Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-collinear antiferromagnetic spintronics

Abstract

Spintronics aims to go beyond the charge-based paradigm of silicon-based microelectronics by utilizing the spin degree of freedom for memory, storage and computing applications. State-of-the-art spintronic devices rely on the manipulation of magnetic textures by spin torques that are generated from electrical currents within ferromagnets (FMs) (spin-transfer torque) or proximal heavy metals (spin-orbit torque). Although these concepts have led to important commercial applications, the use of FMs poses challenges owing to their stray fields, relatively slow dynamics and limited thermal stability. To overcome these challenges, new materials are needed, especially those that display negligible stray fields such as antiferromagnets (AFs). In this regard, synthetic AFs have been vitally important since their use in the very first spintronic field sensors and memories. Collinear AFs have found applications in stabilizing magnetic textures via interfacial exchange bias. Going beyond these classes of AFs, the family of non-collinear AFs (NCAFs) with triangular spin textures has attractive properties, some of them even reminiscent of FMs. These include, for example, large anomalous Hall and Nernst effects, and substantial magneto-optical responses, despite their nearly fully compensated magnetization. Thus, one can anticipate their use in substituting FMs in future spintronic devices. Furthermore, these novel AFs convert electrical currents to spin currents with unique symmetries, which may allow for new ways to manipulate spin textures. Here, we review recent developments in non-collinear antiferromagnetic spintronics. Emphasis is placed on spin current generation, switching of spin textures and applications in magnetic random access memory and racetrack memory, as well as so-far unexplored materials. We show that although key components of spintronic devices based on NCAFs have been demonstrated, a wide range of potential materials remain to be explored and many open questions remain to be answered. Thus, the field of NCAFs is a vibrant and exciting subfield of spintronics with much potential for next-generation memory and computing technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The field of non-collinear antiferromagnetic spintronics.
Fig. 2: Magnetism of Mn-based intermetallics and nitrides.
Fig. 3: Magnetic domains in non-collinear antiferromagnets.
Fig. 4: Transverse charge and spin transport effects in non-collinear antiferromagnets.
Fig. 5: Transverse spin current effect in non-collinear antiferromagnets.
Fig. 6: Switching and spin dynamics in non-collinear antiferromagnets.
Fig. 7: Longitudinal spin currents and all-antiferromagnetic tunnel junctions.
Fig. 8: Future prospects for non-collinear antiferromagnets in spintronic devices.

Similar content being viewed by others

References

  1. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article  Google Scholar 

  2. Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020).

    Article  CAS  Google Scholar 

  3. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Bläsing, R. et al. Magnetic racetrack memory: from physics to the cusp of applications within a decade. Proc. IEEE 108, 1303–1321 (2020).

    Article  Google Scholar 

  5. Duine, R. A., Lee, K.-J., Parkin, S. S. P. & Stiles, M. D. Synthetic antiferromagnetic spintronics. Nat. Phys. 14, 217–219 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, S.-H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).

    Article  Google Scholar 

  7. MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 3098–3114 (2011).

    Article  CAS  Google Scholar 

  8. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Gomonay, O., Jungwirth, T. & Sinova, J. Concepts of antiferromagnetic spintronics. Phys. Stat. Sol. Rapid Res. Lett. 11, 1700022 (2017).

    Google Scholar 

  10. Šmejkal, L. & Jungwirth, T. in Topology in Magnetism Vol. 192 of Springer Series in Solid-State Sciences (eds Zang, J., Cros, V. & Hoffmann, A.) (Springer International Publishing, 2018).

  11. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018). This paper is a seminal comprehensive review on the state of antiferromagnetic spintronics as of 2018.

    Article  CAS  Google Scholar 

  12. Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).

    Article  CAS  Google Scholar 

  13. Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics. Nat. Phys. 14, 229–241 (2018).

    Article  Google Scholar 

  14. Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article  Google Scholar 

  15. Bonbien, V. et al. Topological aspects of antiferromagnets. J. Phys. D Appl. Phys. 55, 103002 (2021).

    Article  Google Scholar 

  16. Chen, H. et al. Emerging antiferromagnets for spintronics. Adv. Mater. 36, 2310379 (2024).

    Article  CAS  Google Scholar 

  17. Sinova, J., Valunzela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  Google Scholar 

  18. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  CAS  Google Scholar 

  19. Shao, Q. et al. Roadmap of spin-orbit torques. IEEE Trans. Magn. 57, 1–39 (2021).

    Article  Google Scholar 

  20. Cheong, S.-W., Fiebig, M., Wu, W., Chapon, L. & Kiryukhin, V. Seeing is believing: visualization of antiferromagnetic domains. npj Quantum Mater. 5, 3 (2020).

    Article  Google Scholar 

  21. Gomonay, E. V. & Loktev, V. M. Spintronics of antiferromagnetic systems (Review Article). Low Temp. Phys. 40, 17–35 (2014).

    Article  CAS  Google Scholar 

  22. Barman, A. et al. The 2021 magnonics roadmap. J. Phys. Condens. Matter 33, 413001 (2021).

    Article  CAS  Google Scholar 

  23. Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684–695 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010). This paper is a seminal comprehensive review on the anomalous Hall effect.

    Article  Google Scholar 

  25. Chen, H., Niu, Q. & MacDonald, A. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article  PubMed  Google Scholar 

  26. Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014). This paper and the paper by Chen, Niu & MacDonald are seminal works predicting a non-zero anomalous Hall effect in certain non-collinear antiferromagnets.

    Article  Google Scholar 

  27. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016). This paper and the paper by Nakatsuji, Kiyohara & Higo are seminal works confirming the presence of a non-zero anomalous Hall effect in a single-crystal sample of a non-collinear antiferromagnet.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  CAS  Google Scholar 

  30. Hirsch, J. E. Spin Hall Effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  CAS  Google Scholar 

  31. Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017). This paper shows the prediction of unusual transverse and longitudinal spin transport effects in non-collinear antiferromagnets.

    Article  PubMed  Google Scholar 

  32. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020). This paper demonstrates the manipulation of non-collinear antiferromagnetic order by spin-orbit torque.

    Article  CAS  PubMed  Google Scholar 

  33. Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque. Sci. Adv. 8, eabo5930 (2022). This paper demonstrates the important role of heating and predicts a novel type of spin-orbit torque switching scheme.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023). Two papers report the tunnelling magnetoresistance-like effects in tunnel junctions made only of non-collinear antiferromagnets.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023). Two papers report the tunnelling magnetoresistance-like effects in tunnel junctions made only of non-collinear antiferromagnets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bauer, G. E. W., Saitoh, E. & Wees, B. J. V. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Mizuguchi, M. & Nakatsuji, S. Energy-harvesting materials based on the anomalous Nernst effect. Sci. Technol. Adv. Mater. 20, 262–275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114–1135 (2021).

    Article  Google Scholar 

  40. Yang, G. et al. The role of spin in thermoelectricity. Nat. Rev. Phys. 5, 466–482 (2023).

    Article  CAS  Google Scholar 

  41. Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    Article  CAS  Google Scholar 

  42. Huang, Z. J., Cao, Y., Sun, Y. Y., Xue, Y. Y. & Chu, C. W. Coupling between the ferroelectric and antiferromagnetic orders in YMnO3. Phys. Rev. B 56, 2623–2626 (1997).

    Article  CAS  Google Scholar 

  43. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Lorenz, B. Hexagonal manganites RMnO3: class (I) multiferroics with strong coupling of magnetism and ferroelectricity. Int. Sch. Res. Notices 2013, e497073 (2013).

    Google Scholar 

  45. Li, F. et al. All-electrical reading and writing of spin chirality. Sci. Adv. 8, eadd6984 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

    Article  CAS  Google Scholar 

  47. Ueda, K. et al. Spontaneous Hall effect in the Weyl semimetal candidate of all-in all-out pyrochlore iridate. Nat. Commun. 9, 3032 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim, W. J. et al. Unconventional anomalous Hall effect from antiferromagnetic domain walls of Nd2Ir2O7 thin films. Phys. Rev. B 98, 125103 (2018).

    Article  CAS  Google Scholar 

  49. Hanke, J.-P., Freimuth, F., Blügel, S. & Mokrousov, Y. Prototypical topological orbital ferromagnet γ-FeMn. Sci. Rep. 7, 41078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grytsiuk, S. et al. Topological–chiral magnetic interactions driven by emergent orbital magnetism. Nat. Commun. 11, 511 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kipp, J. et al. The chiral Hall effect in canted ferromagnets and antiferromagnets. Commun. Phys. 4, 99 (2021).

    Article  Google Scholar 

  52. Zhu, Y.-P. et al. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Mulder, C. A. M., Van Duyneveldt, A. J. & Mydosh, J. A. Susceptibility of the CuMn spin-glass: frequency and field dependences. Phys. Rev. B 23, 1384–1396 (1981).

    Article  CAS  Google Scholar 

  54. Binder, K. & Young, A. P. Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986).

    Article  CAS  Google Scholar 

  55. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).

    Article  PubMed  Google Scholar 

  56. Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Article  Google Scholar 

  57. Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Krén, E. & Kádár, G. Neutron diffraction study of Mn3Ga. Solid State Commun. 8, 1653–1655 (1970).

    Article  Google Scholar 

  59. Nagamiya, T., Tomiyoshi, S. & Yamaguchi, Y. Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge. Solid State Commun. 42, 385–388 (1982).

    Article  CAS  Google Scholar 

  60. Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn. 51, 2478–2486 (1982).

    Article  CAS  Google Scholar 

  61. Yamada, N., Sakai, H., Mori, H. & Ohoyama, T. Magnetic properties of ε-Mn3Ge. Phys. B+C 149, 311–315 (1988).

    Article  CAS  Google Scholar 

  62. Zhang, D. et al. First-principles study of the structural stability of cubic, tetragonal and hexagonal phases in Mn3Z (Z=Ga, Sn and Ge) Heusler compounds. J. Phys. Condens. Matter 25, 206006 (2013).

    Article  PubMed  Google Scholar 

  63. Winterlik, J. et al. Design scheme of new tetragonal Heusler compounds for spin-transfer torque applications and its experimental realization. Adv. Mater. 24, 6283–6287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamaoka, T. Antiferromagnetism in γ-phase Mn–Ir alloys. J. Phys. Soc. Jpn. 36, 445–450 (1974).

    Article  CAS  Google Scholar 

  65. Tomeno, I., Fuke, H. N., Iwasaki, H., Sahashi, M. & Tsunoda, Y. Magnetic neutron scattering study of ordered Mn3Ir. J. Appl. Phys. 86, 3853–3856 (1999).

    Article  CAS  Google Scholar 

  66. Krén, E., Kádár, G., Pál, L., Sólyom, J. & Szabó, P. Magnetic structures and magnetic transformations in ordered Mn3(Rh, Pt) alloys. Phys. Lett. 20, 331–332 (1966).

    Article  Google Scholar 

  67. Krén, E. et al. Magnetic structures and exchange interactions in the Mn–Pt system. Phys. Rev. 171, 574–585 (1968).

    Article  Google Scholar 

  68. Fruchart, D. & Bertaut, E. F. Magnetic studies of the metallic perovskite-type compounds of manganese. J. Phys. Soc. Jpn. 44, 781–791 (1978).

    Article  CAS  Google Scholar 

  69. Niewa, R. Metal-rich ternary perovskite nitrides. Eur. J. Inorg. Chem. 2019, 3647–3660 (2019).

    Article  CAS  Google Scholar 

  70. Wang, Y. et al. Antiperovskites with exceptional functionalities. Adv. Mater. 32, 1905007 (2020).

    Article  CAS  Google Scholar 

  71. Coey, J. M. D., Givord, D. & Fruchart, D. Metallic nitride and carbide perovskites: history and prospects. ECS J. Solid State Sci. Technol. 11, 055002 (2022).

    Article  CAS  Google Scholar 

  72. Takei, W. J., Shirane, G. & Frazer, B. C. Magnetic structure of Mn4N. Phys. Rev. 119, 122–126 (1960).

    Article  CAS  Google Scholar 

  73. Takei, W. J., Heikes, R. R. & Shirane, G. Magnetic structure of Mn4N-type compounds. Phys. Rev. 125, 1893–1897 (1962).

    Article  CAS  Google Scholar 

  74. Kuriyama, M., Hosoya, S. & Suzuki, T. Electron number of the nitrogen atom in Mn4N. Phys. Rev. 130, 898–899 (1963).

    Article  CAS  Google Scholar 

  75. Mekata, M., Haruna, J. & Takaki, H. Localized magnetic moments in Mn4N. J. Phys. Soc. Jpn. 21, 2267–2273 (1966).

    Article  CAS  Google Scholar 

  76. Bouchaud, J. P. Contribution à l’étude du système manganèse-carbone et des perowskites métalliques du manganèse. Thèse de doctorat d’Etat, Paris (1967).

  77. Fruchart, M. R. et al. Sur les transitions magnetiques du premier ordre dans les perowskites metalliques du manganese. Mater. Res. Bull. 2, 1009–1020 (1967).

    Article  CAS  Google Scholar 

  78. Bertaut, E. F., Fruchart, D., Bouchaud, J. P. & Fruchart, R. Diffraction neutronique de Mn3GaN. Solid State Commun. 6, 251–256 (1968).

    Article  CAS  Google Scholar 

  79. Barberon, M., Madar, R., Fruchart, E., Lorthioir, G. & Fruchart, R. Etude du facteur de diffusion de l’azote dans la solution solide Mn4N-GaMn3N. Mater. Res. Bull. 5, 903–912 (1970).

    Article  CAS  Google Scholar 

  80. Barberon, M., Madar, R., Fruchart, M. E., Lorthioir, G. & Fruchart, R. Les deformations quadratiques T1 et T4 dans les carbures et nitrures perowskites du manganese. Mater. Res. Bull. 5, 1–7 (1970).

    Article  CAS  Google Scholar 

  81. Madar, R. Contribution à l’étude des transitions magnétiques du premier ordre des nitrures métalliques du manganèse de type perowskite. Thèse de doctorat d’Etat, Orsay (1970).

  82. Fruchart, D., Bertaut, E. F., Madar, R. & Fruchart, R. Diffraction neutronique de Mn3ZnN. Le J. de Phys. Colloques 32, 876 (1971).

    CAS  Google Scholar 

  83. Fruchart, D., Bertaut, E. F., Madar, R., Lorthioir, G. & Fruchart, R. Structure magnetique et rotation de spin de Mn3NiN. Solid State Commun. 9, 1793–1797 (1971).

    Article  CAS  Google Scholar 

  84. Fruchart, R., Madar, R., Barberon, M., Fruchart, E. & Lorthioir, M. G. Transitions magnétiques et déformations cristallographiques associées dans les nitrures du type perowskite ZnMn3N et SnMn3N. Le J. de Phys. Colloques 32, 982–984 (1971).

    Google Scholar 

  85. Barberon, M. et al. Un nouveau type de deformation orthorhombique dans les perovskites metalliques. Mater. Res. Bull. 7, 109–118 (1972).

    Article  CAS  Google Scholar 

  86. Bertaut, E. F. & Fruchart, D. Rotation des moments magnetiques du manganese dans Mn3NiN. Int. J. Magn. 2, 259–264 (1972).

    Google Scholar 

  87. Nardin, M., Lorthioir, G., Barberon, M., Fruchart, F. & Fruchart, R. Etude de cinq nouveaux nitrures test de type perovskite. C. R. Acad. Sci. 274, 4 (1972).

    Google Scholar 

  88. Barberon, M. Transformations cristallographiques et transitions magnétiques des perowskites métalliques du manganèseMMn3N (M = Ge, Sn, As, Sb). Thèse de doctorat d’Etat, Paris (1973).

  89. Fruchart, D., Madar, R., Fruchart, E. & Fruchart, R. Structure et Comportement Magnetique de Mn3CuN et Mn3SnC. Int. Kern. Kerntechn 8, 1326–1330 (1973).

    Google Scholar 

  90. Fruchart, D. & Bertaut, E. F. Magnetic behavior of the perovskite-type compound: Mn3AgN. Proc. Int. Conf. Magn. 4, 572 (1974).

    Google Scholar 

  91. Fruchart, D. Etudes par diffraction neutronique des perovskites metalliques Mn3MX, carbures (X = C; M = Zn, Ga, Sn), nitrures (X = N; M = Ni, Cu, Zn, Ga, Rh, Ag, Sn, Sb, Pt). Thèse de doctorat d’Etat, Grenoble INP (1976).

  92. Fruchart, D. Magnetic properties of the metallic perovskite compounds Mn3MX. Phys. B+C 8688, 423–425 (1977).

    Article  Google Scholar 

  93. Fruchart, D., Bertaut, E. F., Sénateur, J. P. & Fruchart, R. Magnetic studies on the metallic perovskite-type compound Mn3SnN. J. Phys. Lett. 38, 21–23 (1977).

    Article  CAS  Google Scholar 

  94. l’Héritier, P., Boursier, D., Fruchart, R. & Fruchart, D. Structures magnetiques et transitions du premier ordre dans les perovskites metalliques GaMn3(C1−xNx). Relation avec les composes de terres rares a changement de valence. Mater. Res. Bull. 14, 1203–1212 (1979).

    Article  Google Scholar 

  95. l’Héritier, P., Fruchart, D., Madar, R. & Fruchart, R. Instabilites electroniques dans les composes du manganese de type perovskite metallique. Relation avec les changements de valence dans les composes de terres rares. Mater. Res. Bull. 14, 1089–1094 (1979).

    Article  Google Scholar 

  96. Fruchart, D., L’Héritier, P. & Fruchart, R. Transformations de phases dans les nitrures et carbures du manganese de structure-type perovskite. Mater. Res. Bull. 15, 415–420 (1980).

    Article  CAS  Google Scholar 

  97. L’Héritier, P. Etude expérimentale des instabilités électroniques dans les carbures et nitrures ternaires du manganèse de type pérovskite. Thèse de doctorat d’Etat, Grenoble INP (1980).

  98. Sun, Y. et al. Neutron diffraction study of unusual phase separation in the antiperovskite nitride Mn3ZnN. Inorg. Chem. 51, 7232–7236 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Sun, Y. S. et al. Magnetic and electrical properties of antiperovskite Mn3InN synthesized by a high-pressure method. J. Phys. Conf. Ser. 400, 032094 (2012).

    Article  Google Scholar 

  100. Wu, M. et al. Magnetic structure and lattice contraction in Mn3NiN. J. Appl. Phys. 114, 123902 (2013).

    Article  Google Scholar 

  101. Takenaka, K. et al. Magnetovolume effects in manganese nitrides with antiperovskite structure. Sci. Technol. Adv. Mater. 15, 015009 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Boldrin, D. et al. Multisite exchange-enhanced barocaloric response in Mn3NiN. Phys. Rev. X 8, 041035 (2018).

    CAS  Google Scholar 

  103. Tan, S. et al. An antiperovskite compound with multifunctional properties: Mn3PdN. J. Solid State Chem. 302, 122389 (2021).

    Article  CAS  Google Scholar 

  104. He, Y. et al. Noncollinear ferrimagnetism and anomalous Hall effects in Mn4N thin films. Phys. Rev. B 106, L060409 (2022).

    Article  CAS  Google Scholar 

  105. Liu, J. & Balents, L. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 119, 087202 (2017).

    Article  PubMed  Google Scholar 

  106. Zhou, X. et al. Spin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets Mn3XN with X = Ga, Zn, Ag, or Ni. Phys. Rev. B 99, 104428 (2019).

    Article  CAS  Google Scholar 

  107. Gomonaj, E. V. & L’vov, V. A. Phenomenologic study of phase transitions in noncollinear antiferromagnets of metallic perovskite type. Ph. Transit. 38, 15–31 (1992).

    Article  Google Scholar 

  108. Nan, T. et al. Controlling spin current polarization through non-collinear antiferromagnetism. Nat. Commun. 11, 4671 (2020). The spin-torque ferromagnetic resonance study investigates the presence of transverse spin currents with unusual spin polarization directions in a non-collinear antiferromagnet.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Johnson, F. et al. Identifying the octupole antiferromagnetic domain orientation in Mn3NiN by scanning anomalous Nernst effect microscopy. Appl. Phys. Lett. 120, 232402 (2022).

    Article  CAS  Google Scholar 

  110. Rendell-Bhatti, F. et al. Improving barocaloric properties by tailoring transition hysteresis in Mn3Cu1−xSnxN antiperovskites. J. Phys. Energy 5, 024018 (2023).

    Article  Google Scholar 

  111. Lukashev, P., Sabirianov, R. F. & Belashchenko, K. Theory of the piezomagnetic effect in Mn-based antiperovskites. Phys. Rev. B 78, 184414 (2008).

    Article  Google Scholar 

  112. Lukashev, P. & Sabirianov, R. F. Spin density in frustrated magnets under mechanical stress: Mn-based antiperovskites. J. Appl. Phys. 107, 09E115 (2010).

    Article  Google Scholar 

  113. Lukashev, P. & Sabirianov, R. F. Flexomagnetic effect in frustrated triangular magnetic structures. Phys. Rev. B 82, 094417 (2010).

    Article  Google Scholar 

  114. Zemen, J. et al. Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: ab initio theory. Phys. Rev. B 95, 184438 (2017).

    Article  Google Scholar 

  115. Zemen, J., Gercsi, Z. & Sandeman, K. G. Piezomagnetism as a counterpart of the magnetovolume effect in magnetically frustrated Mn-based antiperovskite nitrides. Phys. Rev. B 96, 024451 (2017).

    Article  Google Scholar 

  116. Boldrin, D. et al. Giant piezomagnetism in Mn3NiN. ACS Appl. Mater. Interfaces 10, 18863–18868 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Boldrin, D. et al. The biaxial strain dependence of magnetic order in spin frustrated Mn3NiN thin films. Adv. Funct. Mater. 29, 1902502 (2019).

    Article  Google Scholar 

  118. Quintela, C. X. et al. Epitaxial antiperovskite/perovskite heterostructures for materials design. Sci. Adv. 6, eaba4017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yan, H. et al. Electric-field-controlled antiferromagnetic spintronic devices. Adv. Mater. 32, 1905603 (2020).

    Article  CAS  Google Scholar 

  120. You, Y. et al. Room temperature anomalous Hall effect in antiferromagnetic Mn3SnN films. Appl. Phys. Lett. 117, 222404 (2020).

    Article  CAS  Google Scholar 

  121. Rimmler, B. H. et al. Atomic displacements enabling the observation of the anomalous Hall effect in a non-collinear antiferromagnet. Adv. Mater. 35, 2209616 (2023). The paper shows that the observation of transport effects in antiperovskites does not require tetragonal distortion.

    Article  CAS  Google Scholar 

  122. Taylor, J. M. et al. Magnetic and electrical transport signatures of uncompensated moments in epitaxial thin films of the noncollinear antiferromagnet Mn3Ir. Appl. Phys. Lett. 115, 062403 (2019).

    Article  Google Scholar 

  123. Liu, Z. Q. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).

    Article  CAS  Google Scholar 

  124. Boldrin, D. et al. Anomalous Hall effect in noncollinear antiferromagnetic Mn3NiN thin films. Phys. Rev. Mater. 3, 094409 (2019).

    Article  CAS  Google Scholar 

  125. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018). This paper reports the observation of a Berry curvature-driven magneto-optical Kerr effect in a non-collinear antiferromagnet.

    Article  CAS  Google Scholar 

  126. Feng, W., Guo, G.-Y., Zhou, J., Yao, Y. & Niu, Q. Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3X (X = Rh, Ir, Pt). Phys. Rev. B 92, 144426 (2015).

    Article  Google Scholar 

  127. Wu, M. et al. Magneto-optical Kerr effect in a non-collinear antiferromagnet Mn3Ge. Appl. Phys. Lett. 116, 132408 (2020).

    Article  CAS  Google Scholar 

  128. Yamasaki, Y., Nakao, H. & Arima, T.-h Augmented magnetic octupole in kagomé 120-degree antiferromagnets detectable via X-ray magnetic circular dichroism. J. Phys. Soc. Jpn. 89, 083703 (2020).

    Article  Google Scholar 

  129. Kimata, M. et al. X-ray study of ferroic octupole order producing anomalous Hall effect. Nat. Commun. 12, 5582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Reichlova, H. et al. Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn. Nat. Commun. 10, 5459 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article  CAS  Google Scholar 

  132. Wuttke, C. et al. Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge. Phys. Rev. B 100, 085111 (2019).

    Article  CAS  Google Scholar 

  133. Zhou, X. et al. Giant anomalous Nernst effect in noncollinear antiferromagnetic Mn-based antiperovskite nitrides. Phys. Rev. Mater. 4, 024408 (2020).

    Article  CAS  Google Scholar 

  134. Beckert, S. et al. Anomalous Nernst effect in Mn3NiN thin films. Phys. Rev. B 108, 024420 (2023).

    Article  CAS  Google Scholar 

  135. Bai, H. et al. Size-dependent anomalous Hall effect in noncollinear antiferromagnetic Mn3Sn films. Appl. Phys. Lett. 117, 052404 (2020).

    Article  CAS  Google Scholar 

  136. Yan, G. Q. et al. Quantum sensing and imaging of spin-orbit-torque-driven spin dynamics in the non-collinear antiferromagnet Mn3Sn. Adv. Mater. 34, 2200327 (2022).

    Article  CAS  Google Scholar 

  137. Li, S. et al. Nanoscale magnetic domains in polycrystalline Mn3Sn films imaged by a scanning single-spin magnetometer. Nano Lett. 23, 5326–5333 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin-orbit torque. Nat. Mater. 20, 1364–1370 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Krizek, F. et al. Atomically sharp domain walls in an antiferromagnet. Sci. Adv. 8, eabn3535 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Reimers, S. et al. Defect-driven antiferromagnetic domain walls in CuMnAs films. Nat. Commun. 13, 724 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gurung, G., Shao, D.-F., Paudel, T. R. & Tsymbal, E. Y. Anomalous Hall conductivity of noncollinear magnetic antiperovskites. Phys. Rev. Mater. 3, 044409 (2019).

    Article  CAS  Google Scholar 

  142. Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. N. J. Phys. 19, 015008 (2017).

    Article  Google Scholar 

  143. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Kübler, J. & Felser, C. Weyl fermions in antiferromagnetic Mn3Sn and Mn3Ge. Europhys. Lett. 120, 47002 (2018).

    Article  Google Scholar 

  145. Huyen, V. T. N., Suzuki, M.-T., Yamauchi, K. & Oguchi, T. Topology analysis for anomalous Hall effect in the noncollinear antiferromagnetic states of Mn3AN (A = Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt). Phys. Rev. B 100, 094426 (2019).

    Article  CAS  Google Scholar 

  146. Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    Article  Google Scholar 

  147. Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).

    Google Scholar 

  149. Fedchenko, O. et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 10, eadj4883 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Reimers, S. et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun. 15, 2116 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).

    Article  CAS  Google Scholar 

  154. González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).

    Article  PubMed  Google Scholar 

  155. Shao, D.-F., Zhang, S.-H., Li, M., Eom, C.-B. & Tsymbal, E. Y. Spin-neutral currents for spintronics. Nat. Commun. 12, 7061 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022).

    Article  CAS  Google Scholar 

  157. Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).

    Article  Google Scholar 

  160. Shao, D.-F. et al. Néel spin currents in antiferromagnets. Phys. Rev. Lett. 130, 216702 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Cheong, S.-W. & Huang, F.-T. Altermagnetism with non-collinear spins. npj Quantum Mater. 9, 13 (2024).

    Article  CAS  Google Scholar 

  162. Ikhlas, M. et al. Piezomagnetic switching of the anomalous Hall effect in an antiferromagnet at room temperature. Nat. Phys. 18, 1086–1093 (2022).

    Article  CAS  Google Scholar 

  163. Taylor, J. M. et al. Anomalous and topological Hall effects in epitaxial thin films of the noncollinear antiferromagnet Mn3Sn. Phys. Rev. B 101, 094404 (2020).

    Article  CAS  Google Scholar 

  164. Liu, X. et al. Topological spin textures in a non-collinear antiferromagnet system. Adv. Mater. 35, 2211634 (2023).

    Article  CAS  Google Scholar 

  165. Kimbell, G., Kim, C., Wu, W., Cuoco, M. & Robinson, J. W. A. Challenges in identifying chiral spin textures via the topological Hall effect. Commun. Mater. 3, 19 (2022).

    Article  Google Scholar 

  166. Sugimoto, S. et al. Electrical nucleation, displacement, and detection of antiferromagnetic domain walls in the chiral antiferromagnet Mn3Sn. Commun. Phys. 3, 111 (2020). This work investigates the domain wall motion in a non-collinear antiferromagnet with electrical measurements.

    Article  CAS  Google Scholar 

  167. Seemann, M., Ködderitzsch, D., Wimmer, S. & Ebert, H. Symmetry-imposed shape of linear response tensors. Phys. Rev. B 92, 155138 (2015).

    Article  Google Scholar 

  168. Brown, P. J., Nunez, V., Tasset, F., Forsyth, J. B. & Radhakrishna, P. Determination of the magnetic structure of Mn3Sn using generalized neutron polarization analysis. J. Phys. Condens. Matter 2, 9409 (1990).

    Article  CAS  Google Scholar 

  169. Gradhand, M., Fedorov, D. V., Zahn, P. & Mertig, I. Extrinsic spin Hall effect from first principles. Phys. Rev. Lett. 104, 186403 (2010).

    Article  PubMed  Google Scholar 

  170. Gradhand, M., Fedorov, D. V., Zahn, P. & Mertig, I. Spin Hall angle versus spin diffusion length: tailored by impurities. Phys. Rev. B 81, 245109 (2010).

    Article  Google Scholar 

  171. Guo, G. Y., Murakami, S., Chen, T.-W. & Nagaosa, N. Intrinsic spin Hall effect in platinum: first-principles calculations. Phys. Rev. Lett. 100, 096401 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Phys. Rev. B 77, 165117 (2008).

    Article  Google Scholar 

  173. Gurung, G., Shao, D.-F. & Tsymbal, E. Y. Transport spin polarization of noncollinear antiferromagnetic antiperovskites. Phys. Rev. Mater. 5, 124411 (2021).

    Article  CAS  Google Scholar 

  174. Humphries, A. M. et al. Observation of spin-orbit effects with spin rotation symmetry. Nat. Commun. 8, 911 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Wang, W. et al. Anomalous spin-orbit torques in magnetic single-layer films. Nat. Nanotechnol. 14, 819–824 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019). This paper is a proposal of the presence of the magnetic spin Hall effect in Mn3Sn.

    Article  CAS  PubMed  Google Scholar 

  177. Mook, A., Neumann, R. R., Johansson, A., Henk, J. & Mertig, I. Origin of the magnetic spin Hall effect: spin current vorticity in the Fermi sea. Phys. Rev. Res. 2, 023065 (2020).

    Article  CAS  Google Scholar 

  178. Železný, J., Wadley, P., Olejník, K., Hoffmann, A. & Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).

    Article  Google Scholar 

  179. Han, X., Wang, X., Wan, C., Yu, G. & Lv, X. Spin-orbit torques: materials, physics, and devices. Appl. Phys. Lett. 118, 120502 (2021).

    Article  CAS  Google Scholar 

  180. Song, C. et al. Spin-orbit torques: materials, mechanisms, performances, and potential applications. Prog. Mater. Sci. 118, 100761 (2021).

    Article  CAS  Google Scholar 

  181. Bai, H. et al. Antiferromagnetism: an efficient and controllable spin source. Appl. Phys. Rev. 9, 041316 (2022).

    Article  CAS  Google Scholar 

  182. Fert, A., Ramesh, R., Garcia, V., Casanova, F. & Bibes, M. Electrical control of magnetism by electric field and current-induced torques. Rev. Mod. Phys. 96, 015005 (2024).

    Article  CAS  Google Scholar 

  183. Yu, G. et al. Current-driven perpendicular magnetization switching in Ta/CoFeB/[TaOx or MgO/TaOx] films with lateral structural asymmetry. Appl. Phys. Lett. 105, 102411 (2014).

    Article  Google Scholar 

  184. Yu, G. et al. Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. You, L. et al. Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy. Proc. Natl Acad. Sci. USA 112, 10310–10315 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yu, G. et al. Competing effect of spin-orbit torque terms on perpendicular magnetization switching in structures with multiple inversion asymmetries. Sci. Rep. 6, 23956 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Cui, B. et al. Field-free spin-orbit torque switching of perpendicular magnetization by the Rashba interface. ACS Appl. Mater. Interfaces 11, 39369–39375 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Liu, L. et al. Current-induced magnetization switching in all-oxide heterostructures. Nat. Nanotechnol. 14, 939–944 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).

    Article  PubMed  Google Scholar 

  190. Zhang, W. et al. All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects. Phys. Rev. B 92, 144405 (2015).

    Article  Google Scholar 

  191. Tshitoyan, V. et al. Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn. Phys. Rev. B 92, 214406 (2015).

    Article  Google Scholar 

  192. Ou, Y., Shi, S., Ralph, D. C. & Buhrman, R. A. Strong spin Hall effect in the antiferromagnet PtMn. Phys. Rev. B 93, 220405 (2016).

    Article  Google Scholar 

  193. Zhou, J. et al. Large spin-orbit torque efficiency enhanced by magnetic structure of collinear antiferromagnet IrMn. Sci. Adv. 5, eaau6696 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin-orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Oh, Y.-W. et al. Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotechnol. 11, 878–884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. van den Brink, A. et al. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. 7, 10854 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Han, W. Perspectives for spintronics in 2D materials. APL Mater. 4, 032401 (2016).

    Article  Google Scholar 

  198. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    Article  CAS  Google Scholar 

  199. MacNeill, D. et al. Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    Article  CAS  Google Scholar 

  200. Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Stiehl, G. M. et al. Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β-MoTe2. Phys. Rev. B 100, 184402 (2019).

    Article  CAS  Google Scholar 

  202. Liu, Y. & Shao, Q. Two-dimensional materials for energy-efficient spin-orbit torque devices. ACS Nano 14, 9389–9407 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Shin, I. et al. Spin-orbit torque switching in an all van der Waals heterostructure. Adv. Mater. 34, 2101730 (2022).

    Article  CAS  Google Scholar 

  204. Kao, I.-H. et al. Deterministic switching of a perpendicularly polarized magnet using unconventional spin-orbit torques in WTe2. Nat. Mater. 21, 1029–1034 (2022).

    Article  CAS  PubMed  Google Scholar 

  205. Kurebayashi, H., Garcia, J. H., Khan, S., Sinova, J. & Roche, S. Magnetism, symmetry and spin transport in van der Waals layered systems. Nat. Rev. Phys. 4, 150–166 (2022).

    Article  CAS  Google Scholar 

  206. Zhang, W. et al. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Kondou, K. et al. Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet. Nat. Commun. 12, 6491 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Liu, Y. et al. Current-induced out-of-plane spin accumulation on the (001) surface of the IrMn3 antiferromagnet. Phys. Rev. Appl. 12, 064046 (2019).

    Article  CAS  Google Scholar 

  209. Bai, H. et al. Control of spin-orbit torques through magnetic symmetry in differently oriented noncollinear antiferromagnetic Mn3Pt. Phys. Rev. B 104, 104401 (2021).

    Article  CAS  Google Scholar 

  210. You, Y. et al. Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet. Nat. Commun. 12, 6524 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hazra, B. K. et al. Generation of out-of-plane polarized spin current by spin swapping. Nat. Commun. 14, 4549 (2023). This study is a proposal of the spin swapping mechanism as alternative explanation for the transverse spin currents with out-of-plane spin polarization in Mn3Sn.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Novakov, S. et al. Composite spin Hall conductivity from non collinear antiferromagnetic order. Adv. Mater. 35, 2209866 (2023).

    Article  CAS  Google Scholar 

  213. Cao, C. et al. Anomalous spin current anisotropy in a noncollinear antiferromagnet. Nat. Commun. 14, 5873 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Liang, S. et al. Interface-relevant out-of-plane spin polarization in IrMn3/permalloy bilayers. Phys. Rev. B 107, 184427 (2023).

    Article  CAS  Google Scholar 

  215. Lifshits, M. B. & Dyakonov, M. I. Swapping spin currents: interchanging spin and flow directions. Phys. Rev. Lett. 103, 186601 (2009).

    Article  PubMed  Google Scholar 

  216. Amin, V., Zemen, J. & Stiles, M. Interface-generated spin currents. Phys. Rev. Lett. 121, 136805 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Amin, V. P., Haney, P. M. & Stiles, M. D. Interfacial spin-orbit torques. J. Appl. Phys. 128, 151101 (2020).

    Article  CAS  Google Scholar 

  218. Meng, D. et al. Field-free spin-orbit torque driven perpendicular magnetization switching of ferrimagnetic layer based on noncollinear antiferromagnetic spin source. Adv. Electron. Mater. 10, 2300665 (2024).

    Article  CAS  Google Scholar 

  219. Hu, S. et al. Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet. Nat. Commun. 13, 4447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Wang, X. et al. Spin currents with unusual spin orientations in noncollinear Weyl antiferromagnetic Mn3Sn. Phys. Rev. Mater. 7, 034404 (2023).

    Article  CAS  Google Scholar 

  221. Karimeddiny, S., Mittelstaedt, J. A., Buhrman, R. A. & Ralph, D. C. Transverse and longitudinal spin-torque ferromagnetic resonance for improved measurement of spin-orbit torque. Phys. Rev. Appl. 14, 024024 (2020).

    Article  CAS  Google Scholar 

  222. Cham, T. M., Karimeddiny, S., Gupta, V., Mittelstaedt, J. A. & Ralph, D. C. Separation of artifacts from spin torque ferromagnetic resonance measurements of spin orbit torque for the low symmetry van der Waals semi metal ZrTe3. Adv. Quantum Technol. 5, 2100111 (2022).

    Article  CAS  Google Scholar 

  223. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Orbitronics: the intrinsic orbital current in p-doped silicon. Phys. Rev. Lett. 95, 066601 (2005).

    Article  PubMed  Google Scholar 

  224. Kontani, H., Tanaka, T., Hirashima, D. S., Yamada, K. & Inoue, J. Giant orbital Hall effect in transition metals: origin of large spin and anomalous Hall effects. Phys. Rev. Lett. 102, 016601 (2009).

    Article  CAS  PubMed  Google Scholar 

  225. Go, D., Jo, D., Kim, C. & Lee, H.-W. Intrinsic spin and orbital Hall effects from orbital texture. Phys. Rev. Lett. 121, 086602 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Bose, A. et al. Detection of long-range orbital-Hall torques. Phys. Rev. B 107, 134423 (2023).

    Article  CAS  Google Scholar 

  227. Choi, Y.-G. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–56 (2023).

    Article  CAS  PubMed  Google Scholar 

  228. Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

    Article  PubMed  Google Scholar 

  229. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  CAS  PubMed  Google Scholar 

  230. Bodnar, S. Y. et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Wadley, P. et al. Current polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 13, 362–365 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Reimers, S. et al. Current-driven writing process in antiferromagnetic Mn2Au for memory applications. Nat. Commun. 14, 1861 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Gomonay, O. V. & Loktev, V. M. Using generalized Landau–Lifshitz equations to describe the dynamics of multi-sublattice antiferromagnets induced by spin-polarized current. Low Temp. Phys. 41, 698–704 (2015).

    Article  CAS  Google Scholar 

  234. Fujita, H. Field-free, spin-current control of magnetization in non-collinear chiral antiferromagnets. Phys. Stat. Sol. Rapid Res. Lett. 11, 1600360 (2017).

    Google Scholar 

  235. Yamane, Y., Gomonay, O. & Sinova, J. Dynamics of noncollinear antiferromagnetic textures driven by spin current injection. Phys. Rev. B 100, 054415 (2019).

    Article  CAS  Google Scholar 

  236. Gurung, G., Shao, D.-F. & Tsymbal, E. Y. Spin-torque switching of noncollinear antiferromagnetic antiperovskites. Phys. Rev. B 101, 140405 (2020).

    Article  CAS  Google Scholar 

  237. Ghosh, S., Manchon, A. & Železný, J. Unconventional robust spin-transfer torque in noncollinear antiferromagnetic junctions. Phys. Rev. Lett. 128, 097702 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. Tsai, H. et al. Large Hall signal due to electrical switching of an antiferromagnetic Weyl semimetal state. Small Sci. 1, 2000025 (2021).

    Article  CAS  Google Scholar 

  239. Tsai, H. et al. Spin-orbit torque switching of the antiferromagnetic state in polycrystalline Mn3Sn/Cu/heavy metal heterostructures. AIP Adv. 11, 045110 (2021).

    Article  CAS  Google Scholar 

  240. Krishnaswamy, G. K. et al. Time-dependent multistate switching of topological antiferromagnetic order in Mn3Sn. Phys. Rev. Appl. 18, 024064 (2022).

    Article  CAS  Google Scholar 

  241. Olejník, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Meinert, M., Graulich, D. & Matalla-Wagner, T. Electrical switching of antiferromagnetic Mn2Au and the role of thermal activation. Phys. Rev. Appl. 9, 064040 (2018).

    Article  CAS  Google Scholar 

  243. Muduli, P. K. et al. Evaluation of spin diffusion length and spin Hall angle of the antiferromagnetic Weyl semimetal Mn3Sn. Phys. Rev. B 99, 184425 (2019).

    Article  CAS  Google Scholar 

  244. Park, P. et al. Magnetic excitations in non-collinear antiferromagnetic Weyl semimetal Mn3Sn. npj Quantum Mater. 3, 63 (2018).

    Article  CAS  Google Scholar 

  245. Cheng, B. et al. Terahertz conductivity of the magnetic Weyl semimetal Mn3Sn films. Appl. Phys. Lett. 115, 012405 (2019).

    Article  Google Scholar 

  246. Matsuda, T. et al. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films. Nat. Commun. 11, 909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Matsuda, T. et al. Ultrafast dynamics of intrinsic anomalous Hall effect in the topological antiferromagnet Mn3Sn. Phys. Rev. Lett. 130, 126302 (2023).

    Article  CAS  PubMed  Google Scholar 

  248. Arpaci, S. et al. Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements. Nat. Commun. 12, 3828 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Amin, V. P., Li, J., Stiles, M. D. & Haney, P. M. Intrinsic spin currents in ferromagnets. Phys. Rev. B 99, 220405 (2019).

    Article  CAS  Google Scholar 

  250. Céspedes Berrocal, D. et al. Current induced spin torques on single GdFeCo magnetic layers. Adv. Mater. 33, 2007047 (2021).

    Article  Google Scholar 

  251. Go, D. et al. Noncollinear spin current for switching of chiral magnetic textures. Phys. Rev. Lett. 129, 097204 (2022).

    Article  CAS  PubMed  Google Scholar 

  252. Xie, H. et al. Magnetization switching in polycrystalline Mn3Sn thin film induced by self-generated spin-polarized current. Nat. Commun. 13, 5744 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  254. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  Google Scholar 

  255. Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

    Article  CAS  Google Scholar 

  256. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  CAS  PubMed  Google Scholar 

  257. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Article  CAS  PubMed  Google Scholar 

  258. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    Article  CAS  PubMed  Google Scholar 

  259. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    Article  CAS  PubMed  Google Scholar 

  260. Fina, I. et al. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat. Commun. 5, 4671 (2014).

    Article  CAS  PubMed  Google Scholar 

  261. Du, A. et al. Electrical manipulation and detection of antiferromagnetism in magnetic tunnel junctions. Nat. Electron. 6, 425–433 (2023).

    Article  CAS  Google Scholar 

  262. Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Article  Google Scholar 

  263. Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin–momentum coupling. Phys. Rev. X 12, 011028 (2022).

    Google Scholar 

  264. Dong, J. et al. Tunneling magnetoresistance in noncollinear antiferromagnetic tunnel junctions. Phys. Rev. Lett. 128, 197201 (2022).

    Article  CAS  PubMed  Google Scholar 

  265. Shi, J. et al. Electrically controlled all-antiferromagnetic tunnel junctions on silicon with large room-temperature magnetoresistance. Adv. Mater. 36, 2312008 (2024).

    Article  CAS  Google Scholar 

  266. Krén, E., Kádár, G., Pál, L. & Szabó, P. Investigation of the first-order magnetic transformation in Mn3Pt. J. Appl. Phys. 38, 1265–1266 (1967).

    Article  Google Scholar 

  267. Mathon, J. & Umerski, A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 63, 220403 (2001).

    Article  Google Scholar 

  268. Butler, W. H., Zhang, X.-G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe MgO Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Article  Google Scholar 

  269. Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015).

    Article  CAS  PubMed  Google Scholar 

  270. Yang, S.-H., Garg, C. & Parkin, S. S. P. Chiral exchange drag and chirality oscillations in synthetic antiferromagnets. Nat. Phys. 15, 543–548 (2019).

    Article  CAS  Google Scholar 

  271. Li, X. et al. Chiral domain walls of Mn3Sn and their memory. Nat. Commun. 10, 3021 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Wu, M. et al. Current-driven fast magnetic octupole domain-wall motion in noncollinear antiferromagnets. Nat. Commun. 15, 4305 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  274. Felser, C. & Gooth, J. Topology and chirality. Preprint at https://arXiv.org/abs/2205.05809 (2022).

  275. Kawamura, H. Spin- and chirality-orderings of frustrated magnets stacked-triangular anti-ferromagnets and spin glasses. Can. J. Phys. 79, 1447–1458 (2001).

    CAS  Google Scholar 

  276. Dresselhaus, M. S., Dresselhaus, G. & Jorio, A. Group Theory: Application to the Physics of Condensed Matter (Springer-Verlag, 2008).

  277. Suzuki, M.-T., Koretsune, T., Ochi, M. & Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 95, 094406 (2017).

    Article  Google Scholar 

  278. Yoon, J.-Y. et al. Handedness anomaly in a non-collinear antiferromagnet under spin-orbit torque. Nat. Mater. 22, 1106–1113 (2023).

    Article  CAS  PubMed  Google Scholar 

  279. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A Math. Phys. Sci. 392, 45–57 (1984).

    Article  Google Scholar 

  280. Gradhand, M. et al. First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons. J. Phys. Condens. Matter 24, 213202 (2012).

    Article  CAS  PubMed  Google Scholar 

  281. Zhang, Y. et al. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, Pt). Phys. Rev. B 95, 075128 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge J.-C. Jeon and A. Johansson for critically revising the manuscript and J. Taylor, J. Joon and R. Neumann for insightful discussions. The authors extend our thanks to B. K. Hazra, H. Meyerheim, G. Woltersdorf, I. Mertig and C. Felser for the many years of fruitful collaboration.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Stuart S. P. Parkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Yaroslav Tserkovnyak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rimmler, B.H., Pal, B. & Parkin, S.S.P. Non-collinear antiferromagnetic spintronics. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00706-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00706-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing