Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Why does the microbiome affect behaviour?

Abstract

Growing evidence indicates that the mammalian microbiome can affect behaviour, and several symbionts even produce neurotransmitters. One common explanation for these observations is that symbionts have evolved to manipulate host behaviour for their benefit. Here, we evaluate the manipulation hypothesis by applying evolutionary theory to recent work on the gut–brain axis. Although the theory predicts manipulation by symbionts under certain conditions, these appear rarely satisfied by the genetically diverse communities of the mammalian microbiome. Specifically, any symbiont investing its resources to manipulate host behaviour is expected to be outcompeted within the microbiome by strains that do not manipulate and redirect their resources into growth and survival. Moreover, current data provide no clear evidence for manipulation. Instead, we show how behavioural effects can readily arise as a by-product of natural selection on microorganisms to grow within the host and natural selection on hosts to depend upon their symbionts. We argue that understanding why the microbiome influences behaviour requires a focus on microbial ecology and local effects within the host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of microbial effects on the brain.
Fig. 2: How neurotransmitters in the gut lumen might influence the central nervous system.

Similar content being viewed by others

References

  1. Mayer, E. A. Gut feelings: the emerging biology of gut-brain communication. Nat. Rev. Neurosci. 12, 453–466 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Forsythe, P., Bienenstock, J. & Kunze, W. A. in Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease (eds Lyte, M. & Cryan, J. F.) 115–133 (Springer, 2014).

  3. Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neuman, H., Debelius, J. W., Knight, R. & Koren, O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev. 39, 509–521 (2015).

    Article  PubMed  Google Scholar 

  5. Lyte, M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog. 9, e1003726 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Foster, J. A. & McVey Neufeld, K.-A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Sarkar, A. et al. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 39, 763–781 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The central nervous system and the gut microbiome. Cell 167, 915–932 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rhee, S. H., Pothoulakis, C. & Mayer, E. A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 6, 306–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Desbonnet, L. et al. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170, 1179–1188 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Bercik, P. et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23, 1132–1139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. USA 108, 16050–16055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Messaoudi, M. et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 105, 755–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Savignac, H. M., Kiely, B., Dinan, T. G. & Cryan, J. F. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol. Motil. 26, 1615–1627 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Davis, D. J. et al. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci. Rep. 6, 33726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pinto-Sanchez, M. I. et al. Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: a pilot study in patients with irritable bowel syndrome. Gastroenterology 153, 448–459 (2017).

    Article  PubMed  Google Scholar 

  19. Wallace, C. J. K. & Milev, R. The effects of probiotics on depressive symptoms in humans: a systematic review. Ann. Gen. Psychiatry 16, 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bharwani, A., Mian, M. F., Surette, M. G., Bienenstock, J. & Forsythe, P. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress. BMC Med. 15, 7 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Buffington, S. A. et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165, 1762–1775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, 940–949 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wong, A. C.-N. et al. Behavioral microbiomics: a multi-dimensional approach to microbial influence on behavior. Front. Microbiol. 6, 1359 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Stilling, R. M., Dinan, T. G. & Cryan, J. F. The brain’s Geppetto — microbes as puppeteers of neural function and behaviour? J. Neurovirol. 22, 14–21 (2016).

    Article  PubMed  Google Scholar 

  26. Yuval, B. Symbiosis: gut bacteria manipulate host behaviour. Curr. Biol. 27, R746–R747 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Stilling, R. M., Bordenstein, S. R., Dinan, T. G. & Cryan, J. F. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front. Cell. Infect. Microbiol. 4, 147 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lewin-Epstein, O., Aharonov, R. & Hadany, L. Microbes can help explain the evolution of host altruism. Nat. Commun. 8, 14040 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown, S. P. Do all parasites manipulate their hosts? Behav. Processes 68, 237–240 (2005).

    Article  PubMed  Google Scholar 

  30. Thomas, F., Adamo, S. A. & Moore, J. Parasitic manipulation: where are we and where should we go? Behav. Processes 68, 185–199 (2005).

    Article  PubMed  Google Scholar 

  31. Adamo, S. A. Modulating the modulators: parasites, neuromodulators and host behavioral change. Brain Behav. Evol. 60, 370–377 (2002).

    Article  PubMed  Google Scholar 

  32. Perrot-Minnot, M.-J. & Cézilly, F. Investigating candidate neuromodulatory systems underlying parasitic manipulation: concepts, limitations and prospects. J. Exp. Biol. 216, 134–141 (2013).

    Article  PubMed  Google Scholar 

  33. Andersen, S. B. et al. The life of a dead ant: the expression of an adaptive extended phenotype. Am. Nat. 174, 424–433 (2009).

    Article  PubMed  Google Scholar 

  34. Hughes, D. P. et al. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol. 11, 13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Klein, S. L. Parasite manipulation of the proximate mechanisms that mediate social behavior in vertebrates. Physiol. Behav. 79, 441–449 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Berdoy, M., Webster, J. P. & Macdonald, D. W. Fatal attraction in rats infected with Toxoplasma gondii. Proc. Biol. Sci. 267, 1591–1594 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vyas, A., Kim, S.-K., Giacomini, N., Boothroyd, J. C. & Sapolsky, R. M. Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc. Natl Acad. Sci. USA 104, 6442–6447 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Poulin, R. ‘Adaptive’ changes in the behaviour of parasitized animals: a critical review. Int. J. Parasitol. 25, 1371–1383 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Brown, S. P. Cooperation and conflict in host-manipulating parasites. Proc. Biol. Sci. 266, 1899–1904 (1999).

    Article  PubMed Central  Google Scholar 

  40. Vickery, W. L. & Poulin, R. The evolution of host manipulation by parasites: a game theory analysis. Evol. Ecol. 24, 773–788 (2010).

    Article  Google Scholar 

  41. Schluter, J. & Foster, K. R. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol. 10, e1001424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xavier, J. B., Kim, W. & Foster, K. R. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol. Microbiol. 79, 166–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Adamo, S. A. Parasites: evolution’s neurobiologists. J. Exp. Biol. 216, 3–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Marino, S., Baxter, N. T., Huffnagle, G. B., Petrosino, J. F. & Schloss, P. D. Mathematical modeling of primary succession of murine intestinal microbiota. Proc. Natl Acad. Sci. USA 111, 439–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Kommineni, S. et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526, 719–722 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chatzidaki-Livanis, M., Geva-Zatorsky, N. & Comstock, L. E. Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc. Natl Acad. Sci. USA 113, 3627–3632 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wexler, A. G. et al. Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc. Natl Acad. Sci. USA 113, 3639–3644 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rao, S. et al. Pathogen-mediated inhibition of anorexia promotes host survival and transmission. Cell 168, 503–516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Murray, M. J. & Murray, A. B. Anorexia of infection of host defense as a mechanism. Am. J. Clin. Nutr. 32, 593–596 (1979).

    Article  CAS  PubMed  Google Scholar 

  54. Wickham, M. E., Brown, N. F., Provias, J., Finlay, B. B. & Coombes, B. K. Oral infection of mice with Salmonella enterica serovar Typhimurium causes meningitis and infection of the brain. BMC Infect. Dis. 7, 65 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  55. David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rivera-Chávez, F. & Bäumler, A. J. The pyromaniac inside you: Salmonella metabolism in the host gut. Annu. Rev. Microbiol. 69, 31–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Balmer, O. & Tanner, M. Prevalence and implications of multiple-strain infections. Lancet Infect. Dis. 11, 868–878 (2011).

    Article  PubMed  Google Scholar 

  58. Rao, M. & Gershon, M. D. The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 517–528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Quigley, E. M. M. Microflora modulation of motility. J. Neurogastroenterol. Motil. 17, 140–147 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fukumoto, S. et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1269–R1276 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dey, N. et al. Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell 163, 95–107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wiles, T. J. et al. Host gut motility promotes competitive exclusion within a model intestinal microbiota. PLoS Biol. 14, e1002517 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Logan, S. L. et. al. The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proc Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1720133115 (2018).

    Article  CAS  Google Scholar 

  66. Sansonetti, P. J. & Di Santo, J. P. Debugging how bacteria manipulate the immune response. Immunity 26, 149–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Ayres, J. S. Cooperative microbial tolerance behaviors in host-microbiota mutualism. Cell 165, 1323–1331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289, 1560–1563 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat. Immunol. 5, 104–112 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Hooper, L. V. Do symbiotic bacteria subvert host immunity? Nat. Rev. Microbiol. 7, 367–374 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Steinman, L. Elaborate interactions between the immune and nervous systems. Nat. Immunol. 5, 575–581 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Baganz, N. L. & Blakely, R. D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci. 4, 48–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Wohleb, E. S., Franklin, T., Iwata, M. & Duman, R. S. Integrating neuroimmune systems in the neurobiology of depression. Nat. Rev. Neurosci. 17, 497–511 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. De Palma, G. et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci. Transl Med. 9, eaaf6397 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Mao, Y.-K. et al. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat. Commun. 4, 1465 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Mazmanian, S. K. & Kasper, D. L. The love–hate relationship between bacterial polysaccharides and the host immune system. Nat. Rev. Immunol. 6, 849–858 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl Med. 6, 263ra158 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Barrett, E., Ross, R. P., O’Toole, P. W., Fitzgerald, G. F. & Stanton, C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113, 411–417 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Pokusaeva, K. et al. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol. Motil. 29, e12904 (2017).

    Article  CAS  Google Scholar 

  86. Guthrie, G. D. & Nicholson-Guthrie, C. S. γ-Aminobutyric acid uptake by a bacterial system with neurotransmitter binding characteristics. Proc. Natl Acad. Sci. USA 86, 7378–7381 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Strandwitz, P. et al. GABA modulating bacteria of the human gut microbiome at ASM Microbe Conference (Poster) American Society for Microbiology http://www.abstractsonline.com/pp8/#!/4060/presentation/18619 (2016).

  88. Asano, Y. et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1288–G1295 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Wall, R. et al. in Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease (eds Lyte, M. & Cryan, J. F.) 221–239 (Springer, 2014).

  90. Sampson, T. R. & Mazmanian, S. K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17, 565–576 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Roshchina, V. V. in Mic robial En do crino logy: Interkingdom Signaling in Infectious Disease and Health (eds Lyte, M. & Freestone, P. E.) 17–52 (Springer, 2010).

  92. Iyer, L. M., Aravind, L., Coon, S. L., Klein, D. C. & Koonin, E. V. Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet. 20, 292–299 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Mountfort, D. O. & Pybus, V. Regulatory influences on the production of gamma-aminobutyric acid by a marine pseudomonad. Appl. Environ. Microbiol. 58, 237–242 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. de Mazancourt, C., Loreau, M. & Dieckmann, U. Understanding mutualism when there is adaptation to the partner. J. Ecol. 93, 305–314 (2005).

    Article  Google Scholar 

  95. Weinersmith, K. L. & Earley, R. L. Better with your parasites? Lessons for behavioural ecology from evolved dependence and conditionally helpful parasites. Anim. Behav. 118, 123–133 (2016).

    Article  Google Scholar 

  96. Pannebakker, B. A., Loppin, B., Elemans, C. P. H., Humblot, L. & Vavre, F. Parasitic inhibition of cell death facilitates symbiosis. Proc. Natl Acad. Sci. USA 104, 213–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Moya, A. & Ferrer, M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 24, 402–413 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Diaz Heijtz, R. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl Acad. Sci. USA 108, 3047–3052 (2011).

    Article  PubMed  Google Scholar 

  99. Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G. & Cryan, J. F. Microbiota is essential for social development in the mouse. Mol. Psychiatry 19, 146–148 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Desbonnet, L. et al. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain. Behav. Immun. 48, 165–173 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Hoban, A. E. et al. Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience 339, 463–477 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hill, D. A. & Artis, D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 28, 623–667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Brestoff, J. R. & Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14, 676–684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Strachan, D. P. Hay fever, hygiene, and household size. Br. Med. J. 299, 1259–1260 (1989).

    Article  CAS  Google Scholar 

  108. Rook, G. A. W. & Lowry, C. A. The hygiene hypothesis and psychiatric disorders. Trends Immunol. 29, 150–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Wells, J. M. Immunomodulatory mechanisms of lactobacilli. Microb. Cell Fact. 10, S17 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Fanning, S. et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc. Natl Acad. Sci. USA 109, 2108–2113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fetissov, S. O. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat. Rev. Endocrinol. 13, 11–25 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Rosenbaum, M., Knight, R. & Leibel, R. L. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol. Metab. 26, 493–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A. L. & Foster, K. R. Host selection of microbiota via differential adhesion. Cell Host Microbe 19, 550–559 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Franzosa, E. A. et al. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13, 360–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mitri, S. & Foster, K. R. The genotypic view of social interactions in microbial communities. Annu. Rev. Genet. 47, 247–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Markel, T. A. et al. The struggle for iron: gastrointestinal microbes modulate the host immune response during infection. J. Leukoc. Biol. 81, 393–400 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Choi, E.-Y. et al. Iron chelator triggers inflammatory signals in human intestinal epithelial cells: involvement of p38 and extracellular signal-regulated kinase signaling pathways. J. Immunol. 172, 7069–7077 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Weimer, P. J. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front. Microbiol. 6, 296 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Caballero, S. et al. Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 21, 592–602 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Thompson, J. N. Interaction and Coevolution (Univ. of Chicago Press, 1982).

  122. Marchesi, J. R. & Ravel, J. The vocabulary of microbiome research: a proposal. Microbiome 3, 31 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Méthot, P.-O. & Alizon, S. What is a pathogen? Toward a process view of host-parasite interactions. Virulence 5, 775–785 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. May, G. & Nelson, P. Defensive mutualisms: do microbial interactions within hosts drive the evolution of defensive traits? Funct. Ecol. 28, 356–363 (2014).

    Article  Google Scholar 

  125. Hamilton, W. D. The genetical evolution of social behaviour I. J. Theor. Biol. 7, 1–16 (1964).

    Article  CAS  PubMed  Google Scholar 

  126. Hamilton, W. D. The genetical evolution of social behaviour II. J. Theor. Biol. 7, 17–52 (1964).

    Article  CAS  PubMed  Google Scholar 

  127. Bourke, A. F. G. Principles of Social Evolution (Oxford Univ. Press, 2011).

  128. Wilson, E. O. Sociobiology: The New Synthesis (Harvard Univ. Press, 1975).

  129. Sana, T. G., Lugo, K. A. & Monack, D. M. T6SS: the bacterial ‘fight club’ in the host gut. PLoS Pathog. 13, e1006325 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Mitri, S. & Foster, K. R. Pleiotropy and the low cost of individual traits promote cooperation. Evolution 70, 488–494 (2016).

    Article  PubMed  Google Scholar 

  131. Laterra, J., Keep, R., Betz, L. A. & Goldstein, G. W. in Basic Neurochemistry: Molecular, Cellular and Medical Aspects (eds Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K. & Uhler, M. D.) (Lippincott-Raven, 1999).

  132. Forsythe, P. & Kunze, W. A. Voices from within: gut microbes and the CNS. Cell. Mol. Life Sci. 70, 55–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Fernstrom, J. D. Role of precursor availability in control of monoamine biosynthesis in brain. Physiol. Rev. 63, 484–546 (1983).

    Article  CAS  PubMed  Google Scholar 

  134. Banks, W. A. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 9, S3 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G. & Cryan, J. F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277, 32–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Fernstrom, J. D. & Wurtman, R. J. Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173, 149–152 (1971).

    Article  CAS  PubMed  Google Scholar 

  137. Biron, D. G. et al. Behavioural manipulation in a grasshopper harbouring hairworm: a proteomics approach. Proc. Biol. Sci. 272, 2117–2126 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Knowles, S. Rakoff-Nahoum, E. Hsiao, J. Webster and three anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, substantially contributed to discussion of content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Katerina V.-A. Johnson or Kevin R. Foster.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, K.VA., Foster, K.R. Why does the microbiome affect behaviour?. Nat Rev Microbiol 16, 647–655 (2018). https://doi.org/10.1038/s41579-018-0014-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-018-0014-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing