Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis

Abstract

Metabolism was once relegated to the supply of energy and biosynthetic precursors, but it has now become clear that it is a specific mediator of nearly all physiological processes. In the context of microbial pathogenesis, metabolism has expanded outside its canonical role in bacterial replication. Among human pathogens, this expansion has emerged perhaps nowhere more visibly than for Mycobacterium tuberculosis, the causative agent of tuberculosis. Unlike most pathogens, M. tuberculosis has evolved within humans, which are both host and reservoir. This makes unrestrained replication and perpetual quiescence equally incompatible strategies for survival as a species. In this Review, we summarize recent work that illustrates the diversity of metabolic functions that not only enable M. tuberculosis to establish and maintain a state of chronic infection within the host but also facilitate its survival in the face of drug pressure and, ultimately, completion of its life cycle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Enzymes required for growth and/or persistence of Mycobacterium tuberculosis.
Fig. 2: Effects of metabolism beyond fulfilling nutritional demands on the physiology of Mycobacterium tuberculosis.
Fig. 3: Immunoreactive cell envelope lipids of Mycobacterium tuberculosis.
Fig. 4: Identification of a small-molecule allosteric inhibitor of tryptophan synthase in Mycobacterium tuberculosis.

References

  1. 1.

    Yaffe, M. B. Looking ahead to the past. Sci. Signal. 3, eg7 (2010).

    PubMed  Google Scholar 

  2. 2.

    Gutierrez, M. C. et al. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog. 1, e5 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Pavelka, M. S., Chen, B., Kelley, C. L., Collins, F. M. & Jacobs, W. R. Jr. Vaccine efficacy of a lysine auxotroph of Mycobacterium tuberculosis. Infect. Immun. 71, 4190–4192 (2003).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  4. 4.

    Hondalus, M. K. et al. Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect. Immun. 68, 2888–2898 (2000).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  5. 5.

    Sambandamurthy, V. K. et al. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat. Med. 8, 1171–1174 (2002).

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Görke, B. & Stülke, J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Micro 6, 613–624 (2008).

    Article  CAS  Google Scholar 

  7. 7.

    de Carvalho, L. P. S. et al. Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem. Biol. 17, 1122–1131 (2010).

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Puckett, S. et al. Inactivation of fructose-1,6-bisphosphate aldolase prevents optimal co-catabolism of glycolytic and gluconeogenic carbon substrates in Mycobacterium tuberculosis. PLoS Pathog. 10, e1004144 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Trujillo, C. et al. Triosephosphate isomerase is dispensable in vitro yet essential for Mycobacterium tuberculosis to establish infection. mBio 5, e00085–14 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Kayne, F. J. 11 Pyruvate Kinase. Enzymes 8, 353–382 (1973).

    CAS  Article  Google Scholar 

  11. 11.

    Zhong, W. et al. Allosteric pyruvate kinase-based “logic gate” synergistically senses energy and sugar levels in Mycobacterium tuberculosis. Nat. Commun. 8, 1986 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. 12.

    Noy, T. et al. Central role of pyruvate kinase in carbon co-catabolism of Mycobacterium tuberculosis. J. Biol. Chem. 291, 7060–7069 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  13. 13.

    Beste, D. J. V. et al. C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem. Biol. 20, 1012–1021 (2013). This study shows that intracellular M. tuberculosis has access to glycolytic C3 substrates.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  14. 14.

    Somashekar, B. S. et al. Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies. J. Proteome Res. 10, 4186–4195 (2011).

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Zimmermann, M. et al. Integration of metabolomics and transcriptomics reveals a complex diet of Mycobacterium tuberculosis during early macrophage infection. mSystems 2, e00057–17 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Vanderven, B. C. et al. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium’s metabolism is constrained by the intracellular environment. PLoS Pathog. 11, e1004679 (2015). This work provides a framework to exploit carbon metabolism for TB drug development.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Johnson, R. M. et al. Chemical activation of adenylyl cyclase Rv1625c inhibits growth of Mycobacterium tuberculosis on cholesterol and modulates intramacrophage signaling. Mol. Microbiol. 105, 294–308 (2017).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  18. 18.

    Nazarova, E. V. et al. Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. eLife 6, e26969 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Larrouy-Maumus, G. et al. Discovery of a glycerol 3-phosphate phosphatase reveals glycerophospholipid polar head recycling in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 110, 11320–11325 (2013).

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Kalscheuer, R., Weinrick, B., Veeraraghavan, U., Besra, G. S. & Jacobs, W. R. Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 107, 21761–21766 (2010).

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Rustad, T. R., Sherrid, A. M., Minch, K. J. & Sherman, D. R. Hypoxia: a window into Mycobacterium tuberculosislatency. Cell. Microbiol. 11, 1151–1159 (2009).

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Eoh, H. et al. Metabolic anticipation in Mycobacterium tuberculosis. Nat. Microbiol. 2, 17084 (2017).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  23. 23.

    Maksymiuk, C., Balakrishnan, A., Bryk, R., Rhee, K. Y. & Nathan, C. F. E1 of α-ketoglutarate dehydrogenase defends Mycobacterium tuberculosis against glutamate anaplerosis and nitroxidative stress. Proc. Natl Acad. Sci. USA 112, E5834–E5843 (2015).

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Nandakumar, M., Nathan, C. & Rhee, K. Y. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat. Commun. 5, 4306 (2014).

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Venugopal, A. et al. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe 9, 21–31 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  26. 26.

    Bryk, R., Lima, C. D., Erdjument-Bromage, H., Tempst, P. & Nathan, C. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295, 1073–1077 (2002).

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Nathan, C. Taming tuberculosis: a challenge for science and society. Cell Host Microbe 5, 220–224 (2009).

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Nathan, C. Fresh approaches to anti-infective therapies. Sci. Transl Med. 4, 140sr2 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    McKinney, J. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000). This is a seminal study that identifies for the first time a gene required for persistence of M. tuberculosis in mice.

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Marrero, J., Rhee, K. Y., Schnappinger, D., Pethe, K. & Ehrt, S. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc. Natl Acad. Sci. USA 107, 9819–9824 (2010).

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Ehrt, S., Rhee, K. & Schnappinger, D. Mycobacterial genes essential for the pathogen’s survival in the host. Immunol. Rev. 264, 319–326 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  32. 32.

    Zhang, Y. J. et al. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155, 1296–1308 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  33. 33.

    Sassetti, C. M. & Rubin, E. J. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100, 12989–12994 (2003). This is the first study that screens a transposon mutant library to identify M. tuberculosis genes that are required for virulence in the mouse model.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Muñoz-Elías, E. & McKinney, J. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 11, 638–644 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Blumenthal, A., Trujillo, C., Ehrt, S. & Schnappinger, D. Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo. PLoS ONE 5, e15667 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  36. 36.

    Pandey, A. K. & Sassetti, C. M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl Acad. Sci. USA 105, 4376–4380 (2008). This work reveals that M. tuberculosis requires cholesterol for persistence in vivo.

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Marrero, J., Trujillo, C., Rhee, K. Y. & Ehrt, S. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice. PLoS Pathog. 9, e1003116 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  38. 38.

    Puckett, S. et al. Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 114, E2225–E2232 (2017).

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Ruecker, N. et al. Fumarase deficiency causes protein and metabolite succination and intoxicates Mycobacterium tuberculosis. Cell Chem. Biol. 24, 306–315 (2017).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  40. 40.

    Rhee, K. Y. et al. Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol. 19, 307–314 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  41. 41.

    Dahl, J. L. et al. The role of Rel Mtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc. Natl Acad. Sci. USA 100, 10026–10031 (2003).

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Gould, T. A., van de Langemheen, H., Muñoz-Elías, E. J., Mckinney, J. D. & Sacchettini, J. C. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol. Microbiol. 61, 940–947 (2006).

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Eoh, H. & Rhee, K. Y. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc. Natl Acad. Sci. USA 111, 4976–4981 (2014). This study dissects the specific biochemical mechanism underlying the essentiality of isocitrate lyase for growth and survival of M. tuberculosis with fatty acids as a carbon source.

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Eoh, H. & Rhee, K. Y. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 110, 6554–6559 (2013).

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Ganapathy, U. et al. Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis. Nat. Commun. 6, 7912 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  46. 46.

    Machová, I. et al. Mycobacterium tuberculosis phosphoenolpyruvate carboxykinase is regulated by redox mechanisms and interaction with thioredoxin. J. Biol. Chem. 289, 13066–13078 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Lee, W., VanderVen, B. C., Fahey, R. J. & Russell, D. G. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J. Biol. Chem. 288, 6788–6800 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  48. 48.

    Thomas, S. T., VanderVen, B. C., Sherman, D. R., Russell, D. G. & Sampson, N. S. Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. J. Biol. Chem. 286, 43668–43678 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  49. 49.

    Kim, J.-H. et al. A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proc. Natl Acad. Sci. USA 110, 19095–19100 (2013).

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Woong Park, S. et al. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog. 7, e1002264 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51.

    Dick, T., Manjunatha, U., Kappes, B. & Gengenbacher, M. Vitamin B6 biosynthesis is essential for survival and virulence of Mycobacterium tuberculosis. Mol. Microbiol. 78, 980–988 (2010).

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Boshoff, H. I. M. et al. Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli. J. Biol. Chem. 283, 19329–19341 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  53. 53.

    Berney, M. et al. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 112, 10008–10013 (2015).

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Bryk, R., Griffin, P. & Nathan, C. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407, 211–215 (2000).

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Hartman, T. E., Gardete, S., Rhee, K. Y., Jansen, R. S. & Wang, Z. Metabolic perspectives on persistence. Microbiol. Spectr. 5, TBTB2-0026-2016 (2017).

  56. 56.

    Wayne, L. & Hayes, L. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun. 64, 2062 (1996). This is a seminal study that establishes a model for non-replication persistence of M. tuberculosis.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. 57.

    Watanabe, S. et al. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog. 7, e1002287 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  58. 58.

    Hartman, T. et al. Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis. PLoS Pathog. 10, e1004510 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. 59.

    Dawson, R. et al. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet 385, 1738–1747 (2015).

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Diacon, A. H. et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med. 360, 2397–2405 (2009).

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Gler, M. T. et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N. Engl. J. Med. 366, 2151–2160 (2012).

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Andries, K. A. Diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005). This paper reports on bedaquiline, which in 2012 became the first new anti-TB drug with a novel mechanism of action since rifampicin was approved in 1974.

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Singh, R. et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322, 1392–1395 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  64. 64.

    Stamm, C. E., Collins, A. C. & Shiloh, M. U. Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol. Rev. 264, 204–219 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Ishikawa, E. et al. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J. Exp. Med. 206, 2879–2888 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  66. 66.

    Neyrolles, O. & Guilhot, C. Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis 91, 187–195 (2011). This is a comprehensive review of the cell envelope lipids of M. tuberculosis and their contribution to virulence.

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Geisel, R. E., Sakamoto, K., Russell, D. G. & Rhoades, E. R. In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guérin is due principally to trehalose mycolates. J. Immunol. 174, 5007–5015 (2005).

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Rhoades, E. et al. Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol. Microbiol. 48, 875–888 (2003).

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Galagan, J. E. et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499, 178–183 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  70. 70.

    Glickman, M. S., Cox, J. S. & Jacobs, W. R. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5, 717–727 (2000). This is a foundational study that describes the importance of cyclopropanation of mycolic acids for long-term persistence and virulence of M. tuberculosis.

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    Vilchèze, C. et al. Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis. PLoS Pathog. 10, e1004115 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. 72.

    Seiler, P. et al. Cell-wall alterations as an attribute of Mycobacterium tuberculosis in latent infection. J. Infect. Dis. 188, 1326–1331 (2003).

    PubMed  Article  Google Scholar 

  73. 73.

    Chancellor, A. et al. CD1b-restricted GEM T cell responses are modulated by Mycobacterium tuberculosis mycolic acid meromycolate chains. Proc. Natl Acad. Sci. USA 114, E10956–E10964 (2017).

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Jain, M. et al. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc. Natl Acad. Sci. USA 104, 5133–5138 (2007).

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Yang, X., Nesbitt, N. M., Dubnau, E., Smith, I. & Sampson, N. S. Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. Biochemistry 48, 3819–3821 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  76. 76.

    Griffin, J. E. et al. Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem. Biol. 19, 218–227 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  77. 77.

    Rousseau, C. et al. Production of phthiocerol dimycocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen intermediates produced by macrophages and modulates the early immune response to infection. Cell. Microbiol. 6, 277–287 (2004).

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Astarie-Dequeker, C. et al. Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog. 5, e1000289 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79.

    Cambier, C. J., Falkow, S. & Ramakrishnan, L. Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell 159, 1497–1509 (2014).

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Quigley, J. et al. The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis. mBio 8, e00148–17 (2017).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  81. 81.

    Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Blanc, L. et al. Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids. Proc. Natl Acad. Sci. USA 114, 11205–11210 (2017).

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Baek, S.-H., Li, A. H. & Sassetti, C. M. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 9, e1001065 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  84. 84.

    Martinot, A. J. et al. Mycobacterial metabolic syndrome: LprG and Rv1410 regulate triacylglyceride levels, growth rate and virulence in Mycobacterium tuberculosis. PLoS Pathog 12, e1005351 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. 85.

    Daniel, J., Maamar, H., Deb, C., Sirakova, T. D. & Kolattukudy, P. E. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 7, e1002093 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  86. 86.

    Javid, B. et al. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc. Natl Acad. Sci. USA 111, 1132–1137 (2014).

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Su, H.-W. et al. The essential mycobacterial amidotransferase GatCAB is a modulator of specific translational fidelity. Nat. Microbiol. 1, 16147 (2016).

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Liu, Y. et al. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. J. Exp. Med. 213, 809–825 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  89. 89.

    Peterson, E. J. R., Ma, S., Sherman, D. R. & Baliga, N. S. Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis. Nat. Microbiol. 1, 16078 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  90. 90.

    Koul, A. et al. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat. Commun. 5, 3369 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91.

    Dhillon, J., Andries, K., Phillips, P. P. J. & Mitchison, D. A. Bactericidal activity of the diarylquinoline TMC207 against Mycobacterium tuberculosis outside and within cells. Tuberculosis 90, 301–305 (2010).

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    Greenwood, D. in Antibiotic and Chemotherapy 9th edn (eds Finch, R., Greenwood, D., Whitley, R. & Norrby, S. R.) 2–9 (Saunders, 2010).

  93. 93.

    Bushby, S. R. & Hitchings, G. H. Trimethoprim, a sulphonamide potentiator. Br. J. Pharmacol. Chemother. 33, 72–90 (1968).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  94. 94.

    Volkamer, A., Kuhn, D., Grombacher, T., Rippmann, F. & Rarey, M. Combining global and local measures for structure-based druggability predictions. J. Chem. Inf. Model. 52, 360–372 (2012).

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Wellington, S. et al. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase. Nat. Chem. Biol. 13, 943–950 (2017). This study provides a thorough and elegant mechanistic analysis of novel TrpAB inhibitors.

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    Abrahams, K. A. et al. Inhibiting mycobacterial tryptophan synthase by targeting the inter-subunit interface. Sci. Rep. 7, 9430 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Bernstein, J., Lott, W. A., Steinberg, B. A. & Yale, H. L. Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds. Am. Rev. Tuberc. 65, 357–364 (1952).

    PubMed  CAS  Google Scholar 

  98. 98.

    Vilchèze, C. & Jacobs, W. R. Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol. Spectr. 2, MGM2-0014-2013 (2014).

  99. 99.

    Soutter, H. H. et al. Discovery of cofactor-specific, bactericidal Mycobacterium tuberculosis InhA inhibitors using DNA-encoded library technology. Proc. Natl Acad. Sci. USA 113, E7880–E7889 (2016).

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Portevin, D. et al. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc. Natl Acad. Sci. USA 101, 314–319 (2004).

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Aggarwal, A. et al. Development of a novel lead that targets M. tuberculosis polyketide synthase 13. Cell 170, 249–259.e25 (2017).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  102. 102.

    DeLaBarre, B., Hurov, J., Cianchetta, G., Murray, S. & Dang, L. Action at a distance: allostery and the development of drugs to target cancer cell metabolism. Chem. Biol. 21, 1143–1161 (2014).

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Reaves, M. L. & Rabinowitz, J. D. Metabolomics in systems microbiology. Curr. Opin. Biotechnol. 22, 17–25 (2011).

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    Yus, E. et al. Impact of genome reduction on bacterial metabolism and its regulation. Science 326, 1263–1268 (2009).

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Lofthouse, E. K. et al. Systems-based approaches to probing metabolic variation within the Mycobacterium tuberculosis complex. PLoS ONE 8, e75913 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  106. 106.

    Garay, C. D., Dreyfuss, J. M. & Galagan, J. E. Metabolic modeling predicts metabolite changes in Mycobacterium tuberculosis. BMC Syst. Biol. 9, 57 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107.

    World Health Organization. Global Tuberculosis Report 2016 (WHO, Geneva, 2016).

    Google Scholar 

  108. 108.

    Lin, P. & Flynn, J. Understanding latent tuberculosis: a moving target. J. Immunol. 185, 15 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  109. 109.

    Ernst, J. D. The immunological life cycle of tuberculosis. Nat. Rev. Immunol. 12, 581–591 (2012).

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Russell, D. G. Mycobacterium tuberculosis: here today, and here tomorrow. Nat. Rev. Mol. Cell Biol. 2, 569–577 (2001).

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Barry, C. E. et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7, 845–855 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  112. 112.

    Philips, J. A. & Ernst, J. D. Tuberculosis Pathogenesis and Immunity. Annu. Rev. Pathol. Mech. Dis. 7, 353–384 (2012).

    CAS  Article  Google Scholar 

  113. 113.

    Stallings, C. L. & Glickman, M. S. Is Mycobacterium tuberculosis stressed out? A critical assessment of the genetic evidence. Microbes Infect. 12, 1091–1101 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Ehrt, S. & Schnappinger, D. Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell. Microbiol. 11, 1170–1178 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  115. 115.

    van der Wel, N. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287–1298 (2007).

    PubMed  Article  CAS  Google Scholar 

  116. 116.

    Houben, E. N. G. et al. Composition of the type VII secretion system membrane complex. Mol. Microbiol. 86, 472–484 (2012).

    PubMed  CAS  Article  Google Scholar 

  117. 117.

    Boshoff, H. & Barry, C. Tuberculosis — metabolism and respiration in the absence of growth. Nat. Rev. Microbiol. 3, 70–80 (2005).

    PubMed  CAS  Article  Google Scholar 

  118. 118.

    Russell, D. G. Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol. 5, 39–47 (2006).

    PubMed  Article  CAS  Google Scholar 

  119. 119.

    Via, L. E. et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun. 76, 2333–2340 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  120. 120.

    Elkington, P. T., D’Armiento, J. M. & Friedland, J. S. Tuberculosis immunopathology: the neglected role of extracellular matrix destruction. Sci. Transl Med. 3, 71ps6 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Garton, N. J. et al. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med. 5, e75 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. 122.

    Eum, S.-Y. et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137, 122–128 (2010).

    PubMed  Article  Google Scholar 

  123. 123.

    Mukamolova, G. V., Turapov, O., Malkin, J., Woltmann, G. & Barer, M. R. Resuscitation-promoting factors reveal an occult population of tubercle bacilli in sputum. Am. J. Respir. Crit. Care Med. 181, 174–180 (2010).

    PubMed  CAS  Article  Google Scholar 

  124. 124.

    Chengalroyen, M. D. et al. Detection and quantification of differentially culturable tubercle bacteria in sputum from patients with tuberculosis. Am. J. Respir. Crit. Care Med. 194, 1532–1540 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants R01AI063446 (National Institute of Allergy and Infectious Diseases (NIAID)) and U19AI111143 (Tri-Institutional TB Research Unit, part of the NIAID Tuberculosis Research Units Network).

Reviewer information

Nature Reviews Microbiology thanks Johnjoe McFadden, Olivier Neyrolles and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Sabine Ehrt or Dirk Schnappinger or Kyu Y. Rhee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Caseation

The necrotic death of cells in the centre of a granuloma, resulting in an acellular mass that resembles a soft, crumbly cheese.

Tricarboxylic acid cycle

(TCA cycle). A biochemical energy-generating pathway for the final steps of the oxidation of carbohydrates and fatty acids.

Glyoxylate shunt

An anaplerotic pathway that converts isocitrate into malate and succinate, bypassing the two decarboxylation steps of the tricarboxylic acid cycle.

Anaplerosis

The process of replenishing metabolite pools.

Cataplerotic

Involving the process of extracting metabolites for biosynthetic reactions.

Ketoacidosis

The accumulation of high concentrations of the ketones acetoacetate and β-hydroxybutyrate.

Dienophile

A compound that readily reacts with an unsaturated hydrocarbon (diene).

Cording

The aggregation of mycobacteria in a structure that resembles cords. This is due to the glycolipid trehalose dimycolate, also called cord factor.

Acid-fastness

The physical property of the mycolic acid-containing mycobacterial cell envelope that is responsible for resistance to decolorization by acid and ethanol.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ehrt, S., Schnappinger, D. & Rhee, K.Y. Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat Rev Microbiol 16, 496–507 (2018). https://doi.org/10.1038/s41579-018-0013-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing