherlands. Freshwater Biol. 36, 435–450 (1996).

    Article  Google Scholar 

  157. Visser, P. M., Ibelings, B. W., Bormans, M. & Huisman, J. Artificial mixing to control cyanobacterial blooms: a review. Aquat. Ecol. 50, 423–441 (2016).

    Article  CAS  Google Scholar 

  158. Verspagen, J. M. H. et al. Water management strategies against toxic Microcystis blooms in the Dutch delta. Ecol. Appl. 16, 313–327 (2006).

    Article  PubMed  Google Scholar 

  159. Mitrovic, S. M., Hardwick, L. & Dorani, F. Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia. J. Plankton Res. 33, 229–241 (2011).

    Article  Google Scholar 

  160. Matthijs, H. C. P., Jančula, D., Visser, P. M. & Maršálek, B. Existing and emerging cyanocidal compounds: new perspectives for cyanobacterial bloom mitigation. Aquat. Ecol. 50, 443–460 (2016).

    Article  CAS  Google Scholar 

  161. Kenefick, S. L., Hrudey, S. E., Peterson, H. G. & Prepas, E. E. Toxin release from Microcystis aeruginosa after chemical treatment. Water Sci. Technol. 27, 433–440 (1993).

    Article  CAS  Google Scholar 

  162. Matthijs, H. C. P. et al. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Res. 46, 1460–1472 (2012). This study is the first demonstration that low concentrations of hydrogen peroxide can effectively eliminate a cyanobacterial bloom from an entire lake, without major direct effects on eukaryotic phytoplankton, zooplankton or macrofauna.

    Article  PubMed  CAS  Google Scholar 

  163. Barrington, D. J., Reichwaldt, E. S. & Ghadouani, A. The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecol. Eng. 50, 86–94 (2013).

    Article  Google Scholar 

  164. Drábková, M., Matthijs, H. C. P., Admiraal, W. & Maršálek, B. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica 45, 363–369 (2007).

    Article  CAS  Google Scholar 

  165. Reeders, H. H., Bij de Vaate, A. & Slim, F. J. The filtration rate of Dreissena polymorpha (Bivalvia) in three Dutch lakes with reference to biological water quality management. Freshwater Biol. 22, 133–141 (1989).

    Article  Google Scholar 

  166. Waajen, G. W. A. M., Van Bruggen, N. C. B., Dionisio Pires, L. M., Lengkeek, W. & Lürling, M. Biomanipulation with quagga mussels (Dreissena rostriformis bugensis) to control harmful algal blooms in eutrophic urban ponds. Ecol. Eng. 90, 141–150 (2016).

    Article  Google Scholar 

  167. Dionisio Pires, L. M., Bontes, B. M., Van Donk, E. & Ibelings, B. W. Grazing on colonial and filamentous, toxic and non-toxic cyanobacteria by the zebra mussel Dreissena polymorpha. J. Plankton Res. 27, 331–339 (2005).

    Article  Google Scholar 

  168. Vanderploeg, H. A. et al. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can. J. Fish. Aquat. Sci. 58, 1208–1221 (2001).

    Article  CAS  Google Scholar 

  169. White, J. D. & Sarnelle, O. Size-structured vulnerability of the colonial cyanobacterium. Microcystis aeruginosa, to grazing by zebra mussels (Dreissena polymorpha). Freshwater Biol. 59, 514–525 (2014).

    Article  Google Scholar 

  170. Conroy, J. D. et al. Temporal trends in Lake Erie plankton biomass: roles of external phosphorus loading and dreissenid mussels. J. Great Lakes Res. 31, 89–110 (2005).

    Article  CAS  Google Scholar 

  171. Sarnelle, O., White, J. D., Horst, G. P. & Hamilton, S. K. Phosphorus addition reverses the positive effect of zebra mussels (Dreissena polymorpha) on the toxic cyanobacterium, Microcystis aeruginosa. Water Res. 46, 3471–3478 (2012).

    Article  PubMed  CAS  Google Scholar 

  172. With, J. S. & Wright, D. I. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwater Biol. 14, 371–383 (1984).

    Article  Google Scholar 

  173. Van De Bund, W. J. & Van Donk, E. Short-term and long-term effects of zooplanktivorous fish removal in a shallow lake: a synthesis of 15 years of data from Lake Zwemlust. Freshwater Biol. 47, 2380–2387 (2002).

    Article  Google Scholar 

  174. Søndergaard, M. et al. Lake restoration: successes, failures and long-term effects. J. Appl. Ecol. 44, 1095–1105 (2007).

    Article  CAS  Google Scholar 

  175. Søndergaard, M., Lauridsen, T. L., Johansson, L. S. & Jeppesen, E. Repeated fish removal to restore lakes: case study of Lake Væng, Denmark, two biomanipulations during 30 years of monitoring. Water 9, 43 (2017).

    Article  Google Scholar 

  176. Braun, A. & Pfeiffer, T. Cyanobacterial blooms as the cause of a Pleistocene large mammal assemblage. Paleobiology 28, 139–154 (2002).

    Article  Google Scholar 

  177. Koenigswald, W. V., Braun, A. & Pfeiffer, T. Cyanobacteria and seasonal death: a new taphonomic model for the Eocene Messel lake. Paläontol. Z. 78, 417–424 (2004).

    Article  Google Scholar 

  178. De Boer, E. J. et al. A deadly cocktail: how a drought around 4200 cal. yr BP caused mass mortality events at the infamous ‘dodo swamp’ in Mauritius. Holocene 25, 758–771 (2015).

    Article  Google Scholar 

  179. Fogg, G. E., Stewart, W. D. P., Fay, P. & Walsby, A. E. The Blue-Green Algae (Academic Press, London, 1973).

    Google Scholar 

  180. Kirkby, C. A relation of an inland sea, near Danzick, yielding at a certain season of the year a green substance, which causeth certain death; together with an observation about white amber: communicated by Mr. Kirkby, in a letter written to the publisher from Danzick Decemb. 19, 1671. Phil. Trans. R. Soc. 7, 4069–4070 (1672).

    Article  Google Scholar 

  181. Codd, G. A., Pliński, M., Surosz, W., Hutson, J. & Fallowfield, H. J. Publication in 1672 of animal deaths at the Tuchomskie Lake, northern Poland and a likely role of cyanobacterial blooms. Toxicon 108, 285–286 (2015).

    Article  PubMed  CAS  Google Scholar 

  182. Van Leeuwenhoek, A. Letter of September, 7, 1974, to the Royal Society. Phil. Trans. R. Soc. 9, 178–182 (1674).

    Article  Google Scholar 

  183. Van Egmond, W. The riddle of the ‘green streaks’: in search of the first microorganism which Antoni van Leeuwenhoek described. MicScape Magazine http://www.microscopy-uk.org.uk/mag/artfeb16/wimleeuwenhoek2.html (2016). In this online magazine, the Dutch microscopist Wim van Egmond argues convincingly that Antonie van Leeuwenhoek observed cyanobacterial cells in 1674, 2 years before his often cited ‘discovery of bacteria’.

  184. Francis, G. Poisonous Australia lake. Nature 18, 11–12 (1878).

    Article  Google Scholar 

  185. Codd, G. A., Morton, H. & Baker, P. D. George Francis: a pioneer in the investigation of the quality of South Australia’s drinking water sources (1878–1883). Trans. R. Soc. S. Aust. 139, 164–170 (2015).

    Google Scholar 

  186. Krienitz, L. et al. Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiol. Ecol. 43, 141–148 (2003).

    Article  PubMed  CAS  Google Scholar 

  187. Cox, P. A. et al. Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proc. Natl Acad. Sci. USA 102, 5074–5078 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  188. Faassen, E. J. Presence of the neurotoxin BMAA in aquatic ecosystems: what do we really know? Toxins 6, 1109–1138 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. van Arkel for help with the drawings and A. Ballot, W. van Egmond, S. Flury, E. Killer, L. Krienitz and M. Stomp for sharing their photographs. H.W.P. was supported by the US National Science Foundation and the Chinese Ministry of Science and Technology. J.M.H.V. was supported by Amsterdam Water Science, which was funded by the Amsterdam Academic Alliance.

Reviewer information

Nature Reviews Microbiology thanks B. Neilan, B. Qin and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.H. researched data for the article. J.H., G.A.C., H.W.P., J.M.H.V. and P.M.V. wrote the article. All authors contributed substantially to discussion of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jef Huisman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Eutrophication

The excessive enrichment of ecosystems with dissolved nutrients (for example, nitrate and phosphate), usually through human activity.

Phytoplankton

Microscopically small photosynthetic algae, such as green algae and diatoms, and cyanobacteria drifting in the water.

Benthic cyanobacteria

Cyanobacteria that live on sediments, rocks and other benthic organisms.

Macroalgae

Macroscopic multicellular algae, such as seaweeds.

Turf algae

Heterogeneous assemblages of benthic algae and cyanobacteria, visible by the naked eye but smaller than 1 cm in height.

Carboxysomes

Microcompartments in cyanobacterial cells that hold the enzyme Rubisco, a key enzyme involved in the first step of CO2 fixation.

Stokes’ law

A mathematical equation describing the terminal velocity of small particles in a fluid medium such as water.

Secondary metabolites

Organic compounds that are produced by organisms but not directly involved in the growth or reproduction of these organisms.

Zooplankton

Small animals that drift in water.

Copepods

A group of small crustaceans of the subclass Copepoda, often with a cylindrical body, two large antennae and a head that is fused with the thorax.

Cladocerans

A group of small crustaceans of the order Cladocera with a carapace covering the thorax and abdomen, for example, water fleas.

β-Cyanobacteria

A common group of cyanobacteria with a specific type of carboxysome and Rubisco that differ from the carboxysome and Rubisco in other cyanobacteria.

Dinoflagellates

A highly diverse group of unicellular photosynthetic and non-photosynthetic organisms that move through water using one longitudinal and one transverse flagellum.

Thermocline

A thin layer in lakes and seas in which temperature decreases rapidly with depth, separating the warmer surface mixed layer from the colder deep water below.

Diatoms

A highly diverse group of microscopically small photosynthetic algae of the class Bacillariophyceae that are enclosed by a cell wall of silica.

Dreissenid mussels

Freshwater bivalve mussels of the genus Dreissena (for example, zebra and quagga mussels) indigenous to the Ponto–Caspian area and invasive species in Western Europe and North America.

Planktivorous fish

Fish feeding on plankton.

Benthivorous fish

Fish feeding on prey from the sediment.

Piscivorous fish

Fish feeding on fish.

Macrophytes

Emergent, submerged or floating aquatic plants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huisman, J., Codd, G.A., Paerl, H.W. et al. Cyanobacterial blooms. Nat Rev Microbiol 16, 471–483 (2018). https://doi.org/10.1038/s41579-018-0040-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-018-0040-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing