Abstract
Metal-halide perovskite solar cells have achieved power conversion efficiencies comparable to those of silicon photovoltaic (PV) devices, approaching 27% for single-junction devices. The durability of the devices, however, lags far behind their performance. Their practical implementation implies the subjection of the material and devices to temperature cycles of varying intensity, driven by diurnal cycles or geographical characteristics. Thus, it is vital to develop devices that are resilient to temperature cycling. This Perspective analyses the behaviour of perovskite devices under temperature cycling. We discuss the crystallographic structural evolution of the perovskite layer, reactions and/or interactions among stacked layers, PV properties and photocatalysed thermal reactions. We highlight effective strategies for improving stability under temperature cycling, such as enhancing material crystallinity or relieving interlayer thermal stress using buffer layers. Additionally, we outline existing standards and protocols for temperature cycling testing and we propose a unified approach that could facilitate valuable cross-study comparisons among scientific and industrial research laboratories. Finally, we share our outlook on strategies to develop perovskite PV devices with exceptional real-world operating stability.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
24,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 € per year
only 9,92 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).
Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).
De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).
Wu, L. et al. Stabilization of inorganic perovskite solar cells with a 2D Dion–Jacobson passivating layer. Adv. Mater. 35, 2304150 (2023).
Huang, W., Bu, T., Huang, F. & Cheng, Y. B. Stabilizing high efficiency perovskite solar cells with 3D–2D heterostructures. Joule 4, 975–979 (2020).
Saliba, M., Correa-Baena, J.-P., Grätzel, M., Hagfeldt, A. & Abate, A. Perovskite solar cells: from the atomic level to film quality and device performance. Angew. Chem. Int. Ed. 57, 2554–2569 (2018).
Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8, 133–138 (2014).
Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).
Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).
Nandi, P. et al. CH3NH3PbI3, a potential solar cell candidate: structural and spectroscopic investigations. J. Phys. Chem. A 120, 9732–9739 (2016).
Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).
Peters, I. M., Rodríguez Gallegos, C. D., Lüer, L., Hauch, J. A. & Brabec, C. J. Practical limits of multijunction solar cells. Prog. Photovolt. 31, 1006–1015 (2023).
McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).
Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).
Green, M. A. et al. Solar cell efficiency tables (version 64). Prog. Photovolt. 32, 425–441 (2024).
Luo, L. et al. Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8, 294–303 (2023).
Turren-Cruz, S.-H., Hagfeldt, A. & Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018).
Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).
Jeronimo-Rendon, J. J. et al. Robust multi-halide methylammonium-free perovskite solar cells on an inverted architecture. Adv. Funct. Mater. 34, 2313928 (2024).
Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).
Chen, R. et al. Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8, 839–849 (2023).
Yang, Y. et al. Inverted perovskite solar cells with over 2,000 h operational stability at 85 °C using fixed charge passivation. Nat. Energy 9, 37–46 (2023).
Li, G. et al. Managing excess lead iodide with functionalized oxo-graphene nanosheets for stable perovskite solar cells. Angew. Chem. Int. Ed. 135, e202307395 (2023).
Wang, M. et al. Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat. Energy 8, 1229–1239 (2023).
Li, H. et al. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023).
Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).
Zhu, K. & Stranks, S. D. Energy spotlight. ACS Energy Lett. 7, 1862–1863 (2022).
Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381, 209–215 (2023).
Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).
Peng, W. et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023).
Li, G. et al. Structure and performance evolution of perovskite solar cells under extreme temperatures. Adv. Energy Mater. 12, 2202887 (2022).
Sharma, N. et al. Solar power forecasting beneath diverse weather conditions using GD and LM-artificial neural networks. Sci. Rep. 13, 8517 (2023).
Akbulatov, A. F. et al. Effect of electron-transport material on light-induced degradation of inverted planar junction perovskite solar cells. Adv. Energy Mater. 7, 1700476 (2017).
De Bastiani, M. et al. Toward stable monolithic perovskite/silicon tandem photovoltaics: a six-month outdoor performance study in a hot and humid climate. ACS Energy Lett. 6, 2944–2951 (2021).
Tu, Y. et al. Perovskite solar cells for space applications: progress and challenges. Adv. Mater. 33, 2006545 (2021).
Brown, C. R., Eperon, G. E., Whiteside, V. R. & Sellers, I. R. Potential of high-stability perovskite solar cells for low-intensity–low-temperature (LILT) outer planetary space missions. ACS Appl. Energy Mater. 2, 814–821 (2019).
Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).
Reb, L. K. et al. Perovskite and organic solar cells on a rocket flight. Joule 4, 1880–1892 (2020).
Barbé, J. et al. In situ investigation of perovskite solar cells’ efficiency and stability in a mimic stratospheric environment for high-altitude pseudo-satellites. J. Mater. Chem. C 8, 1715–1721 (2020).
Romano, V., Agresti, A., Verduci, R. & D’Angelo, G. Advances in perovskites for photovoltaic applications in space. ACS Energy Lett. 7, 2490–2514 (2022).
Yang, J., Bao, Q., Shen, L. & Ding, L. Potential applications for perovskite solar cells in space. Nano Energy 76, 105019 (2020).
Ma, Q., Liao, S., Ma, Y., Chu, Y. & Wang, Y. An ultra-low-temperature elastomer with excellent mechanical performance and solvent resistance. Adv. Mater. 33, 2102096 (2021).
Panteli, M. & Mancarella, P. Influence of extreme weather and climate change on the resilience of power systems: impacts and possible mitigation strategies. Electr. Power Syst. Res. 127, 259–270 (2015).
Al-Shahri, O. A. et al. Solar photovoltaic energy optimization methods, challenges and issues: a comprehensive review. J. Clean. Prod. 284, 125465 (2021).
Gernaat, D. E. H. J. et al. Climate change impacts on renewable energy supply. Nat. Clim. Change 11, 119–125 (2021).
Tu, Y. et al. Mixed-cation perovskite solar cells in space. Sci. China Phys. Mech. Astron. 62, 974221 (2019).
Wang, X. et al. Elimination of charge accumulation by a self-assembled cocrystal interlayer for efficient and stable perovskite solar cells. Energy Environ. Sci. 17, 569–579 (2024).
Cheacharoen, R. et al. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018).
Guo, R. et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy 6, 977–986 (2021).
Domanski, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. & Tress, W. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018).
Zhou, Y., Herz, L. M., Jen, A. K. Y. & Saliba, M. Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy 7, 794–807 (2022).
Jiang, Q. et al. Towards linking lab and field lifetimes of perovskite solar cells. Nature 623, 313–318 (2023).
Li, X. et al. Iodine-trapping strategy for light-heat stable inverted perovskite solar cells under ISOS protocols. Energy Environ. Sci. 16, 6071–6077 (2023).
Suo, J. et al. Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nat. Energy 9, 172–183 (2024).
Khenkin, M. et al. Light cycling as a key to understanding the outdoor behaviour of perovskite solar cells. Energy Environ. Sci. 17, 602–610 (2024).
Li, G. et al. Highly efficient p–i–n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023).
Li, Z., Park, J. S. & Walsh, A. Evolutionary exploration of polytypism in lead halide perovskites. Chem. Sci. 12, 12165–12173 (2021).
Domanski, K. et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604–613 (2017).
Hoang, M. T., Yang, Y., Tuten, B. & Wang, H. Are metal halide perovskite solar cells ready for space applications? J. Phys. Chem. Lett. 13, 2908–2920 (2022).
Juarez-Perez, E. J., Hawash, Z., Raga, S. R., Ono, L. K. & Qi, Y. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy Environ. Sci. 9, 3406–3410 (2016).
Ava, T. T., Al Mamun, A., Marsillac, S. & Namkoong, G. A review: thermal stability of methylammonium lead halide based perovskite solar cells. Appl. Sci. 9, 188 (2019).
Weber, O. J., Charles, B. & Weller, M. T. Phase behaviour and composition in the formamidinium–methylammonium hybrid lead iodide perovskite solid solution. J. Mater. Chem. A 4, 15375–15382 (2016).
Chen, Y. et al. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics. Joule 4, 1961–1976 (2020).
Meng, W. et al. Revealing the strain-associated physical mechanisms impacting the performance and stability of perovskite solar cells. Joule 6, 458–475 (2022).
Wu, J. et al. Strain in perovskite solar cells: origins, impacts and regulation. Natl Sci. Rev. 8, nwab047 (2021).
Duan, T. et al. Chiral-structured heterointerfaces enable durable perovskite solar cells. Science 384, 878–884 (2024).
Malinauskas, T. et al. Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD. ACS Appl. Mater. Interfaces 7, 11107–11116 (2015).
Zhao, X., Kim, H.-S., Seo, J.-Y. & Park, N.-G. Effect of selective contacts on the thermal stability of perovskite solar cells. ACS Appl. Mater. Interfaces 9, 7148–7153 (2017).
Jena, A. K., Numata, Y., Ikegami, M. & Miyasaka, T. Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste. J. Mater. Chem. A 6, 2219–2230 (2018).
Divitini, G. et al. In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy 1, 15012–15012 (2016).
Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).
Unger, E. L. et al. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014).
Tress, W. et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).
Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M. & Maier, J. The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54, 7905–7910 (2015).
Zhang, D., Li, D., Hu, Y., Mei, A. & Han, H. Degradation pathways in perovskite solar cells and how to meet international standards. Commun. Mater. 3, 58 (2022).
Ma, S. et al. Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy Environ. Sci. 15, 13–55 (2022).
Dong, Q. et al. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun. 12, 973 (2021).
McAndrews, G. R. et al. Why perovskite thermal stress is unaffected by thin contact layers. Adv. Energy Mater. 14, 2400764 (2024).
Chen, C. et al. Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Lett. 5, 2560–2568 (2020).
Liu, J. et al. Mitigating deep-level defects through a self-healing process for highly efficient wide-bandgap inorganic CsPbI3−xBrx perovskite photovoltaics. J. Mater. Chem. A 10, 17237–17245 (2022).
Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).
Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).
Li, F. et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17, 478–484 (2023).
Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300 (2022).
Qiu, W. et al. Low-temperature robust MAPbI3 perovskite solar cells with power conversion efficiency exceeding 22.4%. Chem. Eng. J. 468, 143656 (2023).
Wang, S. et al. In situ self-elimination of defects via controlled perovskite crystallization dynamics for high-performance solar cells. Adv. Mater. 35, 2305314 (2023).
You, S. et al. Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. Nat. Energy 8, 515–525 (2023).
Zhang, C. et al. Crystallization manipulation and holistic defect passivation toward stable and efficient inverted perovskite solar cells. Energy Environ. Sci. 16, 3825–3836 (2023).
Liu, C. et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815 (2023).
Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404 (2023).
Wang, C. et al. Enhancing the inherent stability of perovskite solar cells through chalcogenide-halide combinations. Energy Environ. Sci. 17, 1368–1386 (2024).
Wang, H. et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv. Mater. 31, 1904408 (2019).
He, J. et al. Influence of phase transition on stability of perovskite solar cells under thermal cycling conditions. Sol. Energy 188, 312–317 (2019).
Yang, B. et al. Strain effects on halide perovskite solar cells. Chem. Soc. Rev. 51, 7509–7530 (2022).
Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).
Deger, C., Tan, S., Houk, K. N., Yang, Y. & Yavuz, I. Lattice strain suppresses point defect formation in halide perovskites. Nano Res. 15, 5746–5751 (2022).
Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).
Lee, J.-H. et al. Resolving the physical origin of octahedral tilting in halide perovskites. Chem. Mater. 28, 4259–4266 (2016).
Wang, L. et al. [PbX6]4− modulation and organic spacer construction for stable perovskite solar cells. Energy Environ. Sci. 15, 4470–4510 (2022).
Shi, Y. & Chu, L. Dipole polymer-coated crystalline grains to endure temperature variations of perovskite photovoltaics. Matter 6, 1063–1065 (2023).
Luo, D., Su, R., Zhang, W., Gong, Q. & Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2020).
Zhang, Y. et al. Improved fatigue behaviour of perovskite solar cells with an interfacial starch–polyiodide buffer layer. Nat. Photon. 17, 1066–1073 (2023).
Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618–622 (2021).
Dai, Z. et al. Connecting interfacial mechanical adhesion, efficiency, and operational stability in high performance inverted perovskite solar cells. ACS Energy Lett. 9, 1880–1887 (2024).
Watson, B. L., Rolston, N., Printz, A. D. & Dauskardt, R. H. Scaffold-reinforced perovskite compound solar cells. Energy Environ. Sci. 10, 2500–2508 (2017).
Rolston, N. et al. Rapid open-air fabrication of perovskite solar modules. Joule 4, 2675–2692 (2020).
Teng, T. Y. et al. Electronically manipulated molecular strategy enabling highly efficient tin perovskite photovoltaics. Angew. Chem. 136, e202318133 (2024).
Dai, Z. et al. Dual-interface-reinforced flexible perovskite solar cells for enhanced performance and mechanical reliability. Adv. Mater. 34, 2205301 (2022).
Hilt, F. et al. Rapid route to efficient, scalable, and robust perovskite photovoltaics in air. Energy Environ. Sci. 11, 2102–2113 (2018).
Liu, D. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).
Dai, Z. & Padture, N. P. Challenges and opportunities for the mechanical reliability of metal halide perovskites and photovoltaics. Nat. Energy 8, 1319–1327 (2023).
Zhang, C.-C. et al. Perovskite films with reduced interfacial strains via a molecular-level flexible interlayer for photovoltaic application. Adv. Mater. 32, 2001479 (2020).
Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015).
Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016).
Tress, W. et al. Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat. Energy 4, 568–574 (2019).
Zhang, G. et al. Shellac protects perovskite solar cell modules under real-world conditions. Joule 8, 496–508 (2024).
Li, J. et al. Ink design enabling slot-die coated perovskite solar cells with >22% power conversion efficiency, micro-modules, and 1 year of outdoor performance evaluation. Adv. Energy Mater. 13, 2203898 (2023).
Aydin, E. et al. Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells. Nat. Energy 5, 851–859 (2020).
Xie, H. et al. Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells. Joule 5, 1246–1266 (2021).
Babics, M. et al. One-year outdoor operation of monolithic perovskite/silicon tandem solar cells. Cell Rep. Phys. Sci. 4, 101280 (2023).
Liu, K., Wang, Z., Qu, S. & Ding, L. Stress and strain in perovskite/silicon tandem solar cells. Nano-Micro Lett. 15, 59 (2023).
Dailey, M., Li, Y. & Printz, A. D. Residual film stresses in perovskite solar cells: origins, effects, and mitigation strategies. ACS Omega 6, 30214–30223 (2021).
Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).
Sahli, F. et al. Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction. Adv. Energy Mater. 8, 1701609 (2018).
Chen, B. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4, 850–864 (2020).
Jiang, J. et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photon. 16, 575–581 (2022).
Roß, M. et al. Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11, 2101460 (2021).
Dupré, O., Vaillon, R. & Green, M. A. Physics of the temperature coefficients of solar cells. Sol. Energy Mater. Sol. Cell 140, 92–100 (2015).
Babics, M., Bristow, H., Pininti, A. R., Allen, T. G. & De Wolf, S. Temperature coefficients of perovskite/silicon tandem solar cells. ACS Energy Lett. 8, 3013–3015 (2023).
Cheacharoen, R. et al. Damp heat, temperature cycling and UV stress testing of encapsulated perovskite photovoltaic cells. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) 3498–3502 (IEEE, 2018).
Delmas, W. et al. Evaluation of hybrid perovskite prototypes after 10-month space flight on the International Space Station. Adv. Energy Mater. 13, 2203920 (2023).
Jošt, M. et al. Perovskite solar cells go outdoors: field testing and temperature effects on energy yield. Adv. Energy Mater. 10, 2000454 (2020).
Reese, M. O. et al. Consensus stability testing protocols for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cell 95, 1253–1267 (2011).
Rombach, F. M., Haque, S. A. & Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 14, 5161–5190 (2021).
Cheacharoen, R. et al. Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustain. Energy Fuels 2, 2398–2406 (2018).
Jiao, H. et al. Metal halide perovskite solar module encapsulation using polyolefin elastomers: the role of morphology in preventing delamination. PRX Energy 3, 023013 (2024).
Gratia, P. et al. The many faces of mixed ion perovskites: unraveling and understanding the crystallization process. ACS Energy Lett. 2, 2686–2693 (2017).
Thind, A. S., Huang, X., Sun, J. & Mishra, R. First-principles prediction of a stable hexagonal phase of CH3NH3PbI3. Chem. Mater. 29, 6003–6011 (2017).
Shao, S. et al. Efficient perovskite solar cells over a broad temperature window: the role of the charge carrier extraction. Adv. Energy Mater. 7, 1701305 (2017).
Isikgor, F. H. et al. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8, 89–108 (2023).
Acknowledgements
This Perspective is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 804519), the European Union’s Horizon Europe research and innovation programme under grant agreement no. 101075330 of the NEXUS project and the Marie Skłodowska Curie Actions Postdoc Fellow (UKRI Guarantee, grant no. EP/Y029216/1). S.-H.T.-C. thanks the funding support of the Ministry of Science and Innovation of Spain under Ayudas Ramón y Cajal (RYC2022-035578-I). J.P. acknowledges support from Energy for Future — E4F Postdoctoral fellowship programme H2020-MSCA-COFUND-2020 (101034297). M. Saliba thanks the German Research Foundation (DFG) for funding (SPP2196, 431314977/GRK 2642); GRK: ‘funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — 431314977/GRK2642’. M. Saliba acknowledges funding from the European Union under the Horizon Europe programme (ERC, LOCAL-HEAT, grant agreement no. 101041809). M. Saliba acknowledges funding from the German Bundesministerium für Bildung and Forschung (BMBF), project ‘NETPEC’ (01LS2103E). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.
Author information
Authors and Affiliations
Contributions
L.W., S.H., F.Y. and G.L. contributed to the writing and editing of this manuscript. L.W. and G.L. prepared the first draft. G.L. and M.L. contributed to the discussion of content and writing. A.A. contributed to the discussion and review of the manuscript. G.L., J.P., M.L. and A.A. supervised the project. S.H., F.Y., J.W., W.Z., J.J.J.-R., J.P. and S.-H.T.-C. contributed to suggestions and revised the manuscript. M. Saba, M. Saliba and M.K.N. reviewed and edited the manuscript. All authors contributed their expertise and participated in revision rounds of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Michael McGehee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wu, L., Hu, S., Yang, F. et al. Resilience pathways for halide perovskite photovoltaics under temperature cycling. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00781-7
Accepted:
Published:
DOI: https://doi.org/10.1038/s41578-025-00781-7


