Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design of functional and sustainable polymers assisted by artificial intelligence

Abstract

Artificial intelligence (AI)-based methods continue to make inroads into accelerated materials design and development. Here, we review AI-enabled advances made in the subfield of polymer informatics, with a particular focus on the design of application-specific practical polymeric materials. We consider exemplar design attempts within a few critical and emerging application spaces, including materials designs for storing, producing and conserving energy, and those that can prepare us for a sustainable economy powered by recyclable and/or biodegradable polymers. AI-powered workflows help to efficiently search the staggeringly large chemical and configurational space of materials, using modern machine-learning (ML) algorithms to solve ‘forward’ and ‘inverse’ materials design problems. A theme explored throughout this Review is a practical informatics-based design protocol that involves creating a set of application-specific target property criteria, building ML model predictors for those relevant target properties, enumerating or generating a tangible population of viable polymers, and selecting candidates that meet design recommendations. The protocol is demonstrated for several energy- and sustainability-related applications. Finally, we offer our outlook on the lingering obstacles that must be overcome to achieve widespread adoption of informatics-driven protocols in industrial-scale materials development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polymer innovations over the past two centuries.
Fig. 2: Dielectric polymers for energy storage.
Fig. 3: Polymers for fuel cells.
Fig. 4: Polymers for Li-ion batteries.
Fig. 5: Polymers for the separation of gas mixtures.
Fig. 6: Polymers for the separation of complex liquid mixtures.
Fig. 7: Polymers for a sustainable world.

Similar content being viewed by others

References

  1. Staudinger, H. Über polymerisation. Ber. Dtsch. Chem. Ges. 53, 1073–1085 (1920).

    Article  Google Scholar 

  2. Frey, H. & Johann, T. Celebrating 100 years of ‘polymer science’: Hermann Staudinger’s 1920 manifesto. Polym. Chem. 11, 8–14 (2020).

    Article  CAS  Google Scholar 

  3. Mülhaupt, R. Hermann Staudinger and the origin of macromolecular chemistry. Angew. Chem. Int. Ed. 43, 1054–1063 (2004).

    Article  Google Scholar 

  4. Muench, S. et al. Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Hubbell, J. A. Biomaterials in tissue engineering. Nat. Biotech. 13, 565–576 (1995).

    Article  CAS  Google Scholar 

  6. Hager, M. D., Bode, S., Weber, C. & Schubert, U. S. Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 49–50, 3–33 (2015).

    Article  Google Scholar 

  7. Huan, T. D. et al. Advanced polymeric dielectrics for high energy density applications. Prog. Mater. Sci. 83, 236–269 (2016).

    Article  CAS  Google Scholar 

  8. Pan, M., Pan, C., Li, C. & Zhao, J. A review of membranes in proton exchange membrane fuel cells: transport phenomena, performance and durability. Renew. Sust. Energ. Rev. 141, 110771 (2021).

    Article  CAS  Google Scholar 

  9. Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M. & Wang, G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019).

    Article  CAS  Google Scholar 

  10. Baker, R. W. & Low, B. T. Gas separation membrane materials: a perspective. Macromolecules 47, 6999–7013 (2014).

    Article  CAS  Google Scholar 

  11. Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010).

    Article  CAS  Google Scholar 

  12. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hallinan, D. T. Jr & Balsara, N. P. Polymer electrolytes. Ann. Rev. Mater. Res. 43, 503–525 (2013).

    Article  CAS  Google Scholar 

  14. Batra, R., Song, L. & Ramprasad, R. Emerging materials intelligence ecosystems propelled by machine learning. Nat. Rev. Matter 6, 655–678 (2021).

    Article  Google Scholar 

  15. Artificial Intelligence in Chemical and Materials Science Marker report. Future Data Stats https://www.futuredatastats.com/artificial-intelligence-in-chemical-and-materials-science-market (2023).

  16. Ting, J. M. & Lipscomb, C. E. Launching a materials informatics initiative for industrial applications in materials science, chemistry, and engineering. Pure Appl. Chem. 94, 637 (2022).

    Article  CAS  Google Scholar 

  17. Chen, L. et al. Polymer informatics: current status and critical next steps. Mater. Sci. Eng. R Rep. 144, 100595 (2021).

    Article  Google Scholar 

  18. Audus, D. J. & de Pablo, J. J. Polymer informatics: opportunities and challenges. ACS Macro Lett. 6, 1078–1082 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sha, W. et al. Machine learning in polymer informatics. InfoMat 3, 353–361 (2021).

    Article  CAS  Google Scholar 

  20. Mannodi-Kanakkithodi, A. et al. Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond. Mater. Today 21, 785–796 (2018).

    Article  CAS  Google Scholar 

  21. Cencer, M. M., Moore, J. S. & Assary, R. S. Machine learning for polymeric materials: an introduction. Polym. Int. 71, 537–542 (2022).

    Article  CAS  Google Scholar 

  22. Hatakeyama-Sato, K. Recent advances and challenges in experiment-oriented polymer informatics. Polym. J. 55, 117–131 (2023).

    Article  CAS  Google Scholar 

  23. Fedors, R. F. A method for estimating both the solubility parameters and molar volumes of liquids. Poly. Eng. Sci. 14, 147–154 (1974).

    Article  CAS  Google Scholar 

  24. Kim, C., Chandrasekaran, A., Huan, T. D., Das, D. & Ramprasad, R. Polymer Genome: a data-powered polymer informatics platform for property predictions. J. Phys. Chem. C. 122, 17575–17585 (2018).

    Article  CAS  Google Scholar 

  25. Tran, H. et al. Machine-learning predictions of polymer properties with Polymer Genome. J. Appl. Phys. 128, 171104 (2020).

    Article  Google Scholar 

  26. Zhao, Y., Mulder, R. J., Houshyar, S. & Le, T. C. A review on the application of molecular descriptors and machine learning in polymer design. Polym. Chem. 14, 3325–3346 (2023).

    Article  CAS  Google Scholar 

  27. Stuart, S., Watchorn, J. & Gu, F. X. Sizing up feature descriptors for macromolecular machine learning with polymeric biomaterials. npj Comput. Mater. 9, 102 (2023).

    Article  CAS  Google Scholar 

  28. Xu, C., Wang, Y. & Barati Farimani, A. TransPolymer: a transformer-based language model for polymer property predictions. npj Comput. Mater. 9, 64 (2023).

    Article  CAS  Google Scholar 

  29. Hatakeyama-Sato, K., Watanabe, S., Yamane, N., Igarashi, Y. & Oyaizu, K. Using GPT-4 in parameter selection of polymer informatics: improving predictive accuracy amidst data scarcity and ‘Ugly Duckling’ dilemma. Digit. Disc. 2, 1548–1557 (2023).

    Article  CAS  Google Scholar 

  30. Gurnani, R. et al. polyG2G: a novel machine learning algorithm applied to the generative design of polymer dielectrics. Chem. Mater. 33, 7008–7016 (2021).

    Article  CAS  Google Scholar 

  31. Aldeghi, M. & Coley, C. W. A graph representation of molecular ensembles for polymer property prediction. Chem. Sci. 13, 10486 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Queen, O. et al. Polymer graph neural networks for multitask property learning. npj Comput. Mater. 9, 90 (2023).

    Article  Google Scholar 

  33. Kuenneth, C. & Ramprasad, R. polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics. Nat. Commun. 14, 4099 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuenneth, C. et al. Polymer informatics with multi-task learning. Patterns 2, 100238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huan, T. D., Mannodi-Kanakkithodi, A. & Ramprasad, R. Accelerated materials property predictions and design using motif-based fingerprints. Phys. Rev. B 92, 014106 (2015).

    Article  Google Scholar 

  36. Mannodi-Kanakkithodi, A., Pilania, G., Huan, T. D., Lookman, T. & Ramprasad, R. Machine learning strategy for accelerated design of polymer dielectrics. Sci. Rep. 6, 20952 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sattari, K., Xie, Y. & Lin, J. Data-driven algorithms for inverse design of polymers. Soft Matter 17, 7607–7622 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Afzal, M. A. F., Haghighatlari, M., Ganesh, S. P., Cheng, C. & Hachmann, J. Accelerated discovery of high-refractive-index polyimides via first-principles molecular modeling, virtual high-throughput screening, and data mining. J. Phys. Chem. C 123, 14610 (2019).

    Article  CAS  Google Scholar 

  39. Noh, J., Gu, G. H., Kim, S. & Jung, Y. Machine-enabled inverse design of inorganic solid materials: promises and challenges. Chem. Sci. 11, 4871–4881 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Patra, T. K., Loeffler, T. D. & Sankaranarayanan, S. K. Accelerating copolymer inverse design using Monte Carlo tree search. Nanoscale 12, 23653–23662 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Park, N. H. et al. A recommender system for inverse design of polycarbonates and polyesters. Macromolecules 53, 10847–10854 (2020).

    Article  CAS  Google Scholar 

  42. Wang, Y. et al. Toward designing highly conductive polymer electrolytes by machine learning assisted coarse-grained molecular dynamics. Chem. Matter 32, 4144–4151 (2020).

    Article  CAS  Google Scholar 

  43. Wu, S. et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. npj Comput. Mater. 5, 66 (2019).

    Article  Google Scholar 

  44. Khadilkar, M. R., Paradiso, S., Delaney, K. T. & Fredrickson, G. H. Inverse design of bulk morphologies in multiblock polymers using particle swarm optimization. Macromolecules 50, 6702–6709 (2017).

    Article  CAS  Google Scholar 

  45. Kumar, J. N. et al. Machine learning enables polymer cloud-point engineering via inverse design. npj Comput. Matter 5, 73 (2019).

    Article  Google Scholar 

  46. Paradiso, S. P., Delaney, K. T. & Fredrickson, G. H. Swarm intelligence platform for multiblock polymer inverse formulation design. ACS Macro Lett. 5, 972–976 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Coli, G. M., Boattini, E., Filion, L. & Dijkstra, M. Inverse design of soft materials via a deep learning-based evolutionary strategy. Sci. Adv. 8, eabj6731 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim, C., Batra, R., Chen, L., Tran, H. & Ramprasad, R. Polymer design using genetic algorithm and machine learning. Comput. Mater. Sci. 186, 110067 (2021).

    Article  CAS  Google Scholar 

  49. Batra, R. et al. Polymers for extreme conditions designed using syntax-directed variational autoencoders. Chem. Mater. 32, 10489–10500 (2020).

    Article  CAS  Google Scholar 

  50. Jørgensen, P. B. et al. Machine learning-based screening of complex molecules for polymer solar cells. J. Chem. Phys. 148, 241735 (2018).

    Article  PubMed  Google Scholar 

  51. Kim, S., Schroeder, C. M. & Jackson, N. E. Open macromolecular genome: generative design of synthetically accessible polymers. ACS Polym. Au 3, 318–330 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ohno, M., Hayashi, Y., Zhang, Q., Kaneko, Y. & Yoshida, R. SMiPoly: generation of synthesizable polymer virtual library using rule-based polymerization reactions. J. Chem. Inf. Model. 63, 5539–5548 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Unsleber, J. P. Accelerating reaction network explorations with automated reaction template extraction and application. J. Chem. Inf. Model. 63, 3392–3403 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huan, T. D. et al. A polymer dataset for accelerated property prediction and design. Sci. Data 3, 160012 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mannodi‐Kanakkithodi, A. et al. Rational co‐design of polymer dielectrics for energy storage. Adv. Mater. 28, 6277–6291 (2016).

    Article  PubMed  Google Scholar 

  56. Sharma, V. et al. Rational design of all organic polymer dielectrics. Nat. Commun. 5, 4845 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Tran, H., Shen, K. H., Shukla, S., Kwon, H. K. & Ramprasad, R. Informatics-driven selection of polymers for fuel-cell applications. J. Phys. Chem. C 127, 977–986 (2023).

    Article  CAS  Google Scholar 

  58. Di Noto, V., Lavina, S., Giffin, G. A., Negro, E. & Scrosati, B. Polymer electrolytes: present, past and future. Electrochim. Acta 57, 4–13 (2011).

    Article  Google Scholar 

  59. Meyer, W. H. Polymer electrolytes for lithium‐ion batteries. Adv. Mater. 10, 439–448 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Arya, A. & d Sharma, A. L. Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23, 497–540 (2017).

    Article  CAS  Google Scholar 

  61. Barbosa, J. C., Gonçalves, R., Costa, C. M. & Lanceros-Méndez, S. Toward sustainable solid polymer electrolytes for lithium-ion batteries. ASC Omega 7, 14457 (2022).

    Article  CAS  Google Scholar 

  62. Baker, R. W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002).

    Article  CAS  Google Scholar 

  63. Marchetti, P., Jimenez Solomon, M. F., Szekely, G. & Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114, 10735–10806 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Shi, G. M. et al. Recent progress of organic solvent nanofiltration membranes. Prog. Polym. Sci. 123, 101470 (2021).

    Article  CAS  Google Scholar 

  65. Semenova, S. I. Polymer membranes for hydrocarbon separation and removal. J. Membr. Sci. 231, 189–207 (2004).

    Article  CAS  Google Scholar 

  66. Bruno, N. C. et al. Solution-processable polytriazoles from spirocyclic monomers for membrane-based hydrocarbon separations. Nat. Mater. 22, 1540–1547 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Kuenneth, C. et al. Bioplastic design using multitask deep neural networks. Commun. Mater. 3, 96 (2022).

    Article  CAS  Google Scholar 

  68. Tran, H. et al. Toward recyclable polymers: ring-opening polymerization enthalpy from first-principles. J. Phys. Chem. Lett. 13, 4778–4785 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Stellmach, K. A. et al. Modulating polymerization thermodynamics of thiolactones through substituent and heteroatom incorporation. ACS Macro Lett. 11, 895–901 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Su, Y. L. et al. Chemically recyclable polymer system based on nucleophilic aromatic ring-opening polymerization. J. Am. Chem. Soc. 145, 13950–13956 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Toland, A. et al. Accelerated scheme to predict ring-opening polymerization enthalpy: simulation–experimental data fusion and multitask machine learning. J. Phys. Chem. A 127, 10709–10716 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Feng, M. et al. Recent advances in multilayer‐structure dielectrics for energy storage application. Adv. Sci. 8, 2102221 (2021).

    Article  CAS  Google Scholar 

  73. Feng, Q. K. et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 122, 3820–3878 (2021).

    Article  PubMed  Google Scholar 

  74. Zha, J. W. & Dang, Z. M. High Temperature Polymer Dielectrics: Fundamentals and Applications in Power Equipment (Wiley, 2024).

  75. Zha, J. W., Zheng, M. S., Fan, B. H. & Dang, Z. M. Polymer-based dielectrics with high permittivity for electric energy storage: a review. Nano Energy 89, 106438 (2021).

    Article  CAS  Google Scholar 

  76. Pei, J. Y. et al. All-organic dielectric polymer films exhibiting superior electric breakdown strength and discharged energy density by adjusting the electrode–dielectric interface with an organic nano-interlayer. Energy Environ. Sci. 14, 5513–5522 (2021).

    Article  CAS  Google Scholar 

  77. Zhu, M. X., Deng, T., Dong, L., Chen, J. M. & Dang, Z. M. Review of machine learning-driven design of polymer-based dielectrics. IET Nanodielectr 5, 24–38 (2022).

    Article  Google Scholar 

  78. Luo, H. et al. Progress on polymer dielectrics for electrostatic capacitors application. Adv. Sci. 9, 2202438 (2022).

    Article  CAS  Google Scholar 

  79. Li, Q. et al. High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018).

    Article  CAS  Google Scholar 

  80. Gurnani, R. et al. AI-assisted discovery of high-temperature dielectrics for energy storage. Nat. Commun. https://doi.org/10.1038/s41467-024-50413-x (2024).

  81. Alamri, A. et al. Improving the rotational freedom of polyetherimide: enhancement of the dielectric properties of a commodity high-temperature polymer using a structural defect. Chem. Mater. 34, 6553–6558 (2022).

    Article  CAS  Google Scholar 

  82. Wu, C. et al. Rational design of all-organic flexible high-temperature polymer dielectrics. Matter 5, 2615–2623 (2022).

    Article  CAS  Google Scholar 

  83. Li, Z. et al. High energy density and high efficiency all-organic polymers with enhanced dipolar polarization. J. Mater. Chem. A 7, 15026–15030 (2019).

    Article  CAS  Google Scholar 

  84. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  85. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  86. Baldwin, A. F. et al. Rational design of organotin polyesters. Macromolecules 48, 2422–2428 (2015).

    Article  CAS  Google Scholar 

  87. Baldwin, A. F. et al. Poly(dimethyltin glutarate) as a prospective material for high dielectric applications. Adv. Mater. 27, 346–351 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Chen, L., Huan, T. D., Quintero, Y. C. & Ramprasad, R. Charge injection barriers at metal/polyethylene interfaces. J. Mater. Sci. 51, 506–512 (2016).

    Article  CAS  Google Scholar 

  89. Chen, L., Huan, T. D. & Ramprasad, R. Electronic structure of polyethylene: role of chemical, morphological and interfacial complexity. Sci. Rep. 7, 6128 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Li, X. Principles of Fuel Cells (CRC, 2005).

  91. Gröger, O., Gasteiger, H. A. & Suchsland, J. P. Electromobility: batteries or fuel cells? J. Electrochem. Soc. 162, A2605 (2015).

    Article  Google Scholar 

  92. Ogungbemi, E. et al. Fuel cell membranes — pros and cons. Energy 172, 155–172 (2019).

    Article  CAS  Google Scholar 

  93. Kraytsberg, A. & Ein-Eli, Y. Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28, 7303–7330 (2014).

    Article  CAS  Google Scholar 

  94. Kusoglu, A. & Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Kudo, K., Jinnouchi, R. & Morimoto, Y. Humidity and temperature dependences of oxygen transport resistance of Nafion thin film on platinum electrode. Electrochim. Acta 209, 682–690 (2016).

    Article  CAS  Google Scholar 

  96. Kudo, K. & Morimoto, Y. Analysis of oxygen transport resistance of Nafion thin film on Pt electrode. ECS Trans. 50, 1487 (2013).

    Article  Google Scholar 

  97. Tanaka, T., Uchida, M. & Miyatake, K. An aromatic ionomer in the anode catalyst layer improves the start-up durability of polymer electrolyte fuel cells. Energy Adv. 1, 38–44 (2022).

    Article  CAS  Google Scholar 

  98. Jinnouchi, R. et al. The role of oxygen-permeable ionomer for polymer electrolyte fuel cells. Nat. Commun. 12, 4956 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Suzuki, A. et al. Ionomer content in the catalyst layer of polymer electrolyte membrane fuel cell (PEMFC): effects on diffusion and performance. Int. J. Hydrog. Energy 36, 2221–2229 (2011).

    Article  CAS  Google Scholar 

  100. Jiao, K. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Farhat, T. R. & Hammond, P. T. Designing a new generation of proton‐exchange membranes using layer‐by‐layer deposition of polyelectrolytes. Adv. Funct. Mater. 15, 945–954 (2005).

    Article  CAS  Google Scholar 

  102. Li, H. et al. Designing proton exchange membrane fuel cells with high specific power density. J. Mater. Chem. A 11, 17373 (2023).

    Article  CAS  Google Scholar 

  103. Zhang, G. et al. Porous flow field for next-generation proton exchange membrane fuel cells: materials, characterization, design, and challenges. Chem. Rev. 123, 989–1039 (2022).

    Article  PubMed  Google Scholar 

  104. Miyake, J. et al. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells. Sci. Adv. 3, eaao0476 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sato, K., Kajita, T. & Noro, A. Synthesis of a cross-linked polymer electrolyte membrane with an ultra-high density of sulfonic acid groups. ACS Appl. Polym. Mater. 5, 3480–3488 (2023).

    Article  CAS  Google Scholar 

  106. Souzy, R. et al. Proton‐conducting polymer electrolyte membranes based on fluoropolymers incorporating perfluorovinyl ether sulfonic acids and fluoroalkenes: synthesis and characterization. Fuel Cell 5, 383–397 (2005).

    Article  CAS  Google Scholar 

  107. Wang, Y. et al. Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy AI 1, 100014 (2020).

    Article  Google Scholar 

  108. Legala, A., Zhao, J. & Li, X. Machine learning modeling for proton exchange membrane fuel cell performance. Energy AI 10, 100183 (2022).

    Article  Google Scholar 

  109. Mehrpooya, M., Ghorbani, B., Jafari, B., Aghbashlo, M. & Pouriman, M. Modeling of a single cell micro proton exchange membrane fuel cell by a new hybrid neural network method. Therm. Sci. Eng. Prog. 7, 8–19 (2018).

    Article  Google Scholar 

  110. Dekel, D. R. Review of cell performance in anion exchange membrane fuel cells. J. Power Sources 375, 158–169 (2018).

    Article  CAS  Google Scholar 

  111. Gottesfeld, S. et al. Anion exchange membrane fuel cells: current status and remaining challenges. J. Power Sources 375, 170–184 (2018).

    Article  CAS  Google Scholar 

  112. Goodenough, J. B. How we made the Li-ion rechargeable battery. Nat. Electron. 1, 204 (2018).

    Article  Google Scholar 

  113. Zhang, H., Zhou, M.-Y., Lin, C.-E. & Zhu, B.-K. Progress in polymeric separators for lithium ion batteries. RSC Adv. 5, 89848 (2015).

    Article  CAS  Google Scholar 

  114. Goriparti, S. et al. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014).

    Article  CAS  Google Scholar 

  115. Nitta, N. & Yushin, G. High‐capacity anode materials for lithium‐ion batteries: choice of elements and structures for active particles. Part. Part. Syst. Charact. 31, 317–336 (2014).

    Article  CAS  Google Scholar 

  116. Liu, J. et al. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater. Today 43, 132–165 (2021).

    Article  CAS  Google Scholar 

  117. Mohamed, N. & Allam, N. K. Recent advances in the design of cathode materials for Li-ion batteries. RSC Adv. 10, 21662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 195, 939–954 (2010).

    Article  CAS  Google Scholar 

  119. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Matter 22, 587–603 (2010).

    Article  CAS  Google Scholar 

  120. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Gupta, S., Gupta, A. K. & Pandey, B. K. First-principle study on ionic pair dissociation in PEO–PVP–NaClO4 blend for solid polymer electrolyte. Polym. Bull. 79, 4999–5018 (2022).

    Article  CAS  Google Scholar 

  123. Sun, P., Bisschop, R., Niu, H. & Huang, X. A review of battery fires in electric vehicles. Fire Technol. 56, 1361–1410 (2020).

    Article  Google Scholar 

  124. McCune Law Group. Tesla model S and model X lithium-ion battery fires. McCune Law Group https://mccunewright.com/practice-areas/class-actions/tesla-model-s-and-model-x-lithium-ion-battery-fires/ (2023).

  125. Irfan, U. How lithium ion batteries grounded the Dreamliner. Sci. Am. https://www.scientificamerican.com/article/how-lithium-ion-batteries-grounded-the-dreamliner/ (2014).

  126. Fenton, D. E., Parker, J. M. & Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973).

    Article  CAS  Google Scholar 

  127. Armand, M., Chabagno, J. M. & Duclot, M. Polymeric solid electrolytes. In 2nd International Meeting on Solid Electrolytes Abstract 6.5.1 (University of St. Andrews, 1978).

  128. Webb, M. A. et al. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS Cent. Sci. 1, 198–205 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gudla, H., Zhang, C. & Brandell, D. Effects of solvent polarity on Li-ion diffusion in polymer electrolytes: an all-atom molecular dynamics study with charge scaling. J. Phys. Chem. B 124, 8124–8131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Snyder, R. L. et al. Improved Li+ transport in polyacetal electrolytes: conductivity and current fraction in a series of polymers. ACS Energy Lett. 6, 1886–1891 (2021).

    Article  CAS  Google Scholar 

  131. Halat, D. M. et al. Modifying Li+ and anion diffusivities in polyacetal electrolytes: a pulsed-field-gradient NMR study of ion self-diffusion. Chem. Matter 33, 4915–4926 (2021).

    Article  CAS  Google Scholar 

  132. Sun, B., Mindemark, J., Edstrom, K. & Brandell, D. Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ion. 262, 738–742 (2014).

    Article  CAS  Google Scholar 

  133. Wu, I. D. & Chang, F.-C. Determination of the interaction within polyester-based solid polymer electrolyte using FTIR spectroscopy. Polymer 48, 989–996 (2007).

    Article  CAS  Google Scholar 

  134. Yoon, H.-K., Chung, W.-S. & Jo, N.-J. Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3. Electrochim. Acta 50, 289–293 (2004).

    Article  CAS  Google Scholar 

  135. Kanbara, T. et al. New lithium salt ionic conductor using poly(vinyl alcohol) matrix. Chem. Lett. 18, 1913–1916 (1989).

    Article  Google Scholar 

  136. Tan, C. G., Siew, W. O., Pang, W. L., Osman, Z. & Chew, K. W. The effects of ceramic fillers on the PMMA-based polymer electrolyte systems. Ionics 13, 361–364 (2007).

    Article  CAS  Google Scholar 

  137. Bhatt, C., Swaroop, R., Arya, A. & Sharma, A. L. Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6. J. Mater. Sci. Eng. B 5, 418–434 (2015).

    CAS  Google Scholar 

  138. Rajendran, S., Sivakumar, M. & Subadevi, R. Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater. Lett. 58, 641–649 (2004).

    Article  CAS  Google Scholar 

  139. Khajeh, A. et al. Early prediction of ion transport properties in solid polymer electrolytes using machine learning and system behavior-based descriptors of molecular dynamics simulations. Macromolecules 56, 4787–4799 (2023).

    Article  CAS  Google Scholar 

  140. Shen, X. et al. Synthesis and molecular dynamic simulation of a novel single ion conducting gel polymer electrolyte for lithium-ion batteries. Polymer 201, 122568 (2020).

    Article  CAS  Google Scholar 

  141. Dave, A. et al. Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling. Nat. Commun. 13, 5454 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wheatle, B. K., Fuentes, E. F., Lynd, N. A. & Ganesan, V. Design of polymer blend electrolytes through a machine learning approach. Macromolecules 53, 9449–9459 (2020).

    Article  CAS  Google Scholar 

  143. Bradford, G. et al. Chemistry-informed machine learning for polymer electrolyte discovery. ACS Cent. Sci. 9, 206–216 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hatakeyama-Sato, K., Uchima, Y., Kashikawa, T., Kimura, K. & Oyaizu, K. Extracting higher-conductivity designs for solid polymer electrolytes by quantum-inspired annealing. RSC Adv. 13, 14651–14659 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. High-throughput polymer design — molecular dynamics. htpmd https://www.htpmd.matr.io/ (2023).

  146. Hatakeyama-Sato, K., Tezuka, T., Umeki, M. & Oyaizu, K. AI-assisted exploration of superionic glass-type Li+ conductors with aromatic structures. J. Am. Chem. Soc. 142, 3301–3305 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Budd, P. M. et al. Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1. J. Membr. Sci. 325, 851–860 (2008).

    Article  CAS  Google Scholar 

  148. Yang, Z. et al. De novo design of polymer electrolytes with high conductivity using GPT-based and diffusion-based generative models. Preprint at https://doi.org/10.48550/arXiv.2312.06470 (2023).

  149. Lei, X. et al. A self-improvable polymer discovery framework based on conditional generative model. Preprint at https://doi.org/10.48550/arXiv.2312.04013 (2023).

  150. Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nature 16, 289–297 (2017).

    Article  CAS  Google Scholar 

  151. Yampolskii, Y. Polymeric gas separation membranes. Macromolecules 45, 3298–3311 (2012).

    Article  CAS  Google Scholar 

  152. Merkel, T. C. et al. Ultrapermeable, reverse-selective nanocomposite membranes. Science 296, 519–522 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Freeman, B. D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32, 375–380 (1999).

    Article  CAS  Google Scholar 

  154. Barnett, J. W. et al. Designing exceptional gas-separation polymer membranes using machine learning. Sci. Adv. 6, eaaz4301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang, J., Tao, L., He, J., McCutcheon, J. R. & Li, Y. Machine learning enables interpretable discovery of innovative polymers for gas separation membranes. Sci. Adv. 8, eabn9545 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Park, H. B. et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318, 254–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    Article  CAS  Google Scholar 

  158. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2006).

    Article  Google Scholar 

  159. Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991).

    Article  CAS  Google Scholar 

  160. Budd, P. M. Polymer with intrinsic microporosity (PIM). In Encyclopedia of Membranes, 1606–1607 (Springer, 2016).

  161. Sridhar, S., Veerapur, R. S., Patil, M. B., Gudasi, K. B. & Aminabhavi, T. M. Matrimid polyimide membranes for the separation of carbon dioxide from methane. J. Appl. Polym. Sci. 106, 1585–1594 (2007).

    Article  CAS  Google Scholar 

  162. Yong, W. F., Li, F. Y., Chung, T. S. & Tong, Y. W. Highly permeable chemically modified PIM-1/matrimid membranes for green hydrogen purification. J. Mater. Chem. A 1, 13914–13925 (2013).

    Article  CAS  Google Scholar 

  163. Giro, R. et al. AI powered, automated discovery of polymer membranes for carbon capture. npj Comput. Mater. 9, 133 (2023).

    Article  Google Scholar 

  164. Gurnani, R., Kuenneth, C., Toland, A. & Ramprasad, R. Polymer informatics at scale with multitask graph neural networks. Chem. Mater. 35, 1560–1567 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Talukder, M. J., Alshami, A. S., Tayyebi, A., Ismail, N. & Yu, X. Membrane science meets machine learning: future and potential use in assisting membrane material design and fabrication. Sep. Purif. Rev. https://doi.org/10.1080/15422119.2023.2212295 (2023).

    Article  Google Scholar 

  166. Yuan, Q. et al. Imputation of missing gas permeability data for polymer membranes using machine learning. J. Membr. Sci. 627, 119207 (2021).

    Article  CAS  Google Scholar 

  167. Park, J. Y. & Paul, D. R. Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method. J. Membr. Sci. 125, 23–39 (1997).

    Article  CAS  Google Scholar 

  168. Geens, J., De Witte, B. & Van der Bruggen, B. Removal of API’s (active pharmaceutical ingredients) from organic solvents by nanofiltration. Sep. Sci. Technol. 42, 2435–2449 (2007).

    Article  CAS  Google Scholar 

  169. Hu, J. et al. Artificial intelligence for performance prediction of organic solvent nanofiltration membranes. J. Membr. Sci. 619, 118513 (2021).

    Article  CAS  Google Scholar 

  170. Goebel, R. & Skiborowski, M. Machine-based learning of predictive models in organic solvent nanofiltration: pure and mixed solvent flux. Sep. Purif. Technol. 237, 116363 (2020).

    Article  CAS  Google Scholar 

  171. Goebel, R., Glaser, T. & Skiborowski, M. Machine-based learning of predictive models in organic solvent nanofiltration: solute rejection in pure and mixed solvents. Sep. Purif. Technol. 248, 117046 (2020).

    Article  CAS  Google Scholar 

  172. Ignacz, G. & Szekely, G. Deep learning meets quantitative structure–activity relationship (QSAR) for leveraging structure-based prediction of solute rejection in organic solvent nanofiltration. J. Membr. Sci. 646, 120268 (2022).

    Article  CAS  Google Scholar 

  173. Lee, Y. J. et al. Data-driven predictions of complex organic mixture permeation in polymer membranes. Nat. Commun. 14, 4931 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mathias, R. et al. Framework for predicting the fractionation of complex liquid feeds via polymer membranes. J. Membr. Sci. 640, 119767 (2021).

    Article  CAS  Google Scholar 

  175. Thompson, K. A. et al. N-Aryl–linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science 369, 310–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Inzelt, G. Conducting Polymers: A New Era in Electrochemistry (Springer, 2012).

  177. Chiang, C. K. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098 (1977).

    Article  CAS  Google Scholar 

  178. Swager, T. M. 50th anniversary perspective: conducting/semiconducting conjugated polymers. A personal perspective on the past and the future. Macromolecules 50, 4867–4886 (2017).

    Article  CAS  Google Scholar 

  179. Shirakawa, H. & Ikeda, S. Infrared spectra of poly(acetylene). Polym. J. 2, 231–244 (1971).

    Article  CAS  Google Scholar 

  180. Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977).

    Article  Google Scholar 

  181. Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  CAS  Google Scholar 

  182. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Article  CAS  Google Scholar 

  183. Yang, J., Zhao, Z., Wang, S., Guo, Y. & Liu, Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem 4, 2748–2785 (2018).

    Article  CAS  Google Scholar 

  184. Kim, M. et al. Donor–acceptor‐conjugated polymer for high‐performance organic field‐effect transistors: a progress report. Adv. Funct. Mater. 30, 1904545 (2020).

    Article  CAS  Google Scholar 

  185. Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007).

    Article  PubMed  Google Scholar 

  186. Cheng, Y. J., Yang, S. H. & Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Guo, B., Glavas, L. & Albertsson, A. C. Biodegradable and electrically conducting polymers for biomedical applications. Prog. Polym. Sci. 38, 1263–1286 (2013).

    Article  CAS  Google Scholar 

  188. Nezakati, T., Seifalian, A., Tan, A. & Seifalian, A. M. Conductive polymers: opportunities and challenges in biomedical applications. Chem. Rev. 118, 6766–6843 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Kaur, G., Adhikari, R., Cass, P., Bown, M. & Gunatillake, P. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5, 37553–37567 (2015).

    Article  CAS  Google Scholar 

  190. Guimard, N. K., Gomez, N. & Schmidt, C. E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32, 876–921 (2007).

    Article  CAS  Google Scholar 

  191. Sahu, H. et al. An informatics approach for designing conducting polymers. ACS Appl. Mater. Interfaces 13, 53314–53322 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Shetty, P. et al. A general-purpose material property data extraction pipeline from large polymer corpora using natural language processing. npj Comput. Mater. 9, 52 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Chinthapalli, R. et al. Biobased building blocks and polymers — global capacities, production and trends. Ind. Biotechnol. 15, 237–241 (2018).

    Article  Google Scholar 

  194. MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Ritchie, H. & Roser, M. Plastic pollution. Our World in Data https://ourworldindata.org/plastic-pollution (2018).

  196. Thushari, G. G. N. & Senevirathna, J. D. M. Plastic pollution in the marine environment. Heliyon 6, e04709 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rainieri, S. & Barranco, A. Microplastics, a food safety issue? Trends Food Sci. Technol. 84, 55–57 (2019).

    Article  CAS  Google Scholar 

  198. Circular claims fall flat again. Greenpeace https://www.greenpeace.org/usa/wp-content/uploads/2022/10/GPUS_FinalReport_2022.pdf (2022).

  199. Coates, G. W. & Getzler, Y. D. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

  200. Lange, J.-P. Sustainable development: efficiency and recycling in chemicals manufacturing. Green Chem. 4, 546–550 (2002).

    Article  CAS  Google Scholar 

  201. Lange, J.-P. Managing plastic waste — sorting, recycling, disposal, and product redesign. ACS Sustain. Chem. Eng. 9, 15722–15738 (2021).

    Article  CAS  Google Scholar 

  202. Rosenboom, J. G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Johansen, M. R., Christensen, T. B., Ramos, T. M. & Syberg, K. A review of the plastic value chain from a circular economy perspective. J. Environ. Manag. 302, 113975 (2022).

    Article  Google Scholar 

  204. Kakadellis, S. & Rosetto, G. Achieving a circular bioeconomy for plastics. Science 373, 49–50 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Nadda, A. K., Sharma, S. & Bhat, R. Biopolymers: Recent Updates, Challenges and Opportunities (Springer Nature, 2022).

  206. Sofi, H. S. et al. Regenerated cellulose nanofibers from cellulose acetate: incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Mater. Sci. Eng. C 118, 111547 (2021).

    Article  CAS  Google Scholar 

  207. Díaz-Montes, E. & Castro-Muñoz, R. Trends in chitosan as a primary biopolymer for functional films and coatings manufacture for food and natural products. Polymers 13, 767 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Gupta, S. et al. in Biopolymers: Recent Updates, Challenges and Opportunities 173–198 (Springer, 2022).

  209. Ilyas, R. A. et al. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scale. J. Mater. Res. Technol. 8, 2753–2766 (2019).

    Article  CAS  Google Scholar 

  210. Mohamed, M. A. et al. Regenerated cellulose membrane as bio-template for in-situ growth of visible-light driven C-modified mesoporous titania. Carbohydr. Polym. 146, 166–173 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Hernández, N., Williams, R. C. & Cochran, E. W. The battle for the ‘green’ polymer. Different approaches for biopolymer synthesis: bioadvantaged vs. bioreplacement. Org. Biomol. Chem. 12, 2834–2849 (2014).

    Article  PubMed  Google Scholar 

  212. Ghozali, M., Triwulandari, E. & Restu, W. K. in Biopolymers: Recent Updates, Challenges and Opportunities 289 (Springer, 2022).

  213. Ranjbar, Z., Ranjbar, B. & Foroughirad, S. in Biopolymers: Recent Updates, Challenges and Opportunities 271–288 (Springer, 2022).

  214. Rahman, M. Z. et al. Advanced biopolymers for automobile and aviation engineering applications. J. Polym. Res. 30, 106 (2023).

    Article  CAS  Google Scholar 

  215. Rao, S. S., Athmika, & Rekha, P. D. in Biopolymers: Recent Updates, Challenges and Opportunities, 223–244 (Springer, 2022).

  216. Palmisano, A. C. & Pettigrew, C. A. Biodegradability of plastics. Bioscience 42, 680–685 (1992).

    Article  Google Scholar 

  217. Nissa, R. C., Fikriyyah, A. K., Abdullah, A. H. D. & Pudjiraharti, S. Preliminary study of biodegradability of starch-based bioplastics using ASTM G21-70, dip-hanging, and soil burial test methods. IOP Conf. Ser. Earth Environ. Sci. 277, 012007 (2019).

    Article  Google Scholar 

  218. Tokiwa, Y., Calabia, B. P., Ugwu, C. U. & Aiba, S. Biodegradability of plastics. Int. J. Mol. Sci. 10, 3722–3742 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Kong, S., Lv, X., Peng, D. & Chen, M. A new test method for biodegradability of plastics in sediment. Environ. Technol. Innov. 21, 101217 (2021).

    Article  CAS  Google Scholar 

  220. Fransen, K. A. et al. High-throughput experimentation for discovery of biodegradable polyesters. Proc. Natl Acad. Sci. USA 120, e2220021120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Kosseva, M. R. & Rusbandi, E. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int. J. Biol. Macromol. 107, 762–778 (2018).

    Article  CAS  PubMed  Google Scholar 

  222. Sabbagh, F. & Muhamad, I. I. Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy. Renew. Sust. Energ. Rev. 72, 95–104 (2017).

    Article  CAS  Google Scholar 

  223. Bejagam, K. K., Iverson, C. N., Marrone, B. L. & Pilania, G. Molecular dynamics simulations for glass transition temperature predictions of polyhydroxyalkanoate biopolymers. Phys. Chem. Chem. Phys. 22, 17880 (2020).

    Article  CAS  PubMed  Google Scholar 

  224. Bejagam, K. K., Iverson, C. N., Marrone, B. L. & Pilania, G. Composition and configuration dependence of glass-transition temperature in binary copolymers and blends of polyhydroxyalkanoate biopolymers. Macromolecules 54, 5618–5628 (2021).

    Article  CAS  Google Scholar 

  225. Bejagam, K. K. et al. Predicting the mechanical response of polyhydroxyalkanoate biopolymers using molecular dynamics simulations. Polymers 14, 345 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Alias, N. H. et al. in Biopolymers: Recent Updates, Challenges and Opportunities 373–389 (Springer, 2022).

  227. Chavez, B. A., Raghavan, V. & Tartakovsky, B. A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies. RSC Adv. 12, 16105–16118 (2022).

    Article  Google Scholar 

  228. Ortelli, S. et al. in Factories of the Future: The Italian Flagship Initiative 131–148 (Springer, 2019).

  229. Olsén, P., Odelius, K. & Albertsson, A.-C. Thermodynamic presynthetic considerations for ring-opening polymerization. Biomacromolecules 17, 699–709 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Dubois, P., Coulembier, O. & Raquez, J.-M. Handbook of Ring-Opening Polymerization (Wiley Online Library, 2009).

  231. Bash, P. A., Ho, L. L., MacKerell, A. D., Levine, D. & Hallstrom, P. Progress toward chemical accuracy in the computer simulation of condensed phase reactions. Proc. Natl Acad. Sci. USA 93, 3698–3703 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Astrom, B. T. Manufacturing of Polymer Composites (CRC, 1997).

  233. Irving, P. E. & Soutis, C. Polymer Composites in the Aerospace Industry (Woodhead, 2019).

  234. He, X. & Wang, Y. Recent advances in the rational design of thermal conductive polymer composites. Ind. Eng. Chem. Res. 60, 1137–1154 (2021).

    Article  CAS  Google Scholar 

  235. Liu, G., Xiong, Y. & Zhou, L. Additive manufacturing of continuous fiber reinforced polymer composites: design opportunities and novel applications. Compos. Commun. 27, 100907 (2021).

    Article  Google Scholar 

  236. Zhang, F., Feng, Y. & Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 142, 100580 (2020).

    Article  Google Scholar 

  237. Hu, J. et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces 9, 13544–13553 (2017).

    Article  CAS  PubMed  Google Scholar 

  238. Xie, L. & Zhu, Y. Tune the phase morphology to design conductive polymer composites: a review. Polym. Compos. 39, 2985–2996 (2018).

    Article  CAS  Google Scholar 

  239. Cao, G., Cai, S., Zhang, H., Chen, Y. & Tian, Y. High-performance conductive polymer composites by incorporation of polyaniline-wrapped halloysite nanotubes and silver microflakes. ACS Appl. Polym. Mater. 4, 3352–3360 (2022).

    Article  CAS  Google Scholar 

  240. Shukla, S. S., Kuenneth, C. & Ramprasad, R. Polymer informatics beyond homopolymers. MRS Bull. 49, 17–24 (2024).

    Article  Google Scholar 

  241. Cassola, S., Duhovic, M., Schmidt, T. & May, D. Machine learning for polymer composites process simulation — a review. Compos. B Eng. 246, 110208 (2022).

    Article  CAS  Google Scholar 

  242. Sharma, A., Mukhopadhyay, T., Rangappa, S. M., Siengchin, S. & Kushvaha, V. Advances in computational intelligence of polymer composite materials: machine learning assisted modeling, analysis and design. Arch. Comput. Methods Eng. 29, 3341 (2022).

    Article  Google Scholar 

  243. Shetty, P. & Ramprasad, R. Machine-guided polymer knowledge extraction using natural language processing: the example of named entity normalization. J. Chem. Inf. Model. 61, 5377–5385 (2021).

    Article  CAS  PubMed  Google Scholar 

  244. Shetty, P. & Ramprasad, R. Automated knowledge extraction from polymer literature using natural language processing. Iscience 24, 101922 (2021).

    Article  CAS  PubMed  Google Scholar 

  245. Devlin, J., Chang, M.W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. Preprint at https://doi.org/10.48550/arXiv.1810.04805 (2018).

  246. Swain, M. C. & Cole, J. M. ChemDataExtractor: a toolkit for automated extraction of chemical information from the scientific literature. J. Chem. Inf. Model. 56, 1894–1904 (2016).

    Article  CAS  PubMed  Google Scholar 

  247. Rocktäschel, T., Weidlich, M. & Leser, U. ChemSpot: a hybrid system for chemical named entity recognition. Bioinformatics 28, 1633–1640 (2012).

    Article  PubMed  Google Scholar 

  248. Hawizy, L., Jessop, D. M., Adams, N. & Murray-Rust, P. ChemicalTagger: a tool for semantic text-mining in chemistry. J. Cheminform. https://doi.org/10.1186/1758-2946-3-17 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Wang, Z. et al. Dataset of solution-based inorganic materials synthesis procedures extracted from the scientific literature. Sci. Data 9, 231 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Kuniyoshi, F., Ozawa, J. & Miwa, M. Analyzing research trends in inorganic materials literature using NLP. In Proc. Joint European Conference on Machine Learning and Knowledge Discovery in Databases 319–334 (Springer, 2021).

  251. Olivetti, E. A. et al. Data-driven materials research enabled by natural language processing and information extraction. Appl. Phys. Rev. 7, 041317 (2020).

    Article  CAS  Google Scholar 

  252. Öztürk, H., Özgür, A., Schwaller, P., Laino, T. & Ozkirimli, E. Exploring chemical space using natural language processing methodologies for drug discovery. Drug. Discov. Today 25, 689–705 (2020).

    Article  PubMed  Google Scholar 

  253. Oka, H., Yoshizawa, A., Shindo, H., Matsumoto, Y. & Ishii, M. Machine extraction of polymer data from tables using XML versions of scientific articles. Sci. Technol. Adv. Mater. Methods 1, 12–23 (2021).

    Google Scholar 

  254. Gu, Y. et al. Domain-specific language model pretraining for biomedical natural language processing. ACM Trans. Comput. Healthc. 3, 1–23 (2021).

    Article  CAS  Google Scholar 

  255. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Model. 28, 31–36 (1988).

    CAS  Google Scholar 

  256. Patra, A. et al. A multi-fidelity information-fusion approach to machine learn and predict polymer bandgap. Comput. Mater. Sci. 172, 109286 (2020).

    Article  CAS  Google Scholar 

  257. Pilania, G., Gubernatis, J. E. & Lookman, T. Multi-fidelity machine learning models for accurate bandgap predictions of solids. Comput. Mater. Sci. 129, 156–163 (2017).

    Article  CAS  Google Scholar 

  258. Meng, X., Babaee, H. & Karniadakis, G. E. Multi-fidelity Bayesian neural networks: algorithms and applications. J. Comput. Phys. 438, 110361 (2021).

    Article  Google Scholar 

  259. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  260. Curtarolo, S. et al. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012).

    Article  CAS  Google Scholar 

  261. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).

    Article  CAS  Google Scholar 

  262. Draxl, C. & Scheffler, M. The NOMAD laboratory: from data sharing to artificial intelligence. J. Phys. Mater. 2, 036001 (2019).

    Article  CAS  Google Scholar 

  263. Draxl, C. & Scheffler, M. NOMAD: the FAIR concept for big data-driven materials science. MRS Bull. 43, 676–682 (2018).

    Article  Google Scholar 

  264. Hayashi, Y., Shiomi, J., Morikawa, J. & Yoshida, R. RadonPy: automated physical property calculation using all-atom classical molecular dynamics simulations for polymer informatics. npj Comput. Mater. 8, 222 (2022).

    Article  CAS  Google Scholar 

  265. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article  Google Scholar 

  266. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

    Article  Google Scholar 

  267. Ji, W., Qiu, W., Shi, Z., Pan, S. & Deng, S. Stiff-PINN: physics-informed neural network for stiff chemical kinetics. J. Phys. Chem. A 125, 8098–8106 (2021).

    Article  CAS  PubMed  Google Scholar 

  268. Faroughi, S. A. et al. Physics-guided, physics-informed, and physics-encoded neural networks and operators in scientific computing: fluid and solid mechanics. J. Comput. Inf. Sci. Eng. 24, 040802 (2024).

    Article  Google Scholar 

  269. Otsuka, S., Kuwajima, I., Hosoya, J., Xu, Y. & Yamazaki, M. PoLyInfo: Polymer database for polymeric materials design. In 2011 International Conference on Emerging Intelligent Data and Web Technologies 22–29 (IEEE, 2011).

  270. Ma, R. & Luo, T. PI1M: a benchmark database for polymer informatics. J. Chem. Inf. Model. 60, 4684–4690 (2020).

    Article  CAS  PubMed  Google Scholar 

  271. Kamal, D. et al. Computable bulk and interfacial electronic structure features as proxies for dielectric breakdown of polymers. ACS Appl. Mater. Interfaces 12, 37182 (2020).

    Article  CAS  PubMed  Google Scholar 

  272. Xie, T. et al. A cloud platform for sharing and automated analysis of raw data from high throughput polymer MD simulations. APL Mach. Learn. 1, 046108 (2023).

    Article  Google Scholar 

  273. Walsh, D. J. et al. Community Resource for Innovation in Polymer Technology (CRIPT): a scalable polymer material data structure. ACS Cent. Sci. 9, 330–338 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Drefahl, A. CurlySMILES: a chemical language to customize and annotate encodings of molecular and nanodevice structures. J. Cheminf. 3, 1 (2011).

    Article  CAS  Google Scholar 

  275. Lin, T. S. et al. BigSMILES: a structurally-based line notation for describing macromolecules. ACS Cent. Sci. 5, 1523–1531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Schneider, L., Walsh, D., Olsen, B. & de Pablo, J. Generative BigSMILES: an extension for polymer informatics, computer simulations & ML/AI. Digit. Discov. 3, 51–61 (2024).

    Article  Google Scholar 

  277. Lin, T. S. et al. PolyDAT: a generic data schema for polymer characterization. J. Chem. Inf. Model. 61, 1150–1163 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from several grants from the Office of Naval Research, the National Science Foundation and Toyota Research Institute, and a grant from the Department of Energy via the Center for Understanding and Controlling Accelerated and Gradual Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center under award no. DE-SC0012577.

Author information

Authors and Affiliations

Authors

Contributions

R.R. conceived and outlined the general manuscript. H.T. and R.R. wrote the initial manuscript with contributions from R.G., C.K., G.P., H.-K.K. and R.P.L. All authors edited the manuscript and figures and approved the final version for submission.

Corresponding author

Correspondence to Rampi Ramprasad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, H., Gurnani, R., Kim, C. et al. Design of functional and sustainable polymers assisted by artificial intelligence. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00708-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00708-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing