Abstract
Artificial intelligence (AI)-based methods continue to make inroads into accelerated materials design and development. Here, we review AI-enabled advances made in the subfield of polymer informatics, with a particular focus on the design of application-specific practical polymeric materials. We consider exemplar design attempts within a few critical and emerging application spaces, including materials designs for storing, producing and conserving energy, and those that can prepare us for a sustainable economy powered by recyclable and/or biodegradable polymers. AI-powered workflows help to efficiently search the staggeringly large chemical and configurational space of materials, using modern machine-learning (ML) algorithms to solve ‘forward’ and ‘inverse’ materials design problems. A theme explored throughout this Review is a practical informatics-based design protocol that involves creating a set of application-specific target property criteria, building ML model predictors for those relevant target properties, enumerating or generating a tangible population of viable polymers, and selecting candidates that meet design recommendations. The protocol is demonstrated for several energy- and sustainability-related applications. Finally, we offer our outlook on the lingering obstacles that must be overcome to achieve widespread adoption of informatics-driven protocols in industrial-scale materials development.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Staudinger, H. Über polymerisation. Ber. Dtsch. Chem. Ges. 53, 1073–1085 (1920).
Frey, H. & Johann, T. Celebrating 100 years of ‘polymer science’: Hermann Staudinger’s 1920 manifesto. Polym. Chem. 11, 8–14 (2020).
Mülhaupt, R. Hermann Staudinger and the origin of macromolecular chemistry. Angew. Chem. Int. Ed. 43, 1054–1063 (2004).
Muench, S. et al. Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016).
Hubbell, J. A. Biomaterials in tissue engineering. Nat. Biotech. 13, 565–576 (1995).
Hager, M. D., Bode, S., Weber, C. & Schubert, U. S. Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 49–50, 3–33 (2015).
Huan, T. D. et al. Advanced polymeric dielectrics for high energy density applications. Prog. Mater. Sci. 83, 236–269 (2016).
Pan, M., Pan, C., Li, C. & Zhao, J. A review of membranes in proton exchange membrane fuel cells: transport phenomena, performance and durability. Renew. Sust. Energ. Rev. 141, 110771 (2021).
Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M. & Wang, G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019).
Baker, R. W. & Low, B. T. Gas separation membrane materials: a perspective. Macromolecules 47, 6999–7013 (2014).
Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010).
Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).
Hallinan, D. T. Jr & Balsara, N. P. Polymer electrolytes. Ann. Rev. Mater. Res. 43, 503–525 (2013).
Batra, R., Song, L. & Ramprasad, R. Emerging materials intelligence ecosystems propelled by machine learning. Nat. Rev. Matter 6, 655–678 (2021).
Artificial Intelligence in Chemical and Materials Science Marker report. Future Data Stats https://www.futuredatastats.com/artificial-intelligence-in-chemical-and-materials-science-market (2023).
Ting, J. M. & Lipscomb, C. E. Launching a materials informatics initiative for industrial applications in materials science, chemistry, and engineering. Pure Appl. Chem. 94, 637 (2022).
Chen, L. et al. Polymer informatics: current status and critical next steps. Mater. Sci. Eng. R Rep. 144, 100595 (2021).
Audus, D. J. & de Pablo, J. J. Polymer informatics: opportunities and challenges. ACS Macro Lett. 6, 1078–1082 (2017).
Sha, W. et al. Machine learning in polymer informatics. InfoMat 3, 353–361 (2021).
Mannodi-Kanakkithodi, A. et al. Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond. Mater. Today 21, 785–796 (2018).
Cencer, M. M., Moore, J. S. & Assary, R. S. Machine learning for polymeric materials: an introduction. Polym. Int. 71, 537–542 (2022).
Hatakeyama-Sato, K. Recent advances and challenges in experiment-oriented polymer informatics. Polym. J. 55, 117–131 (2023).
Fedors, R. F. A method for estimating both the solubility parameters and molar volumes of liquids. Poly. Eng. Sci. 14, 147–154 (1974).
Kim, C., Chandrasekaran, A., Huan, T. D., Das, D. & Ramprasad, R. Polymer Genome: a data-powered polymer informatics platform for property predictions. J. Phys. Chem. C. 122, 17575–17585 (2018).
Tran, H. et al. Machine-learning predictions of polymer properties with Polymer Genome. J. Appl. Phys. 128, 171104 (2020).
Zhao, Y., Mulder, R. J., Houshyar, S. & Le, T. C. A review on the application of molecular descriptors and machine learning in polymer design. Polym. Chem. 14, 3325–3346 (2023).
Stuart, S., Watchorn, J. & Gu, F. X. Sizing up feature descriptors for macromolecular machine learning with polymeric biomaterials. npj Comput. Mater. 9, 102 (2023).
Xu, C., Wang, Y. & Barati Farimani, A. TransPolymer: a transformer-based language model for polymer property predictions. npj Comput. Mater. 9, 64 (2023).
Hatakeyama-Sato, K., Watanabe, S., Yamane, N., Igarashi, Y. & Oyaizu, K. Using GPT-4 in parameter selection of polymer informatics: improving predictive accuracy amidst data scarcity and ‘Ugly Duckling’ dilemma. Digit. Disc. 2, 1548–1557 (2023).
Gurnani, R. et al. polyG2G: a novel machine learning algorithm applied to the generative design of polymer dielectrics. Chem. Mater. 33, 7008–7016 (2021).
Aldeghi, M. & Coley, C. W. A graph representation of molecular ensembles for polymer property prediction. Chem. Sci. 13, 10486 (2022).
Queen, O. et al. Polymer graph neural networks for multitask property learning. npj Comput. Mater. 9, 90 (2023).
Kuenneth, C. & Ramprasad, R. polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics. Nat. Commun. 14, 4099 (2023).
Kuenneth, C. et al. Polymer informatics with multi-task learning. Patterns 2, 100238 (2021).
Huan, T. D., Mannodi-Kanakkithodi, A. & Ramprasad, R. Accelerated materials property predictions and design using motif-based fingerprints. Phys. Rev. B 92, 014106 (2015).
Mannodi-Kanakkithodi, A., Pilania, G., Huan, T. D., Lookman, T. & Ramprasad, R. Machine learning strategy for accelerated design of polymer dielectrics. Sci. Rep. 6, 20952 (2016).
Sattari, K., Xie, Y. & Lin, J. Data-driven algorithms for inverse design of polymers. Soft Matter 17, 7607–7622 (2021).
Afzal, M. A. F., Haghighatlari, M., Ganesh, S. P., Cheng, C. & Hachmann, J. Accelerated discovery of high-refractive-index polyimides via first-principles molecular modeling, virtual high-throughput screening, and data mining. J. Phys. Chem. C 123, 14610 (2019).
Noh, J., Gu, G. H., Kim, S. & Jung, Y. Machine-enabled inverse design of inorganic solid materials: promises and challenges. Chem. Sci. 11, 4871–4881 (2020).
Patra, T. K., Loeffler, T. D. & Sankaranarayanan, S. K. Accelerating copolymer inverse design using Monte Carlo tree search. Nanoscale 12, 23653–23662 (2020).
Park, N. H. et al. A recommender system for inverse design of polycarbonates and polyesters. Macromolecules 53, 10847–10854 (2020).
Wang, Y. et al. Toward designing highly conductive polymer electrolytes by machine learning assisted coarse-grained molecular dynamics. Chem. Matter 32, 4144–4151 (2020).
Wu, S. et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. npj Comput. Mater. 5, 66 (2019).
Khadilkar, M. R., Paradiso, S., Delaney, K. T. & Fredrickson, G. H. Inverse design of bulk morphologies in multiblock polymers using particle swarm optimization. Macromolecules 50, 6702–6709 (2017).
Kumar, J. N. et al. Machine learning enables polymer cloud-point engineering via inverse design. npj Comput. Matter 5, 73 (2019).
Paradiso, S. P., Delaney, K. T. & Fredrickson, G. H. Swarm intelligence platform for multiblock polymer inverse formulation design. ACS Macro Lett. 5, 972–976 (2016).
Coli, G. M., Boattini, E., Filion, L. & Dijkstra, M. Inverse design of soft materials via a deep learning-based evolutionary strategy. Sci. Adv. 8, eabj6731 (2022).
Kim, C., Batra, R., Chen, L., Tran, H. & Ramprasad, R. Polymer design using genetic algorithm and machine learning. Comput. Mater. Sci. 186, 110067 (2021).
Batra, R. et al. Polymers for extreme conditions designed using syntax-directed variational autoencoders. Chem. Mater. 32, 10489–10500 (2020).
Jørgensen, P. B. et al. Machine learning-based screening of complex molecules for polymer solar cells. J. Chem. Phys. 148, 241735 (2018).
Kim, S., Schroeder, C. M. & Jackson, N. E. Open macromolecular genome: generative design of synthetically accessible polymers. ACS Polym. Au 3, 318–330 (2023).
Ohno, M., Hayashi, Y., Zhang, Q., Kaneko, Y. & Yoshida, R. SMiPoly: generation of synthesizable polymer virtual library using rule-based polymerization reactions. J. Chem. Inf. Model. 63, 5539–5548 (2023).
Unsleber, J. P. Accelerating reaction network explorations with automated reaction template extraction and application. J. Chem. Inf. Model. 63, 3392–3403 (2023).
Huan, T. D. et al. A polymer dataset for accelerated property prediction and design. Sci. Data 3, 160012 (2016).
Mannodi‐Kanakkithodi, A. et al. Rational co‐design of polymer dielectrics for energy storage. Adv. Mater. 28, 6277–6291 (2016).
Sharma, V. et al. Rational design of all organic polymer dielectrics. Nat. Commun. 5, 4845 (2014).
Tran, H., Shen, K. H., Shukla, S., Kwon, H. K. & Ramprasad, R. Informatics-driven selection of polymers for fuel-cell applications. J. Phys. Chem. C 127, 977–986 (2023).
Di Noto, V., Lavina, S., Giffin, G. A., Negro, E. & Scrosati, B. Polymer electrolytes: present, past and future. Electrochim. Acta 57, 4–13 (2011).
Meyer, W. H. Polymer electrolytes for lithium‐ion batteries. Adv. Mater. 10, 439–448 (1998).
Arya, A. & d Sharma, A. L. Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23, 497–540 (2017).
Barbosa, J. C., Gonçalves, R., Costa, C. M. & Lanceros-Méndez, S. Toward sustainable solid polymer electrolytes for lithium-ion batteries. ASC Omega 7, 14457 (2022).
Baker, R. W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002).
Marchetti, P., Jimenez Solomon, M. F., Szekely, G. & Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114, 10735–10806 (2014).
Shi, G. M. et al. Recent progress of organic solvent nanofiltration membranes. Prog. Polym. Sci. 123, 101470 (2021).
Semenova, S. I. Polymer membranes for hydrocarbon separation and removal. J. Membr. Sci. 231, 189–207 (2004).
Bruno, N. C. et al. Solution-processable polytriazoles from spirocyclic monomers for membrane-based hydrocarbon separations. Nat. Mater. 22, 1540–1547 (2023).
Kuenneth, C. et al. Bioplastic design using multitask deep neural networks. Commun. Mater. 3, 96 (2022).
Tran, H. et al. Toward recyclable polymers: ring-opening polymerization enthalpy from first-principles. J. Phys. Chem. Lett. 13, 4778–4785 (2022).
Stellmach, K. A. et al. Modulating polymerization thermodynamics of thiolactones through substituent and heteroatom incorporation. ACS Macro Lett. 11, 895–901 (2022).
Su, Y. L. et al. Chemically recyclable polymer system based on nucleophilic aromatic ring-opening polymerization. J. Am. Chem. Soc. 145, 13950–13956 (2023).
Toland, A. et al. Accelerated scheme to predict ring-opening polymerization enthalpy: simulation–experimental data fusion and multitask machine learning. J. Phys. Chem. A 127, 10709–10716 (2023).
Feng, M. et al. Recent advances in multilayer‐structure dielectrics for energy storage application. Adv. Sci. 8, 2102221 (2021).
Feng, Q. K. et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 122, 3820–3878 (2021).
Zha, J. W. & Dang, Z. M. High Temperature Polymer Dielectrics: Fundamentals and Applications in Power Equipment (Wiley, 2024).
Zha, J. W., Zheng, M. S., Fan, B. H. & Dang, Z. M. Polymer-based dielectrics with high permittivity for electric energy storage: a review. Nano Energy 89, 106438 (2021).
Pei, J. Y. et al. All-organic dielectric polymer films exhibiting superior electric breakdown strength and discharged energy density by adjusting the electrode–dielectric interface with an organic nano-interlayer. Energy Environ. Sci. 14, 5513–5522 (2021).
Zhu, M. X., Deng, T., Dong, L., Chen, J. M. & Dang, Z. M. Review of machine learning-driven design of polymer-based dielectrics. IET Nanodielectr 5, 24–38 (2022).
Luo, H. et al. Progress on polymer dielectrics for electrostatic capacitors application. Adv. Sci. 9, 2202438 (2022).
Li, Q. et al. High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018).
Gurnani, R. et al. AI-assisted discovery of high-temperature dielectrics for energy storage. Nat. Commun. https://doi.org/10.1038/s41467-024-50413-x (2024).
Alamri, A. et al. Improving the rotational freedom of polyetherimide: enhancement of the dielectric properties of a commodity high-temperature polymer using a structural defect. Chem. Mater. 34, 6553–6558 (2022).
Wu, C. et al. Rational design of all-organic flexible high-temperature polymer dielectrics. Matter 5, 2615–2623 (2022).
Li, Z. et al. High energy density and high efficiency all-organic polymers with enhanced dipolar polarization. J. Mater. Chem. A 7, 15026–15030 (2019).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).
Baldwin, A. F. et al. Rational design of organotin polyesters. Macromolecules 48, 2422–2428 (2015).
Baldwin, A. F. et al. Poly(dimethyltin glutarate) as a prospective material for high dielectric applications. Adv. Mater. 27, 346–351 (2015).
Chen, L., Huan, T. D., Quintero, Y. C. & Ramprasad, R. Charge injection barriers at metal/polyethylene interfaces. J. Mater. Sci. 51, 506–512 (2016).
Chen, L., Huan, T. D. & Ramprasad, R. Electronic structure of polyethylene: role of chemical, morphological and interfacial complexity. Sci. Rep. 7, 6128 (2017).
Li, X. Principles of Fuel Cells (CRC, 2005).
Gröger, O., Gasteiger, H. A. & Suchsland, J. P. Electromobility: batteries or fuel cells? J. Electrochem. Soc. 162, A2605 (2015).
Ogungbemi, E. et al. Fuel cell membranes — pros and cons. Energy 172, 155–172 (2019).
Kraytsberg, A. & Ein-Eli, Y. Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28, 7303–7330 (2014).
Kusoglu, A. & Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017).
Kudo, K., Jinnouchi, R. & Morimoto, Y. Humidity and temperature dependences of oxygen transport resistance of Nafion thin film on platinum electrode. Electrochim. Acta 209, 682–690 (2016).
Kudo, K. & Morimoto, Y. Analysis of oxygen transport resistance of Nafion thin film on Pt electrode. ECS Trans. 50, 1487 (2013).
Tanaka, T., Uchida, M. & Miyatake, K. An aromatic ionomer in the anode catalyst layer improves the start-up durability of polymer electrolyte fuel cells. Energy Adv. 1, 38–44 (2022).
Jinnouchi, R. et al. The role of oxygen-permeable ionomer for polymer electrolyte fuel cells. Nat. Commun. 12, 4956 (2021).
Suzuki, A. et al. Ionomer content in the catalyst layer of polymer electrolyte membrane fuel cell (PEMFC): effects on diffusion and performance. Int. J. Hydrog. Energy 36, 2221–2229 (2011).
Jiao, K. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021).
Farhat, T. R. & Hammond, P. T. Designing a new generation of proton‐exchange membranes using layer‐by‐layer deposition of polyelectrolytes. Adv. Funct. Mater. 15, 945–954 (2005).
Li, H. et al. Designing proton exchange membrane fuel cells with high specific power density. J. Mater. Chem. A 11, 17373 (2023).
Zhang, G. et al. Porous flow field for next-generation proton exchange membrane fuel cells: materials, characterization, design, and challenges. Chem. Rev. 123, 989–1039 (2022).
Miyake, J. et al. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells. Sci. Adv. 3, eaao0476 (2017).
Sato, K., Kajita, T. & Noro, A. Synthesis of a cross-linked polymer electrolyte membrane with an ultra-high density of sulfonic acid groups. ACS Appl. Polym. Mater. 5, 3480–3488 (2023).
Souzy, R. et al. Proton‐conducting polymer electrolyte membranes based on fluoropolymers incorporating perfluorovinyl ether sulfonic acids and fluoroalkenes: synthesis and characterization. Fuel Cell 5, 383–397 (2005).
Wang, Y. et al. Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy AI 1, 100014 (2020).
Legala, A., Zhao, J. & Li, X. Machine learning modeling for proton exchange membrane fuel cell performance. Energy AI 10, 100183 (2022).
Mehrpooya, M., Ghorbani, B., Jafari, B., Aghbashlo, M. & Pouriman, M. Modeling of a single cell micro proton exchange membrane fuel cell by a new hybrid neural network method. Therm. Sci. Eng. Prog. 7, 8–19 (2018).
Dekel, D. R. Review of cell performance in anion exchange membrane fuel cells. J. Power Sources 375, 158–169 (2018).
Gottesfeld, S. et al. Anion exchange membrane fuel cells: current status and remaining challenges. J. Power Sources 375, 170–184 (2018).
Goodenough, J. B. How we made the Li-ion rechargeable battery. Nat. Electron. 1, 204 (2018).
Zhang, H., Zhou, M.-Y., Lin, C.-E. & Zhu, B.-K. Progress in polymeric separators for lithium ion batteries. RSC Adv. 5, 89848 (2015).
Goriparti, S. et al. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014).
Nitta, N. & Yushin, G. High‐capacity anode materials for lithium‐ion batteries: choice of elements and structures for active particles. Part. Part. Syst. Charact. 31, 317–336 (2014).
Liu, J. et al. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater. Today 43, 132–165 (2021).
Mohamed, N. & Allam, N. K. Recent advances in the design of cathode materials for Li-ion batteries. RSC Adv. 10, 21662 (2020).
Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 195, 939–954 (2010).
Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Matter 22, 587–603 (2010).
Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652 (2008).
Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
Gupta, S., Gupta, A. K. & Pandey, B. K. First-principle study on ionic pair dissociation in PEO–PVP–NaClO4 blend for solid polymer electrolyte. Polym. Bull. 79, 4999–5018 (2022).
Sun, P., Bisschop, R., Niu, H. & Huang, X. A review of battery fires in electric vehicles. Fire Technol. 56, 1361–1410 (2020).
McCune Law Group. Tesla model S and model X lithium-ion battery fires. McCune Law Group https://mccunewright.com/practice-areas/class-actions/tesla-model-s-and-model-x-lithium-ion-battery-fires/ (2023).
Irfan, U. How lithium ion batteries grounded the Dreamliner. Sci. Am. https://www.scientificamerican.com/article/how-lithium-ion-batteries-grounded-the-dreamliner/ (2014).
Fenton, D. E., Parker, J. M. & Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973).
Armand, M., Chabagno, J. M. & Duclot, M. Polymeric solid electrolytes. In 2nd International Meeting on Solid Electrolytes Abstract 6.5.1 (University of St. Andrews, 1978).
Webb, M. A. et al. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS Cent. Sci. 1, 198–205 (2015).
Gudla, H., Zhang, C. & Brandell, D. Effects of solvent polarity on Li-ion diffusion in polymer electrolytes: an all-atom molecular dynamics study with charge scaling. J. Phys. Chem. B 124, 8124–8131 (2020).
Snyder, R. L. et al. Improved Li+ transport in polyacetal electrolytes: conductivity and current fraction in a series of polymers. ACS Energy Lett. 6, 1886–1891 (2021).
Halat, D. M. et al. Modifying Li+ and anion diffusivities in polyacetal electrolytes: a pulsed-field-gradient NMR study of ion self-diffusion. Chem. Matter 33, 4915–4926 (2021).
Sun, B., Mindemark, J., Edstrom, K. & Brandell, D. Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ion. 262, 738–742 (2014).
Wu, I. D. & Chang, F.-C. Determination of the interaction within polyester-based solid polymer electrolyte using FTIR spectroscopy. Polymer 48, 989–996 (2007).
Yoon, H.-K., Chung, W.-S. & Jo, N.-J. Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3. Electrochim. Acta 50, 289–293 (2004).
Kanbara, T. et al. New lithium salt ionic conductor using poly(vinyl alcohol) matrix. Chem. Lett. 18, 1913–1916 (1989).
Tan, C. G., Siew, W. O., Pang, W. L., Osman, Z. & Chew, K. W. The effects of ceramic fillers on the PMMA-based polymer electrolyte systems. Ionics 13, 361–364 (2007).
Bhatt, C., Swaroop, R., Arya, A. & Sharma, A. L. Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6. J. Mater. Sci. Eng. B 5, 418–434 (2015).
Rajendran, S., Sivakumar, M. & Subadevi, R. Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater. Lett. 58, 641–649 (2004).
Khajeh, A. et al. Early prediction of ion transport properties in solid polymer electrolytes using machine learning and system behavior-based descriptors of molecular dynamics simulations. Macromolecules 56, 4787–4799 (2023).
Shen, X. et al. Synthesis and molecular dynamic simulation of a novel single ion conducting gel polymer electrolyte for lithium-ion batteries. Polymer 201, 122568 (2020).
Dave, A. et al. Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling. Nat. Commun. 13, 5454 (2022).
Wheatle, B. K., Fuentes, E. F., Lynd, N. A. & Ganesan, V. Design of polymer blend electrolytes through a machine learning approach. Macromolecules 53, 9449–9459 (2020).
Bradford, G. et al. Chemistry-informed machine learning for polymer electrolyte discovery. ACS Cent. Sci. 9, 206–216 (2023).
Hatakeyama-Sato, K., Uchima, Y., Kashikawa, T., Kimura, K. & Oyaizu, K. Extracting higher-conductivity designs for solid polymer electrolytes by quantum-inspired annealing. RSC Adv. 13, 14651–14659 (2023).
High-throughput polymer design — molecular dynamics. htpmd https://www.htpmd.matr.io/ (2023).
Hatakeyama-Sato, K., Tezuka, T., Umeki, M. & Oyaizu, K. AI-assisted exploration of superionic glass-type Li+ conductors with aromatic structures. J. Am. Chem. Soc. 142, 3301–3305 (2020).
Budd, P. M. et al. Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1. J. Membr. Sci. 325, 851–860 (2008).
Yang, Z. et al. De novo design of polymer electrolytes with high conductivity using GPT-based and diffusion-based generative models. Preprint at https://doi.org/10.48550/arXiv.2312.06470 (2023).
Lei, X. et al. A self-improvable polymer discovery framework based on conditional generative model. Preprint at https://doi.org/10.48550/arXiv.2312.04013 (2023).
Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nature 16, 289–297 (2017).
Yampolskii, Y. Polymeric gas separation membranes. Macromolecules 45, 3298–3311 (2012).
Merkel, T. C. et al. Ultrapermeable, reverse-selective nanocomposite membranes. Science 296, 519–522 (2002).
Freeman, B. D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32, 375–380 (1999).
Barnett, J. W. et al. Designing exceptional gas-separation polymer membranes using machine learning. Sci. Adv. 6, eaaz4301 (2020).
Yang, J., Tao, L., He, J., McCutcheon, J. R. & Li, Y. Machine learning enables interpretable discovery of innovative polymers for gas separation membranes. Sci. Adv. 8, eabn9545 (2022).
Park, H. B. et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318, 254–258 (2007).
Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).
Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2006).
Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991).
Budd, P. M. Polymer with intrinsic microporosity (PIM). In Encyclopedia of Membranes, 1606–1607 (Springer, 2016).
Sridhar, S., Veerapur, R. S., Patil, M. B., Gudasi, K. B. & Aminabhavi, T. M. Matrimid polyimide membranes for the separation of carbon dioxide from methane. J. Appl. Polym. Sci. 106, 1585–1594 (2007).
Yong, W. F., Li, F. Y., Chung, T. S. & Tong, Y. W. Highly permeable chemically modified PIM-1/matrimid membranes for green hydrogen purification. J. Mater. Chem. A 1, 13914–13925 (2013).
Giro, R. et al. AI powered, automated discovery of polymer membranes for carbon capture. npj Comput. Mater. 9, 133 (2023).
Gurnani, R., Kuenneth, C., Toland, A. & Ramprasad, R. Polymer informatics at scale with multitask graph neural networks. Chem. Mater. 35, 1560–1567 (2023).
Talukder, M. J., Alshami, A. S., Tayyebi, A., Ismail, N. & Yu, X. Membrane science meets machine learning: future and potential use in assisting membrane material design and fabrication. Sep. Purif. Rev. https://doi.org/10.1080/15422119.2023.2212295 (2023).
Yuan, Q. et al. Imputation of missing gas permeability data for polymer membranes using machine learning. J. Membr. Sci. 627, 119207 (2021).
Park, J. Y. & Paul, D. R. Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method. J. Membr. Sci. 125, 23–39 (1997).
Geens, J., De Witte, B. & Van der Bruggen, B. Removal of API’s (active pharmaceutical ingredients) from organic solvents by nanofiltration. Sep. Sci. Technol. 42, 2435–2449 (2007).
Hu, J. et al. Artificial intelligence for performance prediction of organic solvent nanofiltration membranes. J. Membr. Sci. 619, 118513 (2021).
Goebel, R. & Skiborowski, M. Machine-based learning of predictive models in organic solvent nanofiltration: pure and mixed solvent flux. Sep. Purif. Technol. 237, 116363 (2020).
Goebel, R., Glaser, T. & Skiborowski, M. Machine-based learning of predictive models in organic solvent nanofiltration: solute rejection in pure and mixed solvents. Sep. Purif. Technol. 248, 117046 (2020).
Ignacz, G. & Szekely, G. Deep learning meets quantitative structure–activity relationship (QSAR) for leveraging structure-based prediction of solute rejection in organic solvent nanofiltration. J. Membr. Sci. 646, 120268 (2022).
Lee, Y. J. et al. Data-driven predictions of complex organic mixture permeation in polymer membranes. Nat. Commun. 14, 4931 (2023).
Mathias, R. et al. Framework for predicting the fractionation of complex liquid feeds via polymer membranes. J. Membr. Sci. 640, 119767 (2021).
Thompson, K. A. et al. N-Aryl–linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science 369, 310–315 (2020).
Inzelt, G. Conducting Polymers: A New Era in Electrochemistry (Springer, 2012).
Chiang, C. K. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098 (1977).
Swager, T. M. 50th anniversary perspective: conducting/semiconducting conjugated polymers. A personal perspective on the past and the future. Macromolecules 50, 4867–4886 (2017).
Shirakawa, H. & Ikeda, S. Infrared spectra of poly(acetylene). Polym. J. 2, 231–244 (1971).
Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977).
Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).
Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).
Yang, J., Zhao, Z., Wang, S., Guo, Y. & Liu, Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem 4, 2748–2785 (2018).
Kim, M. et al. Donor–acceptor‐conjugated polymer for high‐performance organic field‐effect transistors: a progress report. Adv. Funct. Mater. 30, 1904545 (2020).
Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007).
Cheng, Y. J., Yang, S. H. & Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009).
Guo, B., Glavas, L. & Albertsson, A. C. Biodegradable and electrically conducting polymers for biomedical applications. Prog. Polym. Sci. 38, 1263–1286 (2013).
Nezakati, T., Seifalian, A., Tan, A. & Seifalian, A. M. Conductive polymers: opportunities and challenges in biomedical applications. Chem. Rev. 118, 6766–6843 (2018).
Kaur, G., Adhikari, R., Cass, P., Bown, M. & Gunatillake, P. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5, 37553–37567 (2015).
Guimard, N. K., Gomez, N. & Schmidt, C. E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32, 876–921 (2007).
Sahu, H. et al. An informatics approach for designing conducting polymers. ACS Appl. Mater. Interfaces 13, 53314–53322 (2021).
Shetty, P. et al. A general-purpose material property data extraction pipeline from large polymer corpora using natural language processing. npj Comput. Mater. 9, 52 (2023).
Chinthapalli, R. et al. Biobased building blocks and polymers — global capacities, production and trends. Ind. Biotechnol. 15, 237–241 (2018).
MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).
Ritchie, H. & Roser, M. Plastic pollution. Our World in Data https://ourworldindata.org/plastic-pollution (2018).
Thushari, G. G. N. & Senevirathna, J. D. M. Plastic pollution in the marine environment. Heliyon 6, e04709 (2020).
Rainieri, S. & Barranco, A. Microplastics, a food safety issue? Trends Food Sci. Technol. 84, 55–57 (2019).
Circular claims fall flat again. Greenpeace https://www.greenpeace.org/usa/wp-content/uploads/2022/10/GPUS_FinalReport_2022.pdf (2022).
Coates, G. W. & Getzler, Y. D. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).
Lange, J.-P. Sustainable development: efficiency and recycling in chemicals manufacturing. Green Chem. 4, 546–550 (2002).
Lange, J.-P. Managing plastic waste — sorting, recycling, disposal, and product redesign. ACS Sustain. Chem. Eng. 9, 15722–15738 (2021).
Rosenboom, J. G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).
Johansen, M. R., Christensen, T. B., Ramos, T. M. & Syberg, K. A review of the plastic value chain from a circular economy perspective. J. Environ. Manag. 302, 113975 (2022).
Kakadellis, S. & Rosetto, G. Achieving a circular bioeconomy for plastics. Science 373, 49–50 (2021).
Nadda, A. K., Sharma, S. & Bhat, R. Biopolymers: Recent Updates, Challenges and Opportunities (Springer Nature, 2022).
Sofi, H. S. et al. Regenerated cellulose nanofibers from cellulose acetate: incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Mater. Sci. Eng. C 118, 111547 (2021).
Díaz-Montes, E. & Castro-Muñoz, R. Trends in chitosan as a primary biopolymer for functional films and coatings manufacture for food and natural products. Polymers 13, 767 (2021).
Gupta, S. et al. in Biopolymers: Recent Updates, Challenges and Opportunities 173–198 (Springer, 2022).
Ilyas, R. A. et al. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scale. J. Mater. Res. Technol. 8, 2753–2766 (2019).
Mohamed, M. A. et al. Regenerated cellulose membrane as bio-template for in-situ growth of visible-light driven C-modified mesoporous titania. Carbohydr. Polym. 146, 166–173 (2016).
Hernández, N., Williams, R. C. & Cochran, E. W. The battle for the ‘green’ polymer. Different approaches for biopolymer synthesis: bioadvantaged vs. bioreplacement. Org. Biomol. Chem. 12, 2834–2849 (2014).
Ghozali, M., Triwulandari, E. & Restu, W. K. in Biopolymers: Recent Updates, Challenges and Opportunities 289 (Springer, 2022).
Ranjbar, Z., Ranjbar, B. & Foroughirad, S. in Biopolymers: Recent Updates, Challenges and Opportunities 271–288 (Springer, 2022).
Rahman, M. Z. et al. Advanced biopolymers for automobile and aviation engineering applications. J. Polym. Res. 30, 106 (2023).
Rao, S. S., Athmika, & Rekha, P. D. in Biopolymers: Recent Updates, Challenges and Opportunities, 223–244 (Springer, 2022).
Palmisano, A. C. & Pettigrew, C. A. Biodegradability of plastics. Bioscience 42, 680–685 (1992).
Nissa, R. C., Fikriyyah, A. K., Abdullah, A. H. D. & Pudjiraharti, S. Preliminary study of biodegradability of starch-based bioplastics using ASTM G21-70, dip-hanging, and soil burial test methods. IOP Conf. Ser. Earth Environ. Sci. 277, 012007 (2019).
Tokiwa, Y., Calabia, B. P., Ugwu, C. U. & Aiba, S. Biodegradability of plastics. Int. J. Mol. Sci. 10, 3722–3742 (2009).
Kong, S., Lv, X., Peng, D. & Chen, M. A new test method for biodegradability of plastics in sediment. Environ. Technol. Innov. 21, 101217 (2021).
Fransen, K. A. et al. High-throughput experimentation for discovery of biodegradable polyesters. Proc. Natl Acad. Sci. USA 120, e2220021120 (2023).
Kosseva, M. R. & Rusbandi, E. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int. J. Biol. Macromol. 107, 762–778 (2018).
Sabbagh, F. & Muhamad, I. I. Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy. Renew. Sust. Energ. Rev. 72, 95–104 (2017).
Bejagam, K. K., Iverson, C. N., Marrone, B. L. & Pilania, G. Molecular dynamics simulations for glass transition temperature predictions of polyhydroxyalkanoate biopolymers. Phys. Chem. Chem. Phys. 22, 17880 (2020).
Bejagam, K. K., Iverson, C. N., Marrone, B. L. & Pilania, G. Composition and configuration dependence of glass-transition temperature in binary copolymers and blends of polyhydroxyalkanoate biopolymers. Macromolecules 54, 5618–5628 (2021).
Bejagam, K. K. et al. Predicting the mechanical response of polyhydroxyalkanoate biopolymers using molecular dynamics simulations. Polymers 14, 345 (2022).
Alias, N. H. et al. in Biopolymers: Recent Updates, Challenges and Opportunities 373–389 (Springer, 2022).
Chavez, B. A., Raghavan, V. & Tartakovsky, B. A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies. RSC Adv. 12, 16105–16118 (2022).
Ortelli, S. et al. in Factories of the Future: The Italian Flagship Initiative 131–148 (Springer, 2019).
Olsén, P., Odelius, K. & Albertsson, A.-C. Thermodynamic presynthetic considerations for ring-opening polymerization. Biomacromolecules 17, 699–709 (2016).
Dubois, P., Coulembier, O. & Raquez, J.-M. Handbook of Ring-Opening Polymerization (Wiley Online Library, 2009).
Bash, P. A., Ho, L. L., MacKerell, A. D., Levine, D. & Hallstrom, P. Progress toward chemical accuracy in the computer simulation of condensed phase reactions. Proc. Natl Acad. Sci. USA 93, 3698–3703 (1996).
Astrom, B. T. Manufacturing of Polymer Composites (CRC, 1997).
Irving, P. E. & Soutis, C. Polymer Composites in the Aerospace Industry (Woodhead, 2019).
He, X. & Wang, Y. Recent advances in the rational design of thermal conductive polymer composites. Ind. Eng. Chem. Res. 60, 1137–1154 (2021).
Liu, G., Xiong, Y. & Zhou, L. Additive manufacturing of continuous fiber reinforced polymer composites: design opportunities and novel applications. Compos. Commun. 27, 100907 (2021).
Zhang, F., Feng, Y. & Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 142, 100580 (2020).
Hu, J. et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces 9, 13544–13553 (2017).
Xie, L. & Zhu, Y. Tune the phase morphology to design conductive polymer composites: a review. Polym. Compos. 39, 2985–2996 (2018).
Cao, G., Cai, S., Zhang, H., Chen, Y. & Tian, Y. High-performance conductive polymer composites by incorporation of polyaniline-wrapped halloysite nanotubes and silver microflakes. ACS Appl. Polym. Mater. 4, 3352–3360 (2022).
Shukla, S. S., Kuenneth, C. & Ramprasad, R. Polymer informatics beyond homopolymers. MRS Bull. 49, 17–24 (2024).
Cassola, S., Duhovic, M., Schmidt, T. & May, D. Machine learning for polymer composites process simulation — a review. Compos. B Eng. 246, 110208 (2022).
Sharma, A., Mukhopadhyay, T., Rangappa, S. M., Siengchin, S. & Kushvaha, V. Advances in computational intelligence of polymer composite materials: machine learning assisted modeling, analysis and design. Arch. Comput. Methods Eng. 29, 3341 (2022).
Shetty, P. & Ramprasad, R. Machine-guided polymer knowledge extraction using natural language processing: the example of named entity normalization. J. Chem. Inf. Model. 61, 5377–5385 (2021).
Shetty, P. & Ramprasad, R. Automated knowledge extraction from polymer literature using natural language processing. Iscience 24, 101922 (2021).
Devlin, J., Chang, M.W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. Preprint at https://doi.org/10.48550/arXiv.1810.04805 (2018).
Swain, M. C. & Cole, J. M. ChemDataExtractor: a toolkit for automated extraction of chemical information from the scientific literature. J. Chem. Inf. Model. 56, 1894–1904 (2016).
Rocktäschel, T., Weidlich, M. & Leser, U. ChemSpot: a hybrid system for chemical named entity recognition. Bioinformatics 28, 1633–1640 (2012).
Hawizy, L., Jessop, D. M., Adams, N. & Murray-Rust, P. ChemicalTagger: a tool for semantic text-mining in chemistry. J. Cheminform. https://doi.org/10.1186/1758-2946-3-17 (2011).
Wang, Z. et al. Dataset of solution-based inorganic materials synthesis procedures extracted from the scientific literature. Sci. Data 9, 231 (2022).
Kuniyoshi, F., Ozawa, J. & Miwa, M. Analyzing research trends in inorganic materials literature using NLP. In Proc. Joint European Conference on Machine Learning and Knowledge Discovery in Databases 319–334 (Springer, 2021).
Olivetti, E. A. et al. Data-driven materials research enabled by natural language processing and information extraction. Appl. Phys. Rev. 7, 041317 (2020).
Öztürk, H., Özgür, A., Schwaller, P., Laino, T. & Ozkirimli, E. Exploring chemical space using natural language processing methodologies for drug discovery. Drug. Discov. Today 25, 689–705 (2020).
Oka, H., Yoshizawa, A., Shindo, H., Matsumoto, Y. & Ishii, M. Machine extraction of polymer data from tables using XML versions of scientific articles. Sci. Technol. Adv. Mater. Methods 1, 12–23 (2021).
Gu, Y. et al. Domain-specific language model pretraining for biomedical natural language processing. ACM Trans. Comput. Healthc. 3, 1–23 (2021).
Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Model. 28, 31–36 (1988).
Patra, A. et al. A multi-fidelity information-fusion approach to machine learn and predict polymer bandgap. Comput. Mater. Sci. 172, 109286 (2020).
Pilania, G., Gubernatis, J. E. & Lookman, T. Multi-fidelity machine learning models for accurate bandgap predictions of solids. Comput. Mater. Sci. 129, 156–163 (2017).
Meng, X., Babaee, H. & Karniadakis, G. E. Multi-fidelity Bayesian neural networks: algorithms and applications. J. Comput. Phys. 438, 110361 (2021).
Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Curtarolo, S. et al. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012).
Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).
Draxl, C. & Scheffler, M. The NOMAD laboratory: from data sharing to artificial intelligence. J. Phys. Mater. 2, 036001 (2019).
Draxl, C. & Scheffler, M. NOMAD: the FAIR concept for big data-driven materials science. MRS Bull. 43, 676–682 (2018).
Hayashi, Y., Shiomi, J., Morikawa, J. & Yoshida, R. RadonPy: automated physical property calculation using all-atom classical molecular dynamics simulations for polymer informatics. npj Comput. Mater. 8, 222 (2022).
Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).
Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).
Ji, W., Qiu, W., Shi, Z., Pan, S. & Deng, S. Stiff-PINN: physics-informed neural network for stiff chemical kinetics. J. Phys. Chem. A 125, 8098–8106 (2021).
Faroughi, S. A. et al. Physics-guided, physics-informed, and physics-encoded neural networks and operators in scientific computing: fluid and solid mechanics. J. Comput. Inf. Sci. Eng. 24, 040802 (2024).
Otsuka, S., Kuwajima, I., Hosoya, J., Xu, Y. & Yamazaki, M. PoLyInfo: Polymer database for polymeric materials design. In 2011 International Conference on Emerging Intelligent Data and Web Technologies 22–29 (IEEE, 2011).
Ma, R. & Luo, T. PI1M: a benchmark database for polymer informatics. J. Chem. Inf. Model. 60, 4684–4690 (2020).
Kamal, D. et al. Computable bulk and interfacial electronic structure features as proxies for dielectric breakdown of polymers. ACS Appl. Mater. Interfaces 12, 37182 (2020).
Xie, T. et al. A cloud platform for sharing and automated analysis of raw data from high throughput polymer MD simulations. APL Mach. Learn. 1, 046108 (2023).
Walsh, D. J. et al. Community Resource for Innovation in Polymer Technology (CRIPT): a scalable polymer material data structure. ACS Cent. Sci. 9, 330–338 (2023).
Drefahl, A. CurlySMILES: a chemical language to customize and annotate encodings of molecular and nanodevice structures. J. Cheminf. 3, 1 (2011).
Lin, T. S. et al. BigSMILES: a structurally-based line notation for describing macromolecules. ACS Cent. Sci. 5, 1523–1531 (2019).
Schneider, L., Walsh, D., Olsen, B. & de Pablo, J. Generative BigSMILES: an extension for polymer informatics, computer simulations & ML/AI. Digit. Discov. 3, 51–61 (2024).
Lin, T. S. et al. PolyDAT: a generic data schema for polymer characterization. J. Chem. Inf. Model. 61, 1150–1163 (2021).
Acknowledgements
The authors acknowledge support from several grants from the Office of Naval Research, the National Science Foundation and Toyota Research Institute, and a grant from the Department of Energy via the Center for Understanding and Controlling Accelerated and Gradual Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center under award no. DE-SC0012577.
Author information
Authors and Affiliations
Contributions
R.R. conceived and outlined the general manuscript. H.T. and R.R. wrote the initial manuscript with contributions from R.G., C.K., G.P., H.-K.K. and R.P.L. All authors edited the manuscript and figures and approved the final version for submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tran, H., Gurnani, R., Kim, C. et al. Design of functional and sustainable polymers assisted by artificial intelligence. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00708-8
Accepted:
Published:
DOI: https://doi.org/10.1038/s41578-024-00708-8