Perspective | Published:


Keystone taxa as drivers of microbiome structure and functioning

Nature Reviews Microbiology (2018) | Download Citation


Microorganisms have a pivotal role in the functioning of ecosystems. Recent studies have shown that microbial communities harbour keystone taxa, which drive community composition and function irrespective of their abundance. In this Opinion article, we propose a definition of keystone taxa in microbial ecology and summarize over 200 microbial keystone taxa that have been identified in soil, plant and marine ecosystems, as well as in the human microbiome. We explore the importance of keystone taxa and keystone guilds for microbiome structure and functioning and discuss the factors that determine their distribution and activities.

  • Subscribe to Nature Reviews Microbiology for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

  2. 2.

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

  3. 3.

    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).

  4. 4.

    van der Heijden, M. G. A., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).

  5. 5.

    Graham, E. B. et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front. Microbiol. 7, 1–10 (2016).

  6. 6.

    Hamady, M. & Knight, R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res. 19, 1141–1152 (2009).

  7. 7.

    Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012).

  8. 8.

    Banerjee, S. et al. Determinants of bacterial communities in Canadian agroforestry systems. Environ. Microbiol. 18, 1805–1816 (2016).

  9. 9.

    Zhang, Z. et al. Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME J. 8, 881–893 (2014).

  10. 10.

    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).

  11. 11.

    Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 5, 384–392 (2007).

  12. 12.

    Costello, E. K., Stagaman, K., Dethlefsen, L. & Bohannan, B. J. M. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).

  13. 13.

    Proulx, S. R., Promislow, D. E. L. & Phillips, P. C. Network thinking in ecology and evolution. Trends Ecol. Evol. 20, 345–353 (2005).

  14. 14.

    Zhou, J. et al. Functional molecular ecological networks. MBio 1, e00169–00110 (2010).

  15. 15.

    Reshef, D. N. et al. Detecting novel associations in large data sets. Science 334, 1518–1524 (2011).

  16. 16.

    Ruan, Q. et al. Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics 22, 2532–2538 (2006).

  17. 17.

    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, 1–11 (2012).

  18. 18.

    Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8, e1002606 (2012).

  19. 19.

    Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1–13 (2016).

  20. 20.

    Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, 1–31 (2016).

  21. 21.

    Gilbert, J. a et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).

  22. 22.

    Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE 9, 1–10 (2014).

  23. 23.

    Shetty, S. A., Hugenholtz, F., Lahti, L., Smidt, H. & de Vos, W. M. Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiol. Rev. 41, 182–199 (2017).

  24. 24.

    Vick-Majors, T. J., Priscu, J. C. & Amaral-Zettler, L. A. Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes. ISME J. 8, 778–789 (2014).

  25. 25.

    Gokul, J. K. et al. Taxon interactions control the distributions of cryoconite bacteria colonizing a high Arctic ice cap. Mol. Ecol. 25, 3752–3767 (2016).

  26. 26.

    Comte, J., Lovejoy, C., Crevecoeur, S. & Vincent, W. F. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes. Biogeosciences 13, 175–190 (2016).

  27. 27.

    Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 1–14 (2014).

  28. 28.

    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).

  29. 29.

    Mills, L. S. & Doak, D. F. The keystone-species concept in ecology and conservation. BioScience 43, 219–224 (1993).

  30. 30.

    Cottee-Jones, H. E. W. & Whittaker, R. J. The keystone species concept: a critical appraisal. Front. Biogeogr. 4, 217–220 (2012).

  31. 31.

    Power, M. E. et al. Challenges in the quest for keystones. Bioscience 46, 609–620 (1996).

  32. 32.

    Paine, R. T. A note on trophic complexity and community stability. Am. Nat. 103, 91–93 (1969).

  33. 33.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increase with connectance. Ecol. Lett. 5, 558–567 (2002).

  34. 34.

    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics 13, 113 (2012).

  35. 35.

    Lupatini, M. et al. Network topology reveals high connectance levels and few key microbial genera within soils. Front. Environ. Sci. 2, 1–11 (2014).

  36. 36.

    Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio 2, e00122–e00111 (2011).

  37. 37.

    Eldridge, D. J. et al. Soil-foraging animals alter the composition and co-occurrence of microbial communities in a desert shrubland. ISME J. 9, 1–11 (2015).

  38. 38.

    Ma, B. et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 10, 1–11 (2016).

  39. 39.

    Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).

  40. 40.

    Jiang, Y. et al. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 109, 145–155 (2017).

  41. 41.

    Li, F., Chen, L., Zhang, J., Yin, J. & Huang, S. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front. Microbiol. 8, 187 (2017).

  42. 42.

    Liang, Y. et al. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes. Front. Microbiol. 7, 1–13 (2016).

  43. 43.

    Wang, H. et al. Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biol. Biochem. 105, 227–235 (2017).

  44. 44.

    Hill, R. et al. Temporal and spatial influences incur reconfiguration of Arctic heathland soil bacterial community structure. Environ. Microbiol. 18, 1942–1953 (2016).

  45. 45.

    Li, B. et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 9, 1–13 (2015).

  46. 46.

    Yang, S. et al. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Sci. Rep. 6, 37473 (2016).

  47. 47.

    Chao, Y. et al. Structure, variation, and co-occurrence of soil microbial communities in abandoned sites of a rare earth elements mine. Environ. Sci. Technol. 50, 11481–11490 (2016).

  48. 48.

    Jiao, S. et al. Bacterial communities in oil contaminated soils: biogeography and co-occurrence patterns. Soil Biol. Biochem. 98, 64–73 (2016).

  49. 49.

    Shi, S. et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).

  50. 50.

    Yan, Y., Kuramae, E. E., De Hollander, M., Klinkhamer, P. G. & Van Veen, J. A. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J. 11, 1–11 (2016).

  51. 51.

    Geng, H., Tran-Gyamfi, M. B., Lane, T. W., Sale, K. L. & Yu, E. T. Changes in the structure of the microbial community associated with Nannochloropsis salina following treatments with antibiotics and bioactive compounds. Front. Microbiol. 7, 1–13 (2016).

  52. 52.

    Graham, E. B. et al. Deterministic influences exceed dispersal effects on hydrologically-connected microbiomes. Environ. Microbiol. 19, 1552–1567 (2017).

  53. 53.

    Ji, Y. et al. Structure and function of methanogenic microbial communities in sediments of Amazonian lakes with different water types. Environ. Microbiol. 18, 5082–5100 (2016).

  54. 54.

    Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl Acad. Sci. USA 105, 17861–17866 (2008).

  55. 55.

    Zhao, D. et al. Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton. Sci. Total Environ. 573, 817–825 (2016).

  56. 56.

    Curtis, M. M. et al. The gut commensal bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe 16, 759–769 (2014).

  57. 57.

    Maldonado-Contreras, A. et al. Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J. 5, 574–579 (2011).

  58. 58.

    Trosvik, P. & de Muinck, E. J. Ecology of bacteria in the human gastrointestinal tract — identification of keystone and foundation taxa. Microbiome 3, 44 (2015).

  59. 59.

    Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

  60. 60.

    Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543 (2012).

  61. 61.

    Ding, J. et al. Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests. Mol. Ecol. 24, 5175–5185 (2015).

  62. 62.

    Nunez, M. A. & Dimarco, R. D. The encyclopedia of sustainability, vol. 5: ecosystem management and sustainability (eds Craig, R. K., Nagle, J. C., Pardy, B., Schmitz, O. J. & Smith, W. K.) 226–230 (Berkshire Publishing, 2012).

  63. 63.

    Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).

  64. 64.

    Hajishengallis, G. et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10, 497–506 (2011).

  65. 65.

    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).

  66. 66.

    Cardona, C., Weisenhorn, P., Henry, C. & Gilbert, J. A. Network-based metabolic analysis and microbial community modeling. Curr. Opin. Microbiol. 31, 124–131 (2016).

  67. 67.

    Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).

  68. 68.

    Newman, M. E. J. The structure and function of complex networks. Soc. Ind. Appl. Math. Rev. 45, 167–256 (2003).

  69. 69.

    van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, 1–9 (2016).

  70. 70.

    Barabási, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

  71. 71.

    Hartman, K. et al. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6, 14 (2018).

  72. 72.

    Steele, J. A. et al. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J. 5, 1414–1425 (2011).

  73. 73.

    Andreote, F. D. et al. Culture-independent assessment of rhizobiales-related alphaproteobacteria and the diversity of Methylobacterium in the rhizosphere and rhizoplane of transgenic eucalyptus. Microb. Ecol. 57, 82–93 (2009).

  74. 74.

    Hajishengallis, G., Darveau, R. P. & Curtis, M. A. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 10, 717–725 (2012).

  75. 75.

    Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

  76. 76.

    Garrett, W. S. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8, 292–300 (2010).

  77. 77.

    Van Der Heijden, M. G. A. et al. Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiol. Ecol. 56, 178–187 (2006).

  78. 78.

    Kommineni, S. et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526, 719–722 (2015).

  79. 79.

    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).

  80. 80.

    Herren, C. M. & McMahon, K. D. Small subsets of highly connected taxa predict compositional change in microbial communities. bioRxiv (2017).

  81. 81.

    Grace, J. B., Anderson, T., Olff, H. & Scheiner, S. On the specification of structural equation models for ecological systems. Ecol. Monogr. 80, 67–87 (2010).

  82. 82.

    Lamb, E. G., Shirtliffe, S. J. & May, W. E. Structural equation modeling in the plant sciences: an example using yield components in oat. Can. J. Plant Sci. 91, 603–619 (2011).

  83. 83.

    Banerjee, S., Bora, S., Thrall, P. H. & Richardson, A. E. Soil C and N as causal factors of spatial variation in extracellular enzyme activity across grassland-woodland ecotones. Appl. Soil Ecol. 105, 1–8 (2016).

  84. 84.

    Mouquet, N., Gravel, D., Massol, F. & Calcagno, V. Extending the concept of keystone species to communities and ecosystems. Ecol. Lett. 16, 1–8 (2013).

  85. 85.

    Nichols, D. et al. Use of ichip for high-throughput in situ cultivation of ‘uncultivable’ microbial species. Appl. Environ. Microbiol. 76, 2445–2450 (2010).

  86. 86.

    Gavrish, E., Bollmann, A., Epstein, S. & Lewis, K. A trap for in situ cultivation of filamentous actinobacteria. J. Microbiol. Methods 72, 257–262 (2008).

  87. 87.

    Bouguelia, S. et al. On-chip microbial culture for the specific detection of very low levels of bacteria. Lab. Chip 13, 4024 (2013).

  88. 88.

    Park, J., Kerner, A., Burns, M. A. & Lin, X. N. Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS ONE 6, e17019 (2011).

  89. 89.

    Stanley, C. E. & van der Heijden, M. G. A. Microbiome-on-a-chip: new frontiers in plant–microbiota research. Trends Microbiol. 25, 610–613 (2017).

  90. 90.

    Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B. & Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8, 275–279 (1993).

  91. 91.

    Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 1–11 (2012).

  92. 92.

    Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).

  93. 93.

    Maloy, K. J. & Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298–306 (2011).

  94. 94.

    Hajishengallis, G. & Lamont, R. J. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends Microbiol. 24, 477–489 (2016).

  95. 95.

    Hill, D. & Artis, D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 28, 623–667 (2010).

  96. 96.

    Raaijmakers, J. M. & Weller, D. M. Natural plant protection by 2,4-diacetylphloroglucinol - producing Pseudomonas spp. in take-all decline soils. APS. 11, 144–152 (1998).

  97. 97.

    van Der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

  98. 98.

    Shade, A. & Handelsman, J. Beyond the Venn diagram: the hunt for a core microbiome. Environ. Microbiol. 14, 4–12 (2012).

  99. 99.

    Turnbaugh, P. J. et al. A core gut microbiom in obese and lean twins. Nature 457, 480–484 (2009).

  100. 100.

    Yeoh, Y. K. et al. Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat. Commun. 8, 215 (2017).

  101. 101.

    Brown, J. H. & Heske, E. J. Control of a desert-grassland transition by a keystone rodent guild. Science 250, 1705–1707 (1990).

  102. 102.

    Jones, C. M. et al. Recently identified microbial guild mediates soil N2O sink capacity. Nat. Clim. Chang. 4, 801–805 (2014).

  103. 103.

    Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).

  104. 104.

    Jousset, A. et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 11, 853–862 (2017).

  105. 105.

    Pester, M., Bittner, N., Deevong, P., Wagner, M. & Loy, A. A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. ISME J. 4, 1591–1602 (2010).

  106. 106.

    Stinson, K. A. et al. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 4, 727–731 (2006).

  107. 107.

    Manefield, M., Whiteley, A. S., Griffiths, R. I. & Bailey, M. J. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68, 5367–5373 (2002).

Download references


The authors thank the referees, whose constructive comments and insightful suggestions greatly improved the quality of the manuscript. They also thank U. Kaufmann for help with a figure and C. Stanley for proofreading the manuscript. Work in the author’s laboratory was supported by the Swiss National Science Foundation (Grant No. 31003A_166079 awarded to M.G.A.v.d.H.).

Reviewer information

Nature Reviews Microbiology thanks Janet Jansson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information


  1. Department of Agroecology and Environment, Agroscope, Zurich, Switzerland

    • Samiran Banerjee
    • , Klaus Schlaeppi
    •  & Marcel G. A. van der Heijden
  2. Institute of Plant Sciences, University of Bern, Bern, Switzerland

    • Klaus Schlaeppi
  3. Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland

    • Marcel G. A. van der Heijden
  4. Institute of Environmental Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands

    • Marcel G. A. van der Heijden


  1. Search for Samiran Banerjee in:

  2. Search for Klaus Schlaeppi in:

  3. Search for Marcel G. A. van der Heijden in:


S.B. researched data for the article. S.B. and M.G.A.v.d.H made substantial contributions to the discussion of content and writing of the article. S.B, K.S. and M.G.A.v.d.H. reviewed and edited the manuscript before submission.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Samiran Banerjee or Marcel G. A. van der Heijden.

Electronic supplementary material

About this article

Publication history



Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.