Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Resilience pathways for halide perovskite photovoltaics under temperature cycling

Abstract

Metal-halide perovskite solar cells have achieved power conversion efficiencies comparable to those of silicon photovoltaic (PV) devices, approaching 27% for single-junction devices. The durability of the devices, however, lags far behind their performance. Their practical implementation implies the subjection of the material and devices to temperature cycles of varying intensity, driven by diurnal cycles or geographical characteristics. Thus, it is vital to develop devices that are resilient to temperature cycling. This Perspective analyses the behaviour of perovskite devices under temperature cycling. We discuss the crystallographic structural evolution of the perovskite layer, reactions and/or interactions among stacked layers, PV properties and photocatalysed thermal reactions. We highlight effective strategies for improving stability under temperature cycling, such as enhancing material crystallinity or relieving interlayer thermal stress using buffer layers. Additionally, we outline existing standards and protocols for temperature cycling testing and we propose a unified approach that could facilitate valuable cross-study comparisons among scientific and industrial research laboratories. Finally, we share our outlook on strategies to develop perovskite PV devices with exceptional real-world operating stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cycling temperature influence on perovskite structure.
Fig. 2: Temperature influence on perovskite structure.
Fig. 3: The evolution of device performance parameters with temperature cycles.
Fig. 4: Strategies for enhancing photovoltaic performance under thermal cycling.
Fig. 5: Photovoltaic performance under real-world diurnal cycles.
Fig. 6: Graphic representation of the recommended thermal cycling profile.

Similar content being viewed by others

References

  1. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).

    Article  CAS  Google Scholar 

  2. Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  PubMed  Google Scholar 

  4. Wu, L. et al. Stabilization of inorganic perovskite solar cells with a 2D Dion–Jacobson passivating layer. Adv. Mater. 35, 2304150 (2023).

    Article  CAS  Google Scholar 

  5. Huang, W., Bu, T., Huang, F. & Cheng, Y. B. Stabilizing high efficiency perovskite solar cells with 3D–2D heterostructures. Joule 4, 975–979 (2020).

    Article  Google Scholar 

  6. Saliba, M., Correa-Baena, J.-P., Grätzel, M., Hagfeldt, A. & Abate, A. Perovskite solar cells: from the atomic level to film quality and device performance. Angew. Chem. Int. Ed. 57, 2554–2569 (2018).

    Article  CAS  Google Scholar 

  7. Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8, 133–138 (2014).

    Article  CAS  Google Scholar 

  8. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Nandi, P. et al. CH3NH3PbI3, a potential solar cell candidate: structural and spectroscopic investigations. J. Phys. Chem. A 120, 9732–9739 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

    Article  PubMed  Google Scholar 

  12. Peters, I. M., Rodríguez Gallegos, C. D., Lüer, L., Hauch, J. A. & Brabec, C. J. Practical limits of multijunction solar cells. Prog. Photovolt. 31, 1006–1015 (2023).

    Article  CAS  Google Scholar 

  13. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Green, M. A. et al. Solar cell efficiency tables (version 64). Prog. Photovolt. 32, 425–441 (2024).

    Article  Google Scholar 

  16. Luo, L. et al. Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8, 294–303 (2023).

    CAS  Google Scholar 

  17. Turren-Cruz, S.-H., Hagfeldt, A. & Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  19. Jeronimo-Rendon, J. J. et al. Robust multi-halide methylammonium-free perovskite solar cells on an inverted architecture. Adv. Funct. Mater. 34, 2313928 (2024).

    Article  CAS  Google Scholar 

  20. Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, R. et al. Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8, 839–849 (2023).

    Article  CAS  Google Scholar 

  22. Yang, Y. et al. Inverted perovskite solar cells with over 2,000 h operational stability at 85 °C using fixed charge passivation. Nat. Energy 9, 37–46 (2023).

    Article  Google Scholar 

  23. Li, G. et al. Managing excess lead iodide with functionalized oxo-graphene nanosheets for stable perovskite solar cells. Angew. Chem. Int. Ed. 135, e202307395 (2023).

    Article  Google Scholar 

  24. Wang, M. et al. Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat. Energy 8, 1229–1239 (2023).

    Article  CAS  Google Scholar 

  25. Li, H. et al. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023).

    Article  CAS  Google Scholar 

  26. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Zhu, K. & Stranks, S. D. Energy spotlight. ACS Energy Lett. 7, 1862–1863 (2022).

    Article  CAS  Google Scholar 

  28. Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381, 209–215 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Peng, W. et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Li, G. et al. Structure and performance evolution of perovskite solar cells under extreme temperatures. Adv. Energy Mater. 12, 2202887 (2022).

    Article  CAS  Google Scholar 

  32. Sharma, N. et al. Solar power forecasting beneath diverse weather conditions using GD and LM-artificial neural networks. Sci. Rep. 13, 8517 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akbulatov, A. F. et al. Effect of electron-transport material on light-induced degradation of inverted planar junction perovskite solar cells. Adv. Energy Mater. 7, 1700476 (2017).

    Article  Google Scholar 

  34. De Bastiani, M. et al. Toward stable monolithic perovskite/silicon tandem photovoltaics: a six-month outdoor performance study in a hot and humid climate. ACS Energy Lett. 6, 2944–2951 (2021).

    Article  Google Scholar 

  35. Tu, Y. et al. Perovskite solar cells for space applications: progress and challenges. Adv. Mater. 33, 2006545 (2021).

    Article  CAS  Google Scholar 

  36. Brown, C. R., Eperon, G. E., Whiteside, V. R. & Sellers, I. R. Potential of high-stability perovskite solar cells for low-intensity–low-temperature (LILT) outer planetary space missions. ACS Appl. Energy Mater. 2, 814–821 (2019).

    Article  CAS  Google Scholar 

  37. Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Reb, L. K. et al. Perovskite and organic solar cells on a rocket flight. Joule 4, 1880–1892 (2020).

    Article  CAS  Google Scholar 

  39. Barbé, J. et al. In situ investigation of perovskite solar cells’ efficiency and stability in a mimic stratospheric environment for high-altitude pseudo-satellites. J. Mater. Chem. C 8, 1715–1721 (2020).

    Article  Google Scholar 

  40. Romano, V., Agresti, A., Verduci, R. & D’Angelo, G. Advances in perovskites for photovoltaic applications in space. ACS Energy Lett. 7, 2490–2514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, J., Bao, Q., Shen, L. & Ding, L. Potential applications for perovskite solar cells in space. Nano Energy 76, 105019 (2020).

    Article  CAS  Google Scholar 

  42. Ma, Q., Liao, S., Ma, Y., Chu, Y. & Wang, Y. An ultra-low-temperature elastomer with excellent mechanical performance and solvent resistance. Adv. Mater. 33, 2102096 (2021).

    Article  CAS  Google Scholar 

  43. Panteli, M. & Mancarella, P. Influence of extreme weather and climate change on the resilience of power systems: impacts and possible mitigation strategies. Electr. Power Syst. Res. 127, 259–270 (2015).

    Article  Google Scholar 

  44. Al-Shahri, O. A. et al. Solar photovoltaic energy optimization methods, challenges and issues: a comprehensive review. J. Clean. Prod. 284, 125465 (2021).

    Article  Google Scholar 

  45. Gernaat, D. E. H. J. et al. Climate change impacts on renewable energy supply. Nat. Clim. Change 11, 119–125 (2021).

    Article  Google Scholar 

  46. Tu, Y. et al. Mixed-cation perovskite solar cells in space. Sci. China Phys. Mech. Astron. 62, 974221 (2019).

    Article  Google Scholar 

  47. Wang, X. et al. Elimination of charge accumulation by a self-assembled cocrystal interlayer for efficient and stable perovskite solar cells. Energy Environ. Sci. 17, 569–579 (2024).

    Article  CAS  Google Scholar 

  48. Cheacharoen, R. et al. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018).

    Article  CAS  Google Scholar 

  49. Guo, R. et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy 6, 977–986 (2021).

    Article  CAS  Google Scholar 

  50. Domanski, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. & Tress, W. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018).

    Article  CAS  Google Scholar 

  51. Zhou, Y., Herz, L. M., Jen, A. K. Y. & Saliba, M. Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy 7, 794–807 (2022).

    Article  CAS  Google Scholar 

  52. Jiang, Q. et al. Towards linking lab and field lifetimes of perovskite solar cells. Nature 623, 313–318 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Li, X. et al. Iodine-trapping strategy for light-heat stable inverted perovskite solar cells under ISOS protocols. Energy Environ. Sci. 16, 6071–6077 (2023).

    Article  CAS  Google Scholar 

  54. Suo, J. et al. Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nat. Energy 9, 172–183 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khenkin, M. et al. Light cycling as a key to understanding the outdoor behaviour of perovskite solar cells. Energy Environ. Sci. 17, 602–610 (2024).

    Article  CAS  Google Scholar 

  56. Li, G. et al. Highly efficient p–i–n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Li, Z., Park, J. S. & Walsh, A. Evolutionary exploration of polytypism in lead halide perovskites. Chem. Sci. 12, 12165–12173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Domanski, K. et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604–613 (2017).

    Article  CAS  Google Scholar 

  59. Hoang, M. T., Yang, Y., Tuten, B. & Wang, H. Are metal halide perovskite solar cells ready for space applications? J. Phys. Chem. Lett. 13, 2908–2920 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Juarez-Perez, E. J., Hawash, Z., Raga, S. R., Ono, L. K. & Qi, Y. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy Environ. Sci. 9, 3406–3410 (2016).

    Article  CAS  Google Scholar 

  61. Ava, T. T., Al Mamun, A., Marsillac, S. & Namkoong, G. A review: thermal stability of methylammonium lead halide based perovskite solar cells. Appl. Sci. 9, 188 (2019).

    Article  CAS  Google Scholar 

  62. Weber, O. J., Charles, B. & Weller, M. T. Phase behaviour and composition in the formamidinium–methylammonium hybrid lead iodide perovskite solid solution. J. Mater. Chem. A 4, 15375–15382 (2016).

    Article  CAS  Google Scholar 

  63. Chen, Y. et al. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics. Joule 4, 1961–1976 (2020).

    Article  CAS  Google Scholar 

  64. Meng, W. et al. Revealing the strain-associated physical mechanisms impacting the performance and stability of perovskite solar cells. Joule 6, 458–475 (2022).

    Article  CAS  Google Scholar 

  65. Wu, J. et al. Strain in perovskite solar cells: origins, impacts and regulation. Natl Sci. Rev. 8, nwab047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Duan, T. et al. Chiral-structured heterointerfaces enable durable perovskite solar cells. Science 384, 878–884 (2024).

    Article  CAS  PubMed  Google Scholar 

  67. Malinauskas, T. et al. Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD. ACS Appl. Mater. Interfaces 7, 11107–11116 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Zhao, X., Kim, H.-S., Seo, J.-Y. & Park, N.-G. Effect of selective contacts on the thermal stability of perovskite solar cells. ACS Appl. Mater. Interfaces 9, 7148–7153 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Jena, A. K., Numata, Y., Ikegami, M. & Miyasaka, T. Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste. J. Mater. Chem. A 6, 2219–2230 (2018).

    Article  CAS  Google Scholar 

  70. Divitini, G. et al. In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy 1, 15012–15012 (2016).

    Article  CAS  Google Scholar 

  71. Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Unger, E. L. et al. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014).

    Article  CAS  Google Scholar 

  73. Tress, W. et al. Understanding the rate-dependent JV hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).

    Article  CAS  Google Scholar 

  74. Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M. & Maier, J. The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54, 7905–7910 (2015).

    Article  CAS  Google Scholar 

  75. Zhang, D., Li, D., Hu, Y., Mei, A. & Han, H. Degradation pathways in perovskite solar cells and how to meet international standards. Commun. Mater. 3, 58 (2022).

    Article  Google Scholar 

  76. Ma, S. et al. Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy Environ. Sci. 15, 13–55 (2022).

    Article  CAS  Google Scholar 

  77. Dong, Q. et al. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun. 12, 973 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McAndrews, G. R. et al. Why perovskite thermal stress is unaffected by thin contact layers. Adv. Energy Mater. 14, 2400764 (2024).

    Article  CAS  Google Scholar 

  79. Chen, C. et al. Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Lett. 5, 2560–2568 (2020).

    Article  CAS  Google Scholar 

  80. Liu, J. et al. Mitigating deep-level defects through a self-healing process for highly efficient wide-bandgap inorganic CsPbI3−xBrx perovskite photovoltaics. J. Mater. Chem. A 10, 17237–17245 (2022).

    Article  CAS  Google Scholar 

  81. Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Li, F. et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17, 478–484 (2023).

    Article  CAS  Google Scholar 

  84. Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Qiu, W. et al. Low-temperature robust MAPbI3 perovskite solar cells with power conversion efficiency exceeding 22.4%. Chem. Eng. J. 468, 143656 (2023).

    Article  CAS  Google Scholar 

  86. Wang, S. et al. In situ self-elimination of defects via controlled perovskite crystallization dynamics for high-performance solar cells. Adv. Mater. 35, 2305314 (2023).

    Article  CAS  Google Scholar 

  87. You, S. et al. Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. Nat. Energy 8, 515–525 (2023).

    Article  CAS  Google Scholar 

  88. Zhang, C. et al. Crystallization manipulation and holistic defect passivation toward stable and efficient inverted perovskite solar cells. Energy Environ. Sci. 16, 3825–3836 (2023).

    Article  Google Scholar 

  89. Liu, C. et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, C. et al. Enhancing the inherent stability of perovskite solar cells through chalcogenide-halide combinations. Energy Environ. Sci. 17, 1368–1386 (2024).

    Article  CAS  Google Scholar 

  92. Wang, H. et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv. Mater. 31, 1904408 (2019).

    Article  CAS  Google Scholar 

  93. He, J. et al. Influence of phase transition on stability of perovskite solar cells under thermal cycling conditions. Sol. Energy 188, 312–317 (2019).

    Article  CAS  Google Scholar 

  94. Yang, B. et al. Strain effects on halide perovskite solar cells. Chem. Soc. Rev. 51, 7509–7530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    Article  CAS  Google Scholar 

  96. Deger, C., Tan, S., Houk, K. N., Yang, Y. & Yavuz, I. Lattice strain suppresses point defect formation in halide perovskites. Nano Res. 15, 5746–5751 (2022).

    Article  CAS  Google Scholar 

  97. Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Lee, J.-H. et al. Resolving the physical origin of octahedral tilting in halide perovskites. Chem. Mater. 28, 4259–4266 (2016).

    Article  CAS  Google Scholar 

  99. Wang, L. et al. [PbX6]4− modulation and organic spacer construction for stable perovskite solar cells. Energy Environ. Sci. 15, 4470–4510 (2022).

    Article  CAS  Google Scholar 

  100. Shi, Y. & Chu, L. Dipole polymer-coated crystalline grains to endure temperature variations of perovskite photovoltaics. Matter 6, 1063–1065 (2023).

    Article  CAS  Google Scholar 

  101. Luo, D., Su, R., Zhang, W., Gong, Q. & Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2020).

    Article  CAS  Google Scholar 

  102. Zhang, Y. et al. Improved fatigue behaviour of perovskite solar cells with an interfacial starch–polyiodide buffer layer. Nat. Photon. 17, 1066–1073 (2023).

    Article  CAS  Google Scholar 

  103. Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618–622 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Dai, Z. et al. Connecting interfacial mechanical adhesion, efficiency, and operational stability in high performance inverted perovskite solar cells. ACS Energy Lett. 9, 1880–1887 (2024).

    Article  CAS  Google Scholar 

  105. Watson, B. L., Rolston, N., Printz, A. D. & Dauskardt, R. H. Scaffold-reinforced perovskite compound solar cells. Energy Environ. Sci. 10, 2500–2508 (2017).

    Article  CAS  Google Scholar 

  106. Rolston, N. et al. Rapid open-air fabrication of perovskite solar modules. Joule 4, 2675–2692 (2020).

    Article  CAS  Google Scholar 

  107. Teng, T. Y. et al. Electronically manipulated molecular strategy enabling highly efficient tin perovskite photovoltaics. Angew. Chem. 136, e202318133 (2024).

    Article  Google Scholar 

  108. Dai, Z. et al. Dual-interface-reinforced flexible perovskite solar cells for enhanced performance and mechanical reliability. Adv. Mater. 34, 2205301 (2022).

    Article  CAS  Google Scholar 

  109. Hilt, F. et al. Rapid route to efficient, scalable, and robust perovskite photovoltaics in air. Energy Environ. Sci. 11, 2102–2113 (2018).

    Article  CAS  Google Scholar 

  110. Liu, D. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Dai, Z. & Padture, N. P. Challenges and opportunities for the mechanical reliability of metal halide perovskites and photovoltaics. Nat. Energy 8, 1319–1327 (2023).

    Article  Google Scholar 

  112. Zhang, C.-C. et al. Perovskite films with reduced interfacial strains via a molecular-level flexible interlayer for photovoltaic application. Adv. Mater. 32, 2001479 (2020).

    Article  CAS  Google Scholar 

  113. Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Tress, W. et al. Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat. Energy 4, 568–574 (2019).

    Article  CAS  Google Scholar 

  116. Zhang, G. et al. Shellac protects perovskite solar cell modules under real-world conditions. Joule 8, 496–508 (2024).

    Article  CAS  Google Scholar 

  117. Li, J. et al. Ink design enabling slot-die coated perovskite solar cells with >22% power conversion efficiency, micro-modules, and 1 year of outdoor performance evaluation. Adv. Energy Mater. 13, 2203898 (2023).

    Article  CAS  Google Scholar 

  118. Aydin, E. et al. Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells. Nat. Energy 5, 851–859 (2020).

    Article  CAS  Google Scholar 

  119. Xie, H. et al. Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells. Joule 5, 1246–1266 (2021).

    Article  CAS  Google Scholar 

  120. Babics, M. et al. One-year outdoor operation of monolithic perovskite/silicon tandem solar cells. Cell Rep. Phys. Sci. 4, 101280 (2023).

    Article  CAS  Google Scholar 

  121. Liu, K., Wang, Z., Qu, S. & Ding, L. Stress and strain in perovskite/silicon tandem solar cells. Nano-Micro Lett. 15, 59 (2023).

    Article  Google Scholar 

  122. Dailey, M., Li, Y. & Printz, A. D. Residual film stresses in perovskite solar cells: origins, effects, and mitigation strategies. ACS Omega 6, 30214–30223 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Sahli, F. et al. Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction. Adv. Energy Mater. 8, 1701609 (2018).

    Article  Google Scholar 

  125. Chen, B. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4, 850–864 (2020).

    Article  CAS  Google Scholar 

  126. Jiang, J. et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photon. 16, 575–581 (2022).

    Article  CAS  Google Scholar 

  127. Roß, M. et al. Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11, 2101460 (2021).

    Article  Google Scholar 

  128. Dupré, O., Vaillon, R. & Green, M. A. Physics of the temperature coefficients of solar cells. Sol. Energy Mater. Sol. Cell 140, 92–100 (2015).

    Article  Google Scholar 

  129. Babics, M., Bristow, H., Pininti, A. R., Allen, T. G. & De Wolf, S. Temperature coefficients of perovskite/silicon tandem solar cells. ACS Energy Lett. 8, 3013–3015 (2023).

    Article  CAS  Google Scholar 

  130. Cheacharoen, R. et al. Damp heat, temperature cycling and UV stress testing of encapsulated perovskite photovoltaic cells. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) 3498–3502 (IEEE, 2018).

  131. Delmas, W. et al. Evaluation of hybrid perovskite prototypes after 10-month space flight on the International Space Station. Adv. Energy Mater. 13, 2203920 (2023).

    Article  CAS  Google Scholar 

  132. Jošt, M. et al. Perovskite solar cells go outdoors: field testing and temperature effects on energy yield. Adv. Energy Mater. 10, 2000454 (2020).

    Article  Google Scholar 

  133. Reese, M. O. et al. Consensus stability testing protocols for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cell 95, 1253–1267 (2011).

    Article  CAS  Google Scholar 

  134. Rombach, F. M., Haque, S. A. & Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 14, 5161–5190 (2021).

    Article  CAS  Google Scholar 

  135. Cheacharoen, R. et al. Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustain. Energy Fuels 2, 2398–2406 (2018).

    Article  CAS  Google Scholar 

  136. Jiao, H. et al. Metal halide perovskite solar module encapsulation using polyolefin elastomers: the role of morphology in preventing delamination. PRX Energy 3, 023013 (2024).

    Article  Google Scholar 

  137. Gratia, P. et al. The many faces of mixed ion perovskites: unraveling and understanding the crystallization process. ACS Energy Lett. 2, 2686–2693 (2017).

    Article  CAS  Google Scholar 

  138. Thind, A. S., Huang, X., Sun, J. & Mishra, R. First-principles prediction of a stable hexagonal phase of CH3NH3PbI3. Chem. Mater. 29, 6003–6011 (2017).

    Article  CAS  Google Scholar 

  139. Shao, S. et al. Efficient perovskite solar cells over a broad temperature window: the role of the charge carrier extraction. Adv. Energy Mater. 7, 1701305 (2017).

    Article  Google Scholar 

  140. Isikgor, F. H. et al. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8, 89–108 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Perspective is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 804519), the European Union’s Horizon Europe research and innovation programme under grant agreement no. 101075330 of the NEXUS project and the Marie Skłodowska Curie Actions Postdoc Fellow (UKRI Guarantee, grant no. EP/Y029216/1). S.-H.T.-C. thanks the funding support of the Ministry of Science and Innovation of Spain under Ayudas Ramón y Cajal (RYC2022-035578-I). J.P. acknowledges support from Energy for Future — E4F Postdoctoral fellowship programme H2020-MSCA-COFUND-2020 (101034297). M. Saliba thanks the German Research Foundation (DFG) for funding (SPP2196, 431314977/GRK 2642); GRK: ‘funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — 431314977/GRK2642’. M. Saliba acknowledges funding from the European Union under the Horizon Europe programme (ERC, LOCAL-HEAT, grant agreement no. 101041809). M. Saliba acknowledges funding from the German Bundesministerium für Bildung and Forschung (BMBF), project ‘NETPEC’ (01LS2103E). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Contributions

L.W., S.H., F.Y. and G.L. contributed to the writing and editing of this manuscript. L.W. and G.L. prepared the first draft. G.L. and M.L. contributed to the discussion of content and writing. A.A. contributed to the discussion and review of the manuscript. G.L., J.P., M.L. and A.A. supervised the project. S.H., F.Y., J.W., W.Z., J.J.J.-R., J.P. and S.-H.T.-C. contributed to suggestions and revised the manuscript. M. Saba, M. Saliba and M.K.N. reviewed and edited the manuscript. All authors contributed their expertise and participated in revision rounds of the manuscript.

Corresponding authors

Correspondence to Guixiang Li  (李桂香), Jorge Pascual, Meng Li  (李萌) or Antonio Abate.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Michael McGehee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Hu, S., Yang, F. et al. Resilience pathways for halide perovskite photovoltaics under temperature cycling. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00781-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-025-00781-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing