Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials for high-temperature digital electronics

A Publisher Correction to this article was published on 24 February 2025

This article has been updated

Abstract

Silicon microelectronics, consisting of complementary metal–oxide–semiconductor technology, have changed nearly all aspects of human life from communication to transportation, entertainment and health care. Despite their widespread and mainstream use, current silicon-based devices are unreliable at temperatures exceeding 125 °C. The emergent technological frontiers of space exploration, geothermal energy harvesting, nuclear energy, unmanned avionic systems and autonomous driving will rely on control systems, sensors and communication devices that operate at temperatures as high as 500 °C and beyond. At these extreme temperatures, active (heat exchanger and phase-change cooling) or passive (fins and thermal interface materials) cooling strategies add considerable mass and complicate the systems, which is often infeasible. Thus, new material solutions beyond conventional silicon complementary metal–oxide–semiconductor devices are necessary for high-temperature, resilient electronic systems. The ultimate realization of high-temperature electronic systems requires united efforts to develop, integrate and ultimately manufacture non-silicon-based logic and memory technologies, non-traditional metals for interconnects and ceramic packaging technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of use cases and high-temperature ranges for electronics and corresponding packaging materials.
Fig. 2: Schematic overview figure illustrating the various materials classes critical for high-temperature digital electronic applications.
Fig. 3: Wide bandgap semiconductor materials and logic devices for high-temperature operation.
Fig. 4: Non-volatile memory for high-temperature digital electronics.
Fig. 5: Materials for contacts and interconnects.
Fig. 6: Materials for packaging and substrates.
Fig. 7: Scaling and manufacturing outlook.

Similar content being viewed by others

Change history

References

  1. Palmer, D. & Heckman, R. Extreme temperature range microelectronics. IEEE Trans. Compon. Hybrids Manuf. Technol. 1, 333–340 (1978).

    Google Scholar 

  2. Draper, B. & Palmer, D. Extension of high-temperature electronics. IEEE Trans. Compon. Hybrids Manuf. Technol. 2, 399–404 (1979).

    Google Scholar 

  3. Wondrak, W. Physical limits and lifetime limitations of semiconductor devices at high temperatures. Microelectron. Reliab. 39, 1113–1120 (1999).

    Google Scholar 

  4. Pathumudy, R. D. & Prabhu, K. N. Thermal interface materials for cooling microelectronic systems: present status and future challenges. J. Mater. Sci. Mater. Electron. 32, 11339–11366 (2021).

    CAS  Google Scholar 

  5. Hoang, C. H. et al. A review of recent developments in pumped two-phase cooling technologies for electronic devices. IEEE Trans. Compon. Packaging Manuf. Technol. 11, 1565–1582 (2021).

    CAS  Google Scholar 

  6. Karulkar, P. Ultra-thin SOI MOSFETs at high temperature. In Proc. 1993 IEEE Int. SOI Conf. 136–137 (IEEE, 1993).

  7. Kappert, H., Kordas, N., Dreiner, S., Paschen, U. & Kokozinski, R. High temperature SOI CMOS technology and circuit realization for applications up to 300 °C. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS) 1162–1165 (IEEE, 2015).

  8. Grella, K. et al. High temperature characterization up to 450 °C of MOSFETs and basic circuits realized in a silicon-on-insulator (SOI) CMOS technology. J. Microelectron. Electron. Packaging 10, 67–72 (2013).

    CAS  Google Scholar 

  9. Francis, T., Gentinne, F. & Colinge, J. P. SOI technology for high-temperature applications. In 1992 International Technical Digest on Electron Devices Meeting 353–356 (IEEE, 1992).

  10. Diab, A., Sevilla, G. A. T., Cristoloveanu, S. & Hussain, M. M. Room to high temperature measurements of flexible SOI FinFETs with sub-20-nm fins. IEEE Trans. Electron. Devices 61, 3978–3984 (2014).

    CAS  Google Scholar 

  11. Flandre, D. et al. Fully depleted SOI CMOS technology for heterogeneous micropower, high-temperature or RF microsystems. Solid State Electron. 45, 541–549 (2001).

    CAS  Google Scholar 

  12. Johnson, R. W., Evans, J. L., Jacobsen, P., Thompson, J. R. & Christopher, M. The changing automotive environment: high-temperature electronics. IEEE Trans. Electron. Packaging Manuf. 27, 164–176 (2004).

    Google Scholar 

  13. Jones-Jackson, S., Rodriguez, R., Yang, Y., Lopera, L. & Emadi, A. Overview of current thermal management of automotive power electronics for traction purposes and future directions. IEEE Trans. Transport. Electrific. 8, 2412–2428 (2022).

    Google Scholar 

  14. Khanna, V. K. Extreme-Temperature and Harsh-Environment Electronics: Physics, Technology and Applications (IOP Publishing, 2023).

  15. Logothetidis, S., Petalas, J., Polatoglou, H. & Fuchs, D. Origin and temperature dependence of the first direct gap of diamond. Phys. Rev. B 46, 4483 (1992).

    CAS  Google Scholar 

  16. Zhang, Y., Wang, Z., Xi, J. & Yang, J. Temperature-dependent band gaps in several semiconductors: from the role of electron–phonon renormalization. J. Phys. Condens. Matter 32, 475503 (2020).

    CAS  Google Scholar 

  17. Leblanc, C. et al. Vertical van der Waals heterojunction diodes comprising 2D semiconductors on 3D β-Ga2O3. Nanoscale 15, 9964–9972 (2023).

    CAS  PubMed  Google Scholar 

  18. Clark, C., Dean, P. & Harris, P. Intrinsic edge absorption in diamond. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 277, 312–329 (1964).

    CAS  Google Scholar 

  19. Lee, C., Rock, N. D., Islam, A., Scarpulla, M. A. & Ertekin, E. Electron–phonon effects and temperature-dependence of the electronic structure of monoclinic β-Ga2O3. APL Mater. 11, 011106 (2023).

    CAS  Google Scholar 

  20. Palmour, J., Kong, H. & Davis, R. High‐temperature depletion‐mode metal‐oxide‐semiconductor field‐effect transistors in beta‐SiC thin films. Appl. Phys. Lett. 51, 2028–2030 (1987).

    CAS  Google Scholar 

  21. Zetterling, C. M., Lanni, L., Ghandi, R., Malm, B. G. & Östling, M. Future high temperature applications for SiC integrated circuits. Phys. Stat. Sol. C 9, 1647–1650 (2012).

    CAS  Google Scholar 

  22. Holmes, J. et al. Extended high-temperature operation of silicon carbide CMOS circuits for Venus surface application. J. Microelectron. Electron. Packaging 13, 143–154 (2016).

    Google Scholar 

  23. Neudeck, P. G. et al. Recent progress in extreme environment durable SiC JFET-R integrated circuit technology. In IMAPSource Proceedings 1–6 (HiTEC, 2023).

  24. Casady, J. & Johnson, R. W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron. 39, 1409–1422 (1996).

    Google Scholar 

  25. Hornberger, J. et al. Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments. In 2004 IEEE Aerosp. Conf. Proc. Vol. 4, 2538–2555 (IEEE, 2004).

  26. Unger, C. & Pfost, M. Thermal stability of SiC-MOSFETs at high temperatures. IEEE Trans. Electron. Devices 66, 4666–4672 (2019).

    CAS  Google Scholar 

  27. Schmid, U., Sheppard, S. T. & Wondrak, W. High temperature performance of NMOS integrated inverters and ring oscillators in 6H-SiC. IEEE Trans. Electron. Devices 47, 687–691 (2000).

    CAS  Google Scholar 

  28. Francis, A. M. et al. High-temperature operation of silicon carbide CMOS circuits for Venus surface application. IMAPSource Proceedings 242–248 (IMAPS, 2016).

  29. Tega, N., Sato, S. & Shima, A. Comparison of extremely high-temperature characteristics of planar and three-dimensional SiC MOSFETs. IEEE Electron. Device Lett. 40, 1382–1384 (2019).

    CAS  Google Scholar 

  30. Wang, J. & Jiang, X. Review and analysis of SiC MOSFETs’ ruggedness and reliability. IET Power Electron. 13, 445–455 (2020).

    Google Scholar 

  31. Kang, J. et al. High Ion/Ioff ratio 4H-SiC MISFETs with stable operation at 500 °C using SiO2/SiNx/Al2O3 gate stacks. Appl. Phys. Lett. 122, 082906 (2023).

    CAS  Google Scholar 

  32. Neudeck, P. G. et al. Stable electrical operation of 6H–SiC JFETs and ICs for thousands of hours at 500 oC. IEEE Electron. Device Lett. 29, 456–459 (2008).

    CAS  Google Scholar 

  33. Neudeck, P. G. et al. Operational testing of 4H-SiC JFET ICs for 60 days directly exposed to Venus surface atmospheric conditions. IEEE J. Electron. Devices Soc. 7, 100–110 (2018).

    Google Scholar 

  34. Neudeck, P. G. et al. Year-long 500 °C operational demonstration of up-scaled 4H-SiC JFET integrated circuits. J. Microelectron. Electron. Packaging 15, 163–170 (2018).

    Google Scholar 

  35. Neudeck, P. G. et al. Extreme temperature 6H‐SiC JFET integrated circuit technology. Phys. Status Solidi 206, 2329–2345 (2009).

    CAS  Google Scholar 

  36. Neudeck, P. G., Spry, D. J., Chen, L., Prokop, N. F. & Krasowski, M. J. Demonstration of 4H-SiC digital integrated circuits above 800 °C. IEEE Electron. Device Lett. 38, 1082–1085 (2017).

    CAS  Google Scholar 

  37. Neudeck, P. G. et al. Upscaling of 500 °C durable SiC JFET-R integrated circuits. Additional Pap. Present. 2021, 000064–000068 (2021).

    Google Scholar 

  38. Huang, L., Xia, M. & Gu, X. A critical review of theory and progress in ohmic contacts to p-type SiC. J. Cryst. Growth 531, 125353 (2020).

    CAS  Google Scholar 

  39. Chiolino, N., Francis, A., Holmes, J. & Barlow, M. Digital logic synthesis for 470 celsius silicon carbide electronics. Additional Pap. Present. 2018, 000064–000070 (2018).

    Google Scholar 

  40. Kirschman, R. GaN Based Transistors for High Temperature Applications 489–493 (Wiley-IEEE Press, 1999).

  41. Khan, M. A. & Shur, M. S. GaN based transistors for high temperature applications. Mater. Sci. Eng. B 46, 69–73 (1997).

    Google Scholar 

  42. Hassan, A., Savaria, Y. & Sawan, M. GaN integration technology, an ideal candidate for high-temperature applications: a review. IEEE Access. 6, 78790–78802 (2018).

    Google Scholar 

  43. Yuan, M. et al. High temperature robustness of enhancement-mode p-GaN-gated AlGaN/GaN HEMT technology. In 2022 IEEE 9th Workshop on Wide Bandgap Power Devices & Applications (WiPDA) 40–44 (IEEE, 2022).

  44. Lee, H., Ryu, H., Kang, J. & Zhu, W. High temperature operation of E-mode and D-mode AlGaN/GaN MIS-HEMTs with recessed gates. IEEE J. Electron. Devices Soc. 11, 167–173 (2023).

    CAS  Google Scholar 

  45. Yuan, M. et al. GaN ring oscillators operational at 500 °C based on a GaN-on-Si platform. IEEE Electron. Device Lett. 43, 1842–1845 (2022).

    CAS  Google Scholar 

  46. Yuan, M., Xie, Q., Niroula, J., Chowdhury, N. & Palacios, T. GaN memory operational at 300 °C. IEEE Electron. Device Lett. 43, 2053–2056 (2022).

    CAS  Google Scholar 

  47. Yuan, M. et al. Enhancement-mode GaN transistor technology for harsh environment operation. IEEE Electron. Device Lett. 44, 1068–1071 (2023).

    CAS  Google Scholar 

  48. Lee, H., Ryu, H. & Zhu, W. Thermally hardened AlGaN/GaN MIS-HEMTs based on multilayer dielectrics and silicon nitride passivation. Appl. Phys. Lett. 122, 112103 (2023).

    CAS  Google Scholar 

  49. Arulkumaran, S., Egawa, T., Ishikawa, H. & Jimbo, T. High-temperature effects of AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC substrates. Appl. Phys. Lett. 80, 2186–2188 (2002).

    CAS  Google Scholar 

  50. Maier, D. et al. Testing the temperature limits of GaN-based HEMT devices. IEEE Trans. Device Mater. Reliab. 10, 427–436 (2010).

    CAS  Google Scholar 

  51. Maier, D. et al. InAlN/GaN HEMTs for operation in the 1000 °C regime: a first experiment. IEEE Electron. Device Lett. 33, 985–987 (2012).

    CAS  Google Scholar 

  52. Herfurth, P. et al. Ultrathin body InAlN/GaN HEMTs for high-temperature (600 °C) electronics. IEEE Electron. Device Lett. 34, 496–498 (2013).

    CAS  Google Scholar 

  53. Baca, A. G. et al. An AlN/Al0.85Ga0.15N high electron mobility transistor. Appl. Phys. Lett. 109, 033509 (2016).

    Google Scholar 

  54. Yafune, N. et al. AlN/AlGaN HEMTs on AlN substrate for stable high‐temperature operation. Electron. Lett. 50, 211–212 (2014).

    CAS  Google Scholar 

  55. Muhtadi, S. et al. High temperature operation of n-AlGaN channel metal semiconductor field effect transistors on low-defect AlN templates. Appl. Phys. Lett. 110, 193501 (2017).

    Google Scholar 

  56. Hickman, A. L. et al. Next generation electronics on the ultrawide-bandgap aluminum nitride platform. Semicond. Sci. Technol. 36, 044001 (2021).

    CAS  Google Scholar 

  57. Doolittle, W. A. et al. Prospectives for AlN electronics and optoelectronics and the important role of alternative synthesis. Appl. Phys. Lett. 123, 070501 (2023).

    CAS  Google Scholar 

  58. Chu, T., Ing, D. & Noreika, A. Epitaxial growth of aluminum nitride. Solid State Electron. 10, 1023–1027 (1967).

    CAS  Google Scholar 

  59. Ahmad, H. et al. Substantial P‐type conductivity of AlN achieved via beryllium doping. Adv. Mater. 33, 2104497 (2021).

    CAS  Google Scholar 

  60. Okumura, H. et al. AlN metal–semiconductor field-effect transistors using Si-ion implantation. Jpn. J. Appl. Phys. 57, 04FR11 (2018).

    Google Scholar 

  61. Hiroki, M., Taniyasu, Y. & Kumakura, K. High-temperature performance of AlN MESFETs with epitaxially grown n-type AlN channel layers. IEEE Electron. Device Lett. 43, 350–353 (2022).

    CAS  Google Scholar 

  62. Tadjer, M. J. Toward gallium oxide power electronics. Science 378, 724–725 (2022).

    CAS  PubMed  Google Scholar 

  63. Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T. & Yamakoshi, S. Gallium oxide (Ga2O3) metal–semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 100, 013504 (2012).

    Google Scholar 

  64. Lei, D., Han, K., Wu, Y., Liu, Z. & Gong, X. Investigation on temperature dependent DC characteristics of gallium oxide metal-oxide–semiconductor field-effect transistors from 25 °C to 300 °C. Appl. Phys. Express 12, 041001 (2019).

    CAS  Google Scholar 

  65. Wang, Y. et al. Recessed-gate Ga2O3-on-SiC MOSFETs demonstrating a stable power figure of merit of 100 mW/cm² up to 200 °C. IEEE Trans. Electron. Devices 69, 1945–1949 (2022).

    CAS  Google Scholar 

  66. Wong, M. H., Sasaki, K., Kuramata, A., Yamakoshi, S. & Higashiwaki, M. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron. Device Lett. 37, 212–215 (2015).

    Google Scholar 

  67. Ren, Z. et al. Temperature dependent characteristics of β-Ga2O3 FinFETs by MacEtch. Appl. Phys. Lett. 123, 043505 (2023).

    CAS  Google Scholar 

  68. Islam, A. E. et al. 500 °C operation of β-Ga2O3 field-effect transistors. Appl. Phys. Lett. 121, 243501 (2022).

    CAS  Google Scholar 

  69. Prins, J. Bipolar transistor action in ion implanted diamond. Appl. Phys. Lett. 41, 950–952 (1982).

    CAS  Google Scholar 

  70. Geis, M., Rathman, D., Ehrlich, D., Murphy, R. & Lindley, W. High-temperature point-contact transistors and Schottky diodes formed on synthetic boron-doped diamond. IEEE Electron. Device Lett. 8, 341–343 (1987).

    Google Scholar 

  71. Gildenblat, G. S., Grot, S., Hatfield, C. & Badzian, A. High-temperature thin-film diamond field-effect transistor fabricated using a selective growth method. IEEE Electron. Device Lett. 12, 37–39 (1991).

    CAS  Google Scholar 

  72. Tessmer, A., Plano, L. & Dreifus, D. High-temperature operation of polycrystalline diamond field-effect transistors. IEEE Electron. Device Lett. 14, 66–68 (1993).

    CAS  Google Scholar 

  73. Kato, H. et al. Selective growth of buried n+ diamond on (001) phosphorus-doped n-type diamond film. Appl. Phys. Express 2, 055502 (2009).

    Google Scholar 

  74. Iwasaki, T. et al. High-temperature operation of diamond junction field-effect transistors with lateral pn junctions. IEEE Electron. Device Lett. 34, 1175–1177 (2013).

    CAS  Google Scholar 

  75. Bi, T. et al. C–Si bonded two-dimensional hole gas diamond MOSFET with normally-off operation and wide temperature range stability. Carbon 175, 525–533 (2021).

    CAS  Google Scholar 

  76. Traoré, A. et al. Temperature dependence of diamond MOSFET transport properties. Jpn. J. Appl. Phys. 59, SGGD19 (2020).

    Google Scholar 

  77. Ren, C., Malakoutian, M., Li, S., Ercan, B. & Chowdhury, S. Demonstration of monolithic polycrystalline diamond-GaN complementary FET technology for high-temperature applications. ACS Appl. Electron. Mater. 3, 4418–4423 (2021).

    CAS  Google Scholar 

  78. Jennings, S. The mean free path in air. J. Aerosol Sci. 19, 159–166 (1988).

    CAS  Google Scholar 

  79. Han, J.-W., Moon, D.-I. & Meyyappan, M. Nanoscale vacuum channel transistor. Nano Lett. 17, 2146–2151 (2017).

    CAS  PubMed  Google Scholar 

  80. Han, J.-W., Seol, M.-L., Moon, D.-I., Hunter, G. & Meyyappan, M. Nanoscale vacuum channel transistors fabricated on silicon carbide wafers. Nat. Electron. 2, 405–411 (2019).

    CAS  Google Scholar 

  81. Deucher, T. M. & Okojie, R. S. Temperature effects on electrical resistivity of selected ceramics for high‐temperature packaging applications. J. Am. Ceram. Soc. 107, 2295–2303 (2024).

    CAS  Google Scholar 

  82. Spry, D. & Neudeck, P. Processing choices for achieving long term IC operation at 500 C. In 2021 Conference on Compound Semiconductor Manufacturing Technology (Compound Semiconductor Centre, 2023).

  83. Spry, D. J., Neudeck, P. G. & Chang, C. W. Experimental study on mitigation of lifetime-limiting dielectric cracking in extreme temperature 4H-SiC JFET integrated circuits. Mater. Sci. Forum 1004, 1148–1155 (2020).

    Google Scholar 

  84. Prokhorov, E., Trapaga, G. & González-Hernández, J. Structural and electrical properties of Ge1Sb2Te4 face centered cubic phase. J. Appl. Phys. 104, 103712 (2008).

    Google Scholar 

  85. Le Gallo, M. & Sebastian, A. An overview of phase-change memory device physics. J. Phys. D Appl. Phys. 53, 213002 (2020).

    Google Scholar 

  86. Prasad, B. et al. Material challenges for nonvolatile memory. APL Mater. 10, 090401 (2022).

    CAS  Google Scholar 

  87. Coughlin, T. A timeline for flash memory history [the art of storage]. IEEE Consum. Electron. Mag. 6, 126–133 (2016).

    Google Scholar 

  88. Bez, R., Camerlenghi, E., Modelli, A. & Visconti, A. Introduction to flash memory. Proc. IEEE 91, 489–502 (2003).

    Google Scholar 

  89. Kim, K. & Choi, J. Future outlook of NAND flash technology for 40 nm node and beyond. In 2006 21st IEEE Non-Volatile Semiconductor Memory Workshop 9–11 (IEEE, 2006).

  90. Harari, E. Flash memory — the great disruptor! In 2012 IEEE International Solid-State Circuits Conference 10–15 (2012).

  91. Bennett, S. & Sullivan, J. NAND flash memory and its place in IoT. In 2021 32nd Irish Signals and Systems Conference (ISSC) 1–6 (IEEE, 2021).

  92. Lee, K. et al. Analysis of failure mechanisms and extraction of activation energies Ea in 21-nm NAND flash cells. IEEE Electron. Device Lett. 34, 48–50 (2012).

    Google Scholar 

  93. Lee, K. et al. Activation energies Ea of failure mechanisms in advanced NAND flash cells for different generations and cycling. IEEE Trans. Electron. Devices 60, 1099–1107 (2013).

    Google Scholar 

  94. Govoreanu, B. & Van Houdt, J. On the roll-off of the activation energy plot in high-temperature flash memory retention tests and its impact on the reliability assessment. IEEE Electron. Device Lett. 29, 177–179 (2008).

    CAS  Google Scholar 

  95. Morgul, M. C., Sakib, M. N. & Stan, M. Reliable processing in flash with high temperature. In 2021 IEEE International Integrated Reliability Workshop (IIRW) 1–6 (IEEE, 2021).

  96. Kim, M. et al. A novel one-transistor dynamic random-access memory (1T DRAM) featuring partially inserted wide-bandgap double barriers for high-temperature applications. Micromachines 9, 581 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Chen, R., Wang, Y., Liu, D., Shao, Z. & Jiang, S. Heating dispersal for self-healing NAND flash memory. IEEE Trans. Comput. 66, 361–367 (2016).

    Google Scholar 

  98. Chen, R., Wang, Y. & Shao, Z. D. Heating: dispersed heating repair for self-healing NAND flash memory. In 2013 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS) 1–10 (IEEE, 2013).

  99. Liu, X. et al. Reconfigurable compute-in-memory on field-programmable ferroelectric diodes. Nano Lett. 22, 7690–7698 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, X. et al. Aluminum scandium nitride-based metal–ferroelectric–metal diode memory devices with high on/off ratios. Appl. Phys. Lett. 118, 202901 (2021).

    CAS  Google Scholar 

  101. Zheng, J. X. et al. Ferroelectric behavior of sputter deposited Al0.72Sc0.28N approaching 5 nm thickness. Appl. Phys. Lett. 122, 222901 (2023).

    CAS  Google Scholar 

  102. Buck, D. A. Massachusetts Institute of Technology, Department of Electrical Engineering. Ferroelectrics for Digital Information Storage and Switching (1952).

  103. Kim, K.-H., Karpov, I., Olsson, R. H. III & Jariwala, D. Wurtzite and fluorite ferroelectric materials for electronic memory. Nat. Nanotechnol. 18, 422–441 (2023).

    CAS  PubMed  Google Scholar 

  104. Jiang, A. Q. & Zhang, Y. Next-generation ferroelectric domain-wall memories: principle and architecture. NPG Asia Mater. 11, 2 (2019).

    Google Scholar 

  105. Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267 (1998).

    CAS  Google Scholar 

  106. Stolichnov, I., Tagantsev, A., Colla, E., Setter, N. & Cross, J. Physical model of retention and temperature-dependent polarization reversal in ferroelectric films. J. Appl. Phys. 98, 084106 (2005).

    Google Scholar 

  107. Mueller, S., Muller, J., Schroeder, U. & Mikolajick, T. Reliability characteristics of ferroelectric Si: HfO2 thin films for memory applications. IEEE Trans. Device Mater. Reliab. 13, 93–97 (2012).

    Google Scholar 

  108. Kounga, A. B., Granzow, T., Aulbach, E., Hinterstein, M. & Rödel, J. High-temperature poling of ferroelectrics. J. Appl. Phys. 104, 024116 (2008).

    Google Scholar 

  109. Kamel, T., Kools, F. & De With, G. Poling of soft piezoceramic PZT. J. Eur. Ceram. Soc. 27, 2471–2479 (2007).

    CAS  Google Scholar 

  110. Mikolajick, T. et al. Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021).

    CAS  Google Scholar 

  111. Matsunaga, T., Hosokawa, T., Umetani, Y., Takayama, R. & Kanno, I. Structural investigation of Pby (Zr0.57Ti0.43)2−yO3 films deposited on Pt (001)/MgO (001) substrates by rf sputtering. Phys. Rev. B 66, 064102 (2002).

    Google Scholar 

  112. Wang, N. et al. Structure, performance, and application of BiFeO3 nanomaterials. Nano-Micro Lett. 12, 1–23 (2020).

    Google Scholar 

  113. Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

    CAS  Google Scholar 

  114. Savage, A. Pyroelectricity and spontaneous polarization in LiNbO3. J. Appl. Phys. 37, 3071–3072 (1966).

    CAS  Google Scholar 

  115. Jiang, J., Chai, X., Wang, C. & Jiang, A. High temperature ferroelectric domain wall memory. J. Alloy Compd. 856, 158155 (2021).

    CAS  Google Scholar 

  116. Celinska, J., Joshi, V., Narayan, S., McMillan, L. & Paz de Araujo, C. Effects of scaling the film thickness on the ferroelectric properties of SrBi2Ta2O9 ultra thin films. Appl. Phys. Lett. 82, 3937–3939 (2003).

    CAS  Google Scholar 

  117. Shimakawa, Y. et al. Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9. Appl. Phys. Lett. 74, 1904–1906 (1999).

    CAS  Google Scholar 

  118. Gao, Z., Yan, H., Ning, H. & Reece, M. Ferroelectricity of Pr2Ti2O7 ceramics with super high Curie point. Adv. Appl. Ceram. 112, 69–74 (2013).

    CAS  Google Scholar 

  119. Gao, Z. et al. Super stable ferroelectrics with high Curie point. Sci. Rep. 6, 24139 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Nanamatsu, S., Kimura, M., Doi, K., Matsushita, S. & Yamada, N. A new ferroelectric: La2Ti2O7. Ferroelectrics 8, 511–513 (1974).

    CAS  Google Scholar 

  121. Ning, H., Yan, H. & Reece, M. J. Piezoelectric strontium niobate and calcium niobate ceramics with super‐high Curie points. J. Am. Ceram. Soc. 93, 1409–1413 (2010).

    CAS  Google Scholar 

  122. Böscke, T., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

    Google Scholar 

  123. Müller, J. et al. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl. Phys. Lett. 99, 112901 (2011).

    Google Scholar 

  124. Mulaosmanovic, H., Breyer, E. T., Mikolajick, T. & Slesazeck, S. Ferroelectric FETs with 20-nm-thick HfO2 layer for large memory window and high performance. IEEE Trans. Electron. Devices 66, 3828–3833 (2019).

    CAS  Google Scholar 

  125. Dünkel, S. et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond. In 2017 IEEE International Electron Devices Meeting (IEDM) 19.17.11–19.17.14 (IEEE, 2017).

  126. Schroeder, U. et al. Temperature‐dependent phase transitions in HfxZr1−xO2 mixed oxides: indications of a proper ferroelectric material. Adv. Electron. Mater. 8, 2200265 (2022).

    CAS  Google Scholar 

  127. Noh, J. et al. First experimental demonstration of robust HZO/β-Ga2O3 ferroelectric field-effect transistors as synaptic devices for artificial intelligence applications in a high-temperature environment. IEEE Trans. Electron. Devices 68, 2515–2521 (2021).

    CAS  Google Scholar 

  128. Fichtner, S., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. AlScN: a III–V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019).

    Google Scholar 

  129. Wang, D., Wang, P., Wang, B. & Mi, Z. Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy. Appl. Phys. Lett. 119, 111902 (2021).

    CAS  Google Scholar 

  130. Ferri, K. et al. Ferroelectrics everywhere: ferroelectricity in magnesium substituted zinc oxide thin films. J. Appl. Phys. 130, 044101 (2021).

    CAS  Google Scholar 

  131. Hayden, J. et al. Ferroelectricity in boron-substituted aluminum nitride thin films. Phys. Rev. Mater. 5, 044412 (2021).

    CAS  Google Scholar 

  132. Wang, D. et al. Ferroelectric YAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 123, 033504 (2023).

    CAS  Google Scholar 

  133. Calderon V, S., Hayden, J., Delower, M., Maria, J.-P. & Dickey, E. C. Effect of boron concentration on local structure and spontaneous polarization in AlBN thin films. APL Mater. 12, 021105 (2024).

    CAS  Google Scholar 

  134. Hayden, J., Shepard, J. & Maria, J.-P. Ferroelectric Al1−xBxN thin films integrated on Si. Appl. Phys. Lett. 123, 072901 (2023).

    CAS  Google Scholar 

  135. Zhu, W. et al. Exceptional high temperature retention in Al0.93B0.07N films. Appl. Phys. Lett. 122, 242902 (2023).

    CAS  Google Scholar 

  136. Pradhan, D. K. et al. A scalable ferroelectric non-volatile memory operating at 600 °C. Nat. Electron. 7, 348–355 (2024).

    CAS  Google Scholar 

  137. Drury, D., Yazawa, K., Zakutayev, A., Hanrahan, B. & Brennecka, G. High-temperature ferroelectric behavior of Al0.7Sc0.3N. Micromachines 13, 887 (2022).

    PubMed  PubMed Central  Google Scholar 

  138. Guido, R. et al. Thermal stability of the ferroelectric properties in 100 nm-thick Al0.72Sc0.28N. ACS Appl. Mater. Interfaces 15, 7030–7043 (2023).

    CAS  PubMed  Google Scholar 

  139. Islam, M. R. et al. On the exceptional temperature stability of ferroelectric Al1−xScxN thin films. Appl. Phys. Lett. 118, 232905 (2021).

    CAS  Google Scholar 

  140. Wang, D. et al. An epitaxial ferroelectric ScAlN/GaN heterostructure memory. Adv. Electron. Mater. 8, 2200005 (2022).

    CAS  Google Scholar 

  141. Chang, T.-C., Chang, K.-C., Tsai, T.-M., Chu, T.-J. & Sze, S. M. Resistance random access memory. Mater. Today 19, 254–264 (2016).

    CAS  Google Scholar 

  142. Zahoor, F., Azni Zulkifli, T. Z. & Khanday, F. A. Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett. 15, 1–26 (2020).

    Google Scholar 

  143. Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox‐based resistive switching memories — nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    CAS  PubMed  Google Scholar 

  144. Zhang, K., Ren, Y., Ganesh, P. & Cao, Y. Effect of electrode and oxide properties on the filament kinetics during electroforming in metal-oxide-based memories. npj Comput. Mater. 8, 76 (2022).

    CAS  Google Scholar 

  145. Kopperberg, N., Wiefels, S., Liberda, S., Waser, R. & Menzel, S. A consistent model for short-term instability and long-term retention in filamentary oxide-based memristive devices. ACS Appl. Mater. Interfaces 13, 58066–58075 (2021).

    CAS  PubMed  Google Scholar 

  146. Bersuker, G. et al. Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys. 110, 124518 (2011).

    Google Scholar 

  147. Younis, A., Chu, D. & Li, S. Evidence of filamentary switching in oxide-based memory devices via weak programming and retention failure analysis. Sci. Rep. 5, 13599 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. Wang, L.-G. et al. Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications. Nanoscale Res. Lett. 10, 1–8 (2015).

    Google Scholar 

  149. Kund, M. et al. Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20 nm. In IEEE International Electron Devices Meeting, 2005 IEDM Technical Digest 754–757 (IEEE, 2005).

  150. Zhao, Y. et al. A physics-based compact model for CBRAM retention behaviors based on atom transport dynamics and percolation theory. IEEE Electron. Device Lett. 40, 647–650 (2019).

    CAS  Google Scholar 

  151. Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 1, 130–136 (2018).

    CAS  Google Scholar 

  152. Sato, K., Hayashi, Y., Masaoka, N., Tohei, T. & Sakai, A. High-temperature operation of gallium oxide memristors up to 600 K. Sci. Rep. 13, 1261 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhou, Y. & Ramanathan, S. Mott memory and neuromorphic devices. Proc. IEEE 103, 1289–1310 (2015).

    CAS  Google Scholar 

  154. Paz de Araujo, C. A. et al. Universal non-polar switching in carbon-doped transition metal oxides (TMOs) and post TMOs. APL Mater. 10, 040904 (2022).

    CAS  Google Scholar 

  155. Celinska, J., McWilliams, C., Paz de Araujo, C. & Xue, K.-H. Material and process optimization of correlated electron random access memories. J. Appl. Phys. 109, 091603 (2011).

    Google Scholar 

  156. Kim, D. S. et al. Nonvolatile electrochemical random‐access memory under short circuit. Adv. Electron. Mater. 9, 2200958 (2023).

    CAS  Google Scholar 

  157. Lee, C. et al. Improved on-chip training efficiency at elevated temperature and excellent inference accuracy with retention (> 108 s) of Pr0.7Ca0.3MnO3−x ECRAM synapse device for hardware neural network. In 2021 IEEE Int. Electron. Devices Meet. 12.13.11–12.13.14 (IEEE, 2021).

  158. Talin, A. A., Li, Y., Robinson, D. A., Fuller, E. J. & Kumar, S. ECRAM materials, devices, circuits and architectures: a perspective. Adv. Mater. 35, 2204771 (2023).

    CAS  Google Scholar 

  159. Dreike, P., Fleetwood, D., King, D., Sprauer, D. & Zipperian, T. An overview of high-temperature electronic device technologies and potential applications. IEEE Trans. Compon. Packaging Manuf. Technol. Part A 17, 594–609 (1994).

    CAS  Google Scholar 

  160. Watson, J. & Castro, G. A review of high-temperature electronics technology and applications. J. Mater. Sci. Mater. Electron. 26, 9226–9235 (2015).

    CAS  Google Scholar 

  161. Roser, M., Hewett, C., Moazed, K. & Zeidler, J. High temperature reliability of refractory metal ohmic contacts to diamond. J. Electrochem. Soc. 139, 2001 (1992).

    CAS  Google Scholar 

  162. Kragh-Buetow, K., Okojie, R., Lukco, D. & Mohney, S. Characterization of tungsten–nickel simultaneous ohmic contacts to p- and n-type 4H-SiC. Semicond. Sci. Technol. 30, 105019 (2015).

    Google Scholar 

  163. Borysiewicz, M. et al. Fundamentals and practice of metal contacts to wide band gap semiconductor devices. Cryst. Res. Technol. 47, 261–272 (2012).

    CAS  Google Scholar 

  164. Vardi, A., Tordjman, M., Kalish, R. & del Alamo, J. A. Refractory W ohmic contacts to H-terminated diamond. IEEE Trans. Electron. Devices 67, 3516–3521 (2020).

    CAS  Google Scholar 

  165. Johnston, C. et al. High temperature contacts to chemically vapour deposited diamond films — reliability issues. Mater. Sci. Eng. B 29, 206–210 (1995).

    Google Scholar 

  166. Ao, J.-P. et al. Schottky contacts of refractory metal nitrides on gallium nitride using reactive sputtering. Vacuum 84, 1439–1443 (2010).

    CAS  Google Scholar 

  167. Murarka, S. P. Silicide thin films and their applications in microelectronics. Intermetallics 3, 173–186 (1995).

    CAS  Google Scholar 

  168. Gambino, J. & Colgan, E. Silicides and ohmic contacts. Mater. Chem. Phys. 52, 99–146 (1998).

    CAS  Google Scholar 

  169. Ting, C. Silicide for contacts and interconnects. In 1984 International Electron Devices Meeting 110–113 (IEEE, 1984).

  170. Okojie, R. S., Lukco, D., Chen, Y. L. & Spry, D. J. Reliability assessment of Ti/TaSi2/Pt ohmic contacts on SiC after 1000 h at 600 C. J. Appl. Phys. 91, 6553–6559 (2002).

    CAS  Google Scholar 

  171. Murarka, S. Transition metal silicides. Annu. Rev. Mater. Sci. 13, 117–137 (1983).

    CAS  Google Scholar 

  172. Cheng, P. et al. Enhanced thermal stability by introducing TiN diffusion barrier layer between W and SiC. J. Am. Ceram. Soc. 102, 5613–5619 (2019).

    CAS  Google Scholar 

  173. Meador, M. A. Recent advances in the development of processable high-temperature polymers. Annu. Rev. Mater. Res. 28, 599–630 (1998).

    CAS  Google Scholar 

  174. Tao, L., Chen, G. & Li, Y. Machine learning discovery of high-temperature polymers. Patterns 2, 100225 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Parin, F. N. & Demirci, F. in Aging and Durability of FRP Composites and Nanocomposites (eds Uthaman, A., Thomas, S. & Lal, H. M.) 135–170 (Woodhead Publishing, 2024).

  176. Abdullahi Hassan, Y. & Hu, H. Current status of polymer nanocomposite dielectrics for high-temperature applications. Compos. Part A Appl. Sci. Manuf. 138, 106064 (2020).

    CAS  Google Scholar 

  177. Khazaka, R., Mendizabal, L., Henry, D. & Hanna, R. Survey of high-temperature reliability of power electronics packaging components. IEEE Trans. Power Electron. 30, 2456–2464 (2014).

    Google Scholar 

  178. McCluskey, F. P., Dash, M., Wang, Z. & Huff, D. Reliability of high temperature solder alternatives. Microelectron. Reliab. 46, 1910–1914 (2006).

    CAS  Google Scholar 

  179. Hang, C. et al. Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging. Microelectron. Reliab. 48, 416–424 (2008).

    CAS  Google Scholar 

  180. Premkumar, J. et al. Key factors in Cu wire bonding reliability: remnant aluminum and Cu/Al IMC thickness. In 2008 10th Electronics Packaging Technology Conference 971–975 (IEEE, 2008).

  181. DeLucca, J., Osenbach, J. & Baiocchi, F. Observations of IMC formation for Au wire bonds to Al pads. J. Electron. Mater. 41, 748–756 (2012).

    CAS  Google Scholar 

  182. Perez, S., Francis, A., Holmes, J. & Vrotsos, T. Silicon carbide junction field effect transistor compact model for extreme environment integrated circuit design. Additional Pap. Present. 2021, 000118–000122 (2021).

    Google Scholar 

  183. Spry, D. J. et al. Processing and characterization of thousand-hour 500 °C durable 4H-SiC JFET integrated circuits. Additional Pap. Present. 2016, 000249–000256 (2016).

    Google Scholar 

  184. Spry, D. J. et al. Durable bond pad structure for electrical connection to extreme environment microelectronic integrated circuits. Google Patent (2019).

  185. Zhang, H. et al. A new hermetic sealing method for ceramic package using nanosilver sintering technology. Microelectron. Reliab. 81, 143–149 (2018).

    CAS  Google Scholar 

  186. Sood, S., Farrens, S., Pinker, R., Xie, J. & Cataby, W. Al–Ge eutectic wafer bonding and bond characterization for CMOS compatible wafer packaging. ECS Trans. 33, 93 (2010).

    CAS  Google Scholar 

  187. Wang, Q. et al. Application of Au–Sn eutectic bonding in hermetic radio-frequency microelectromechanical system wafer level packaging. J. Electron. Mater. 35, 425–432 (2006).

    CAS  Google Scholar 

  188. Deng, N., Zhao, J., Yang, L. & Zheng, Z. Effects of brazing technology on hermeticity of alumina ceramic–metal joint used in nuclear power plants. Front. Mater. 7, 580938 (2021).

    Google Scholar 

  189. Neudeck, P. G. et al. Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions. AIP Adv. 6, 125119 (2016).

    Google Scholar 

  190. Pfeiffer, H. C. Direct write electron beam lithography: a historical overview. Photomask Technol. 2010 7823, 367–372 (2010).

    Google Scholar 

  191. Zhang, Y., Liu, C. & Whalley, D. Direct-write techniques for maskless production of microelectronics: a review of current state-of-the-art technologies. In 2009 International Conference on Electronic Packaging Technology & High Density Packaging 497–503 (IEEE, 2009).

  192. Neudeck, P. G., Okojie, R. S. & Chen, L.-Y. High-temperature electronics — a role for wide bandgap semiconductors? Proc. IEEE 90, 1065–1076 (2002).

    Google Scholar 

  193. Kemerley, R. T., Wallace, H. B. & Yoder, M. N. Impact of wide bandgap microwave devices on DoD systems. Proc. IEEE 90, 1059–1064 (2002).

    CAS  Google Scholar 

  194. Garverick, S. L., Soong, C.-W. & Mehregany, M. SiC JFET integrated circuits for sensing and control at temperatures up to 600° C. In 2012 IEEE Energytech. 1–6 (IEEE, 2012).

  195. Higashiwaki, M. et al. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 103, 123511 (2013).

    Google Scholar 

  196. Lee, H., Ryu, H., Kang, J. & Zhu, W. Stable high temperature operation of p-GaN gate HEMT with etch-stop layer. IEEE Electron. Device Lett. 45, 312–315 (2024).

    CAS  Google Scholar 

  197. Shimaoka, T., Liao, M. & Koizumi, S. n-Type diamond metal–semiconductor field-effect transistor with high operation temperature of 300 °C. IEEE Electron. Device Lett. 43, 588–591 (2022).

    CAS  Google Scholar 

  198. Geis, M. W. et al. Progress toward diamond power field‐effect transistors. Phys. Status Solidi 215, 1800681 (2018).

    Google Scholar 

  199. Wu, Y. et al. Diamond metal–semiconductor field effect transistor for high temperature applications. In 2019 Device Research Conference (DRC) 155–156 (IEEE, 2019).

  200. Ueda, K. & Kasu, M. High temperature operation of boron-implanted diamond field-effect transistors. Jpn. J. Appl. Phys. 49, 04DF16 (2010).

    Google Scholar 

  201. Liao, M., Sun, H. & Koizumi, S. High‐temperature and high‐electron mobility metal‐oxide‐semiconductor field‐effect transistors based on N‐type diamond. Adv. Sci. 11, 2306013 (2024).

    CAS  Google Scholar 

  202. Östling, M., Koo, S.-M., Zetterling, C.-M., Khartsev, S. & Grishin, A. Ferroelectric thin films on silicon carbide for next-generation nonvolatile memory and sensor devices. Thin Solid Films 469, 444–449 (2004).

    Google Scholar 

  203. Suga, H. et al. Highly stable, extremely high-temperature, nonvolatile memory based on resistance switching in polycrystalline Pt nanogaps. Sci. Rep. 6, 34961 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Jameson, J. et al. Conductive-bridge memory (CBRAM) with excellent high-temperature retention. In 2013 IEEE Int. Electron. Devices Meeting 30.31.31–30.31.34 (IEEE, 2013).

  205. Perez, E., Mahadevaiah, M. K., Zambelli, C., Olivo, P. & Wenger, C. Data retention investigation in Al: HfO2-based resistive random access memory arrays by using high-temperature accelerated tests. J. Vac. Sci. Technol. B 37, 012202 (2019).

    Google Scholar 

  206. Chih, Y.-D. et al. A 22 nm 32 Mb embedded STT-MRAM with 10 ns read speed, 1 M cycle write endurance, 10 years retention at 150 °C and high immunity to magnetic field interference. In 2020 IEEE International Solid-State Circuits Conference (ISSCC) 222–224 (IEEE, 2020).

  207. Wang, Y. et al. Sc-centered octahedron enables high-speed phase change memory with improved data retention and reduced power consumption. ACS Appl. Mater. Interfaces 11, 10848–10855 (2019).

    CAS  PubMed  Google Scholar 

  208. Thanh, T. D. A study on memory data retention in high-temperature environments for automotive. Transp. Commun. Sci. J. 71, 27–36 (2020).

    Google Scholar 

  209. Singh, P., Arya, D. S. & Jain, U. MEM-FLASH non-volatile memory device for high-temperature multibit data storage. Appl. Phys. Lett. 115, 043501 (2019).

    Google Scholar 

  210. Gong, T. et al. 105× Endurance improvement of FE-HZO by an innovative rejuvenation method for 1z node NV-DRAM applications. In 2021 Symposium on VLSI Technology 1–2 (IEEE, 2021).

  211. Lee, H. et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. In 2008 IEEE International Electron Devices Meeting 1–4 (IEEE, 2008).

  212. Khurana, G., Misra, P. & Katiyar, R. S. Forming free resistive switching in graphene oxide thin film for thermally stable nonvolatile memory applications. J. Appl. Phys. 114, 124508 (2013).

    Google Scholar 

  213. Zhu, H., Yang, T., Zhou, Y., Hua, S. & Yang, J. Theoretical prediction on the structural, electronic, mechanical, and thermodynamic properties of TaSi2 with a C40 structure under pressure. Z. für. Naturforsch. A 74, 353–361 (2019).

    CAS  Google Scholar 

  214. Drebushchak, V. Thermal expansion of solids: review on theories. J. Therm. Anal. Calorim. 142, 1097–1113 (2020).

    CAS  Google Scholar 

  215. Edsinger, R., Reilly, M. & Schooley, J. Thermal expansion of platinum and platinum–rhodium alloys. J. Res. Natl Bur. Stand. 91, 333 (1986).

    CAS  Google Scholar 

  216. Halvorson, J. J. The Electrical Resistivity and Thermal Expansion of Iridium at High Temperatures (Montana State University-Bozeman, College of Engineering, 1971).

  217. Arblaster, J. Thermodynamic properties of hafnium. J. Phase Equilibria Diffus. 35, 490–501 (2014).

    CAS  Google Scholar 

  218. Onufriev, S. V. E., Petukhov, V. A., Pesochin, V. R. & Tarasov, V. D. The thermophysical properties of hafnium in the temperature range from 293 to 2000 K. High Temp. 46, 203–211 (2008).

    CAS  Google Scholar 

  219. Karunaratne, M., Kyaw, S., Jones, A., Morrell, R. & Thomson, R. C. Modelling the coefficient of thermal expansion in Ni-based superalloys and bond coatings. J. Mater. Sci. 51, 4213–4226 (2016).

    CAS  Google Scholar 

  220. Liu, Z.-L., Yang, J.-H., Cai, L.-C., Jing, F.-Q. & Alfe, D. Structural and thermodynamic properties of compressed palladium: ab initio and molecular dynamics study. Phys. Rev. B 83, 144113 (2011).

    Google Scholar 

  221. Pavlovic, A., Babu, V. S. & Seehra, M. S. High-temperature thermal expansion of binary alloys of Ni with Cr, Mo and Re: a comparison with molecular dynamics simulations. J. Phys. Condens. Matter 8, 3139 (1996).

    CAS  Google Scholar 

  222. Nix, F. & MacNair, D. The thermal expansion of pure metals: copper, gold, aluminum, nickel, and iron. Phys. Rev. 60, 597 (1941).

    CAS  Google Scholar 

  223. Slack, G. A. & Bartram, S. Thermal expansion of some diamond-like crystals. J. Appl. Phys. 46, 89–98 (1975).

    CAS  Google Scholar 

  224. Desai, P., Chu, T., James, H. M. & Ho, C. Electrical resistivity of selected elements. J. Phys. Chem. Ref. Data 13, 1069–1096 (1984).

    CAS  Google Scholar 

  225. Aisaka, T. & Shimizu, M. Electrical resistance, thermal conductivity and thermoelectric power of transition metals at high temperatures. J. Phys. Soc. Jpn. 28, 646–654 (1970).

    CAS  Google Scholar 

  226. Matula, R. A. Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8, 1147–1298 (1979).

    CAS  Google Scholar 

  227. Solovan, M., Brus, V., Maistruk, E. & Maryanchuk, P. Electrical and optical properties of TiN thin films. Inorg. Mater. 50, 40–45 (2014).

    CAS  Google Scholar 

  228. Bel’skaya, E. A. An experimental investigation of the electrical resistivity of titanium in the temperature range from 77 to 1600 K. High Temp. 43, 546–553 (2005).

    Google Scholar 

  229. Nava, F. et al. Analysis of the electrical resistivity of Ti, Mo, Ta, and W monocrystalline disilicides. J. Appl. Phys. 65, 1584–1590 (1989).

    CAS  Google Scholar 

  230. Flynn, D. & O’Hagan, M. Measurements of the thermal conductivity and electrical resistivity of platinum from 100 to 900 C (US Department of Commerce, National Bureau of Standards, 1918).

  231. Gomi, H. & Yoshino, T. Resistivity, Seebeck coefficient, and thermal conductivity of platinum at high pressure and temperature. Phys. Rev. B 100, 214302 (2019).

    CAS  Google Scholar 

  232. Palchaev, D. et al. Thermal expansion and electrical resistivity studies of nickel and ARMCO iron at high temperatures. Int. J. Thermophys. 36, 3186–3210 (2015).

    CAS  Google Scholar 

  233. Hust, J. G. & Lankford, A. B. Thermal conductivity of aluminum, copper, iron, and tungsten for temperatures from 1 K to the melting point (National Bureau of Standards, 1984).

  234. Cuenca, J. A. et al. Thermal stress modelling of diamond on GaN/III-nitride membranes. Carbon 174, 647–661 (2021).

    CAS  Google Scholar 

  235. Fang, C., De Wijs, G., Hintzen, H. & de With, G. Phonon spectrum and thermal properties of cubic Si3N4 from first-principles calculations. J. Appl. Phys. 93, 5175–5180 (2003).

    CAS  Google Scholar 

  236. Sinha, A., Levinstein, H. & Smith, T. Thermal stresses and cracking resistance of dielectric films (SiN, Si3N4, and SiO2) on Si substrates. J. Appl. Phys. 49, 2423–2426 (1978).

    CAS  Google Scholar 

  237. Yates, B., Cooper, R. & Pojur, A. Thermal expansion at elevated temperatures. II. Aluminium oxide: experimental data between 100 and 800 K and their analysis. J. Phys. C Solid State Phys. 5, 1046 (1972).

    CAS  Google Scholar 

  238. Edwards, M. J., Bowen, C. R., Allsopp, D. W. & Dent, A. C. Modelling wafer bow in silicon–polycrystalline CVD diamond substrates for GaN-based devices. J. Phys. D Appl. Phys. 43, 385502 (2010).

    Google Scholar 

  239. Roder, C., Einfeldt, S., Figge, S. & Hommel, D. Temperature dependence of the thermal expansion of GaN. Phys. Rev. B 72, 085218 (2005).

    Google Scholar 

  240. Bargmann, M. et al. Temperature-dependent coefficient of thermal expansion of silicon nitride films used in microelectromechanical systems. MRS Online Proc. Libr. 605, 235 (1999).

    Google Scholar 

  241. Jiang, H., Huang, Y. & Hwang, K. A finite-temperature continuum theory based on interatomic potentials. Trans. ASME 127, 408 (2005).

    CAS  Google Scholar 

  242. Habermehl, S. Coefficient of thermal expansion and biaxial Young’s modulus in Si-rich silicon nitride thin films. J. Vac. Sci. Technol. A 36, 021517 (2018).

  243. White, G. & Roberts, R. Thermal expansion of reference materials: tungsten and α-Al2O3. High Temp. High Press. 15, 321–328 (1983).

    CAS  Google Scholar 

  244. Dorogokupets, P., Sokolova, T., Dymshits, A. & Litasov, K. Thermodynamic properties of rock-forming oxides, α-Al2O3, Cr2O3, α-Fe2O3, and Fe3O4 at high temperatures and pressures. Геодинамика и тектонофизика 7, 459–476 (2016).

    Google Scholar 

  245. Paszkowicz, W. et al. Thermal expansion of spinel-type Si3N4. Phys. Rev. B 69, 052103 (2004).

    Google Scholar 

  246. Li, Z. & Bradt, R. C. Thermal expansion of the hexagonal (4H) polytype of SiC. J. Appl. Phys. 60, 612–614 (1986).

    CAS  Google Scholar 

  247. Nakabayashi, M., Fujimoto, T., Katsuno, M. & Ohtani, N. Precise determination of thermal expansion coefficients observed in 4H-SiC single crystals. Mater. Sci. Forum 527, 699–702 (2006).

    Google Scholar 

  248. Cheng, Z., Hanke, M., Galazka, Z. & Trampert, A. Thermal expansion of single-crystalline β-Ga2O3 from RT to 1200 K studied by synchrotron-based high resolution X-ray diffraction. Appl. Phys. Lett. 113, 182102 (2018).

    Google Scholar 

  249. Orlandi, F., Mezzadri, F., Calestani, G., Boschi, F. & Fornari, R. Thermal expansion coefficients of β-Ga2O3 single crystals. Appl. Phys. Express 8, 111101 (2015).

    Google Scholar 

  250. Linas, S. et al. Interplay between Raman shift and thermal expansion in graphene: temperature-dependent measurements and analysis of substrate corrections. Phys. Rev. B 91, 075426 (2015).

    Google Scholar 

  251. Hintzen, H. et al. Thermal expansion of cubic Si3N4 with the spinel structure. J. Alloy Compd. 351, 40–42 (2003).

    CAS  Google Scholar 

  252. Yim, W. & Paff, R. Thermal expansion of AlN, sapphire, and silicon. J. Appl. Phys. 45, 1456–1457 (1974).

    CAS  Google Scholar 

  253. Shang, S.-L., Zhang, H., Wang, Y. & Liu, Z.-K. Temperature-dependent elastic stiffness constants of α-and θ-Al2O3 from first-principles calculations. J. Phys. Condens. Matter 22, 375403 (2010).

    PubMed  Google Scholar 

  254. Munro, M. Evaluated material properties for a sintered alpha‐alumina. J. Am. Ceram. Soc. 80, 1919–1928 (1997).

    CAS  Google Scholar 

  255. Badaroglu, M. More Moore. In 2021 IEEE International Roadmap for Devices and Systems Outbriefs 01–38 (IEEE, 2021).

  256. Kanter, D. Intel 4 process scales logic with design, materials, and EUV. Real World Technologies https://www.realworldtech.com/intel-4/ (2022).

  257. Ricón, J. L. Progress in semiconductors, or Moore's law is not dead yet. Nintil https://nintil.com/progress-semicon/ (2020).

  258. Burg, D. & Ausubel, J. H. Moore’s law revisited through Intel chip density. PLoS ONE 16, e0256245 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Wong, H. & Kakushima, K. On the vertically stacked gate-all-around nanosheet and nanowire transistor scaling beyond the 5 nm technology node. Nanomaterials 12, 1739 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Ohme, B. W., Johnson, B. J. & Larson, M. R. SOI CMOS for extreme temperature applications. Honeywell Aerospace, Defense & Space https://aerospace.honeywell.com/content/dam/aerobt/en/documents/learn/products/microelectronics/technical-articles/SOICMOSForExtremeTemperatureApplications.pdf (2012).

  261. Kappert, H. et al. High temperature 0.35 micron silicon-on-insulator CMOS technology. Additional Pap. Present. 2014, 000154–000158 (2014).

    Google Scholar 

  262. Kailath, T. et al. in Control System Applications 67–83 (CRC Press, 2018).

  263. Jones, S. TSMC Samsung 5 nm Comparison. SemiWiki https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/8157-tsmc-and-samsung-5nm-comparison/ (2019).

  264. Lowther, R. et al. Enabling bulk silicon CMOS technology for integration, reliability, and extended lifetime at high temperature. Additional Pap. Present. 2015, 000020–000026 (2015).

    Google Scholar 

  265. Lowry, T. S. et al. GeoVision Analysis: Reservoir Maintenance and Development Task Force Report (GeoVision Analysis Supporting Task Force Report: Reservoir Maintenance and Development) (Sandia National Lab, 2017).

  266. Lewis, M. Here’s how deep geothermal drilling might be clean energy’s future. Electrek https://electrek.co/2022/11/21/heres-how-deep-geothermal-drilling-might-be-clean-energys-future/ (2022).

  267. Serp, J. et al. The molten salt reactor (MSR) in generation IV: overview and perspectives. Prog. Nucl. Energy 77, 308–319 (2014).

    CAS  Google Scholar 

  268. Talbot, T. Concorde, A Designer’s Life: The Journey to Mach 2 (The History Press, 2013).

  269. Bohra, K. S. & Dharmadhikari, Y. S. History of fly by wire, the tech that expanded human horizons in aviation. In 2023 8th IEEE History of Electrotechnology Conference (HISTELCON) 46–51 (IEEE, 2023).

  270. Gunston, B. Avionics: The Story and Technology of Aviation Electronics (Thorsons Publishers, 1990).

  271. Behbahani, A. R. AFRL-PR-WP-2007-217 Directorate. Need for robust sensors for inherently fail-safe gas turbine engine controls, monitoring, and prognostics (postprint) (Air Force Research Laboratory, 2006).

  272. Behbahani, A. & Tulpule, B. Perspective for distributed intelligent engine controls of the future. In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibition 6631 (ARC, 2010).

  273. Francis, M. Modular smart nodes for high temperature distributed engine controls. In AIAA Propulsion and Energy 2019 Forum 4389 (ARC, 2019).

  274. Zipperian, T. Survey of materials and device technologies for high-temperature (T300C) power semiconductor electronics. In Presented at the Intertec Communications Incorporated Conference (INTELEC, 1986).

  275. Morshed, M. et al. High temperature lead free solder alloy for high power semiconductor device packaging applications. In PCIM Europe 2023; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management 1–5 (VDE, 2023).

  276. Amerasekera, E. A. & Campbell, D. S. Failure Mechanisms in Semiconductor Devices (Wiley, 1997).

  277. Sebastian,M. T. & Jantunen, H. in Microwave Materials and Applications (eds Sebastian, M. T., Jantunen, H. & Ubic, R.) 355–425 (Wiley, 2017).

  278. Kupernik, J. et al. Advancing reliable high-temperature electronics through compatible material interfaces. IMAPSource Proceedings Vol. 2022, 000076–000080 (IMAPS, 2023).

  279. Chiolino, N., Francis, A., Holmes, J., Barlow, M. & Perkowski, C. 470 celsius packaging system for silicon carbide electronics. IMAPSource Proceedings 83–88 (HiTEC, 2021).

Download references

Acknowledgements

D.J., R.H.O. and D.K.P. acknowledge primary support for this work from AFRL via the FAST programme. D.J. also acknowledges support from the Air Force Office of Scientific Research (AFOSR) GHz-THz program FA9550-23-1-0391. N.R.G. and D.C.M. gratefully acknowledge support from Air Force Office of Scientific Research (AFOSR) GHz-THz program grant number FA9550-24RYCOR011. A.M.F. and J.K. acknowledge support from Air Force Office of Scientific Research (AFOSR) program grant number FA239424CB002. The authors acknowledge insights from J. Holmes and graphic illustration support for Fig. 2 from J. Richers (https://www.jorichers.com).

Author information

Authors and Affiliations

Authors

Contributions

D.K.P. and D.C.M. contributed equally to a substantial portion of researching the data and writing of the article. D.J. led the project and article organization in addition to logic and memory device sections. A.M.F. and J.K. contributed to the packaging and integration as well as manufacturing sections. W.J.K. and N.R.G. contributed to the introduction and memory sections. R.H.O. contributed to the memory and interconnects sections. All authors contributed equally to writing, integration, editing and revising of the article. All authors reviewed and/or edited the manuscript before original and revised submissions.

Corresponding author

Correspondence to Deep Jariwala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Savannah Eisner, who co-reviewed with Yi-Chen (Ethan) Liu; Alton Horsfall; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AECQ100: http://www.aecouncil.com/AECDocuments.html

Automative trends report: https://www.epa.gov/automotive-trends/highlights-automotive-trends-report

CO2 emissions in the aviation industry: https://www.iea.org/energy-system/transport/aviation

Department of Energy Deep Trek program: https://netl.doe.gov/files/oil-gas/NT41834_FinalReport.pdf

Eutectic point of high-purity metals: https://www.indium.com/applications/high-temp-soldering

Extraction of energy from geothermal reserves: https://www.energy.gov/eere/geothermal/geovision

Fracking for geothermal systems: https://www.renewableenergyworld.com/om/monitoring/is-fracking-for-enhanced-geothermal-systems-the-same-as-fracking-for-natural-gas/

MIL-STD-883: https://www.navsea.navy.mil/Portals/103/Documents/NSWC_Crane/SD-18/Test%20Methods/MILSTD883.pdf

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, D.K., Moore, D.C., Francis, A.M. et al. Materials for high-temperature digital electronics. Nat Rev Mater 9, 790–807 (2024). https://doi.org/10.1038/s41578-024-00731-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00731-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing