Abstract
Spintronics aims to go beyond the charge-based paradigm of silicon-based microelectronics by utilizing the spin degree of freedom for memory, storage and computing applications. State-of-the-art spintronic devices rely on the manipulation of magnetic textures by spin torques that are generated from electrical currents within ferromagnets (FMs) (spin-transfer torque) or proximal heavy metals (spin-orbit torque). Although these concepts have led to important commercial applications, the use of FMs poses challenges owing to their stray fields, relatively slow dynamics and limited thermal stability. To overcome these challenges, new materials are needed, especially those that display negligible stray fields such as antiferromagnets (AFs). In this regard, synthetic AFs have been vitally important since their use in the very first spintronic field sensors and memories. Collinear AFs have found applications in stabilizing magnetic textures via interfacial exchange bias. Going beyond these classes of AFs, the family of non-collinear AFs (NCAFs) with triangular spin textures has attractive properties, some of them even reminiscent of FMs. These include, for example, large anomalous Hall and Nernst effects, and substantial magneto-optical responses, despite their nearly fully compensated magnetization. Thus, one can anticipate their use in substituting FMs in future spintronic devices. Furthermore, these novel AFs convert electrical currents to spin currents with unique symmetries, which may allow for new ways to manipulate spin textures. Here, we review recent developments in non-collinear antiferromagnetic spintronics. Emphasis is placed on spin current generation, switching of spin textures and applications in magnetic random access memory and racetrack memory, as well as so-far unexplored materials. We show that although key components of spintronic devices based on NCAFs have been demonstrated, a wide range of potential materials remain to be explored and many open questions remain to be answered. Thus, the field of NCAFs is a vibrant and exciting subfield of spintronics with much potential for next-generation memory and computing technologies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).
Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020).
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).
Bläsing, R. et al. Magnetic racetrack memory: from physics to the cusp of applications within a decade. Proc. IEEE 108, 1303–1321 (2020).
Duine, R. A., Lee, K.-J., Parkin, S. S. P. & Stiles, M. D. Synthetic antiferromagnetic spintronics. Nat. Phys. 14, 217–219 (2018).
Yang, S.-H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).
MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 3098–3114 (2011).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
Gomonay, O., Jungwirth, T. & Sinova, J. Concepts of antiferromagnetic spintronics. Phys. Stat. Sol. Rapid Res. Lett. 11, 1700022 (2017).
Šmejkal, L. & Jungwirth, T. in Topology in Magnetism Vol. 192 of Springer Series in Solid-State Sciences (eds Zang, J., Cros, V. & Hoffmann, A.) (Springer International Publishing, 2018).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018). This paper is a seminal comprehensive review on the state of antiferromagnetic spintronics as of 2018.
Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).
Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics. Nat. Phys. 14, 229–241 (2018).
Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).
Bonbien, V. et al. Topological aspects of antiferromagnets. J. Phys. D Appl. Phys. 55, 103002 (2021).
Chen, H. et al. Emerging antiferromagnets for spintronics. Adv. Mater. 36, 2310379 (2024).
Sinova, J., Valunzela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).
Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).
Shao, Q. et al. Roadmap of spin-orbit torques. IEEE Trans. Magn. 57, 1–39 (2021).
Cheong, S.-W., Fiebig, M., Wu, W., Chapon, L. & Kiryukhin, V. Seeing is believing: visualization of antiferromagnetic domains. npj Quantum Mater. 5, 3 (2020).
Gomonay, E. V. & Loktev, V. M. Spintronics of antiferromagnetic systems (Review Article). Low Temp. Phys. 40, 17–35 (2014).
Barman, A. et al. The 2021 magnonics roadmap. J. Phys. Condens. Matter 33, 413001 (2021).
Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684–695 (2023).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010). This paper is a seminal comprehensive review on the anomalous Hall effect.
Chen, H., Niu, Q. & MacDonald, A. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).
Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014). This paper and the paper by Chen, Niu & MacDonald are seminal works predicting a non-zero anomalous Hall effect in certain non-collinear antiferromagnets.
Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).
Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016). This paper and the paper by Nakatsuji, Kiyohara & Higo are seminal works confirming the presence of a non-zero anomalous Hall effect in a single-crystal sample of a non-collinear antiferromagnet.
Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).
Hirsch, J. E. Spin Hall Effect. Phys. Rev. Lett. 83, 1834–1837 (1999).
Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017). This paper shows the prediction of unusual transverse and longitudinal spin transport effects in non-collinear antiferromagnets.
Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020). This paper demonstrates the manipulation of non-collinear antiferromagnetic order by spin-orbit torque.
Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022).
Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque. Sci. Adv. 8, eabo5930 (2022). This paper demonstrates the important role of heating and predicts a novel type of spin-orbit torque switching scheme.
Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023). Two papers report the tunnelling magnetoresistance-like effects in tunnel junctions made only of non-collinear antiferromagnets.
Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023). Two papers report the tunnelling magnetoresistance-like effects in tunnel junctions made only of non-collinear antiferromagnets.
Bauer, G. E. W., Saitoh, E. & Wees, B. J. V. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).
Mizuguchi, M. & Nakatsuji, S. Energy-harvesting materials based on the anomalous Nernst effect. Sci. Technol. Adv. Mater. 20, 262–275 (2019).
Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114–1135 (2021).
Yang, G. et al. The role of spin in thermoelectricity. Nat. Rev. Phys. 5, 466–482 (2023).
Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).
Huang, Z. J., Cao, Y., Sun, Y. Y., Xue, Y. Y. & Chu, C. W. Coupling between the ferroelectric and antiferromagnetic orders in YMnO3. Phys. Rev. B 56, 2623–2626 (1997).
Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).
Lorenz, B. Hexagonal manganites RMnO3: class (I) multiferroics with strong coupling of magnetism and ferroelectricity. Int. Sch. Res. Notices 2013, e497073 (2013).
Li, F. et al. All-electrical reading and writing of spin chirality. Sci. Adv. 8, eadd6984 (2022).
Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).
Ueda, K. et al. Spontaneous Hall effect in the Weyl semimetal candidate of all-in all-out pyrochlore iridate. Nat. Commun. 9, 3032 (2018).
Kim, W. J. et al. Unconventional anomalous Hall effect from antiferromagnetic domain walls of Nd2Ir2O7 thin films. Phys. Rev. B 98, 125103 (2018).
Hanke, J.-P., Freimuth, F., Blügel, S. & Mokrousov, Y. Prototypical topological orbital ferromagnet γ-FeMn. Sci. Rep. 7, 41078 (2017).
Grytsiuk, S. et al. Topological–chiral magnetic interactions driven by emergent orbital magnetism. Nat. Commun. 11, 511 (2020).
Kipp, J. et al. The chiral Hall effect in canted ferromagnets and antiferromagnets. Commun. Phys. 4, 99 (2021).
Zhu, Y.-P. et al. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).
Mulder, C. A. M., Van Duyneveldt, A. J. & Mydosh, J. A. Susceptibility of the CuMn spin-glass: frequency and field dependences. Phys. Rev. B 23, 1384–1396 (1981).
Binder, K. & Young, A. P. Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986).
Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).
Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).
Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).
Krén, E. & Kádár, G. Neutron diffraction study of Mn3Ga. Solid State Commun. 8, 1653–1655 (1970).
Nagamiya, T., Tomiyoshi, S. & Yamaguchi, Y. Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge. Solid State Commun. 42, 385–388 (1982).
Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn. 51, 2478–2486 (1982).
Yamada, N., Sakai, H., Mori, H. & Ohoyama, T. Magnetic properties of ε-Mn3Ge. Phys. B+C 149, 311–315 (1988).
Zhang, D. et al. First-principles study of the structural stability of cubic, tetragonal and hexagonal phases in Mn3Z (Z=Ga, Sn and Ge) Heusler compounds. J. Phys. Condens. Matter 25, 206006 (2013).
Winterlik, J. et al. Design scheme of new tetragonal Heusler compounds for spin-transfer torque applications and its experimental realization. Adv. Mater. 24, 6283–6287 (2012).
Yamaoka, T. Antiferromagnetism in γ-phase Mn–Ir alloys. J. Phys. Soc. Jpn. 36, 445–450 (1974).
Tomeno, I., Fuke, H. N., Iwasaki, H., Sahashi, M. & Tsunoda, Y. Magnetic neutron scattering study of ordered Mn3Ir. J. Appl. Phys. 86, 3853–3856 (1999).
Krén, E., Kádár, G., Pál, L., Sólyom, J. & Szabó, P. Magnetic structures and magnetic transformations in ordered Mn3(Rh, Pt) alloys. Phys. Lett. 20, 331–332 (1966).
Krén, E. et al. Magnetic structures and exchange interactions in the Mn–Pt system. Phys. Rev. 171, 574–585 (1968).
Fruchart, D. & Bertaut, E. F. Magnetic studies of the metallic perovskite-type compounds of manganese. J. Phys. Soc. Jpn. 44, 781–791 (1978).
Niewa, R. Metal-rich ternary perovskite nitrides. Eur. J. Inorg. Chem. 2019, 3647–3660 (2019).
Wang, Y. et al. Antiperovskites with exceptional functionalities. Adv. Mater. 32, 1905007 (2020).
Coey, J. M. D., Givord, D. & Fruchart, D. Metallic nitride and carbide perovskites: history and prospects. ECS J. Solid State Sci. Technol. 11, 055002 (2022).
Takei, W. J., Shirane, G. & Frazer, B. C. Magnetic structure of Mn4N. Phys. Rev. 119, 122–126 (1960).
Takei, W. J., Heikes, R. R. & Shirane, G. Magnetic structure of Mn4N-type compounds. Phys. Rev. 125, 1893–1897 (1962).
Kuriyama, M., Hosoya, S. & Suzuki, T. Electron number of the nitrogen atom in Mn4N. Phys. Rev. 130, 898–899 (1963).
Mekata, M., Haruna, J. & Takaki, H. Localized magnetic moments in Mn4N. J. Phys. Soc. Jpn. 21, 2267–2273 (1966).
Bouchaud, J. P. Contribution à l’étude du système manganèse-carbone et des perowskites métalliques du manganèse. Thèse de doctorat d’Etat, Paris (1967).
Fruchart, M. R. et al. Sur les transitions magnetiques du premier ordre dans les perowskites metalliques du manganese. Mater. Res. Bull. 2, 1009–1020 (1967).
Bertaut, E. F., Fruchart, D., Bouchaud, J. P. & Fruchart, R. Diffraction neutronique de Mn3GaN. Solid State Commun. 6, 251–256 (1968).
Barberon, M., Madar, R., Fruchart, E., Lorthioir, G. & Fruchart, R. Etude du facteur de diffusion de l’azote dans la solution solide Mn4N-GaMn3N. Mater. Res. Bull. 5, 903–912 (1970).
Barberon, M., Madar, R., Fruchart, M. E., Lorthioir, G. & Fruchart, R. Les deformations quadratiques T1 et T4 dans les carbures et nitrures perowskites du manganese. Mater. Res. Bull. 5, 1–7 (1970).
Madar, R. Contribution à l’étude des transitions magnétiques du premier ordre des nitrures métalliques du manganèse de type perowskite. Thèse de doctorat d’Etat, Orsay (1970).
Fruchart, D., Bertaut, E. F., Madar, R. & Fruchart, R. Diffraction neutronique de Mn3ZnN. Le J. de Phys. Colloques 32, 876 (1971).
Fruchart, D., Bertaut, E. F., Madar, R., Lorthioir, G. & Fruchart, R. Structure magnetique et rotation de spin de Mn3NiN. Solid State Commun. 9, 1793–1797 (1971).
Fruchart, R., Madar, R., Barberon, M., Fruchart, E. & Lorthioir, M. G. Transitions magnétiques et déformations cristallographiques associées dans les nitrures du type perowskite ZnMn3N et SnMn3N. Le J. de Phys. Colloques 32, 982–984 (1971).
Barberon, M. et al. Un nouveau type de deformation orthorhombique dans les perovskites metalliques. Mater. Res. Bull. 7, 109–118 (1972).
Bertaut, E. F. & Fruchart, D. Rotation des moments magnetiques du manganese dans Mn3NiN. Int. J. Magn. 2, 259–264 (1972).
Nardin, M., Lorthioir, G., Barberon, M., Fruchart, F. & Fruchart, R. Etude de cinq nouveaux nitrures test de type perovskite. C. R. Acad. Sci. 274, 4 (1972).
Barberon, M. Transformations cristallographiques et transitions magnétiques des perowskites métalliques du manganèseMMn3N (M = Ge, Sn, As, Sb). Thèse de doctorat d’Etat, Paris (1973).
Fruchart, D., Madar, R., Fruchart, E. & Fruchart, R. Structure et Comportement Magnetique de Mn3CuN et Mn3SnC. Int. Kern. Kerntechn 8, 1326–1330 (1973).
Fruchart, D. & Bertaut, E. F. Magnetic behavior of the perovskite-type compound: Mn3AgN. Proc. Int. Conf. Magn. 4, 572 (1974).
Fruchart, D. Etudes par diffraction neutronique des perovskites metalliques Mn3MX, carbures (X = C; M = Zn, Ga, Sn), nitrures (X = N; M = Ni, Cu, Zn, Ga, Rh, Ag, Sn, Sb, Pt). Thèse de doctorat d’Etat, Grenoble INP (1976).
Fruchart, D. Magnetic properties of the metallic perovskite compounds Mn3MX. Phys. B+C 86–88, 423–425 (1977).
Fruchart, D., Bertaut, E. F., Sénateur, J. P. & Fruchart, R. Magnetic studies on the metallic perovskite-type compound Mn3SnN. J. Phys. Lett. 38, 21–23 (1977).
l’Héritier, P., Boursier, D., Fruchart, R. & Fruchart, D. Structures magnetiques et transitions du premier ordre dans les perovskites metalliques GaMn3(C1−xNx). Relation avec les composes de terres rares a changement de valence. Mater. Res. Bull. 14, 1203–1212 (1979).
l’Héritier, P., Fruchart, D., Madar, R. & Fruchart, R. Instabilites electroniques dans les composes du manganese de type perovskite metallique. Relation avec les changements de valence dans les composes de terres rares. Mater. Res. Bull. 14, 1089–1094 (1979).
Fruchart, D., L’Héritier, P. & Fruchart, R. Transformations de phases dans les nitrures et carbures du manganese de structure-type perovskite. Mater. Res. Bull. 15, 415–420 (1980).
L’Héritier, P. Etude expérimentale des instabilités électroniques dans les carbures et nitrures ternaires du manganèse de type pérovskite. Thèse de doctorat d’Etat, Grenoble INP (1980).
Sun, Y. et al. Neutron diffraction study of unusual phase separation in the antiperovskite nitride Mn3ZnN. Inorg. Chem. 51, 7232–7236 (2012).
Sun, Y. S. et al. Magnetic and electrical properties of antiperovskite Mn3InN synthesized by a high-pressure method. J. Phys. Conf. Ser. 400, 032094 (2012).
Wu, M. et al. Magnetic structure and lattice contraction in Mn3NiN. J. Appl. Phys. 114, 123902 (2013).
Takenaka, K. et al. Magnetovolume effects in manganese nitrides with antiperovskite structure. Sci. Technol. Adv. Mater. 15, 015009 (2014).
Boldrin, D. et al. Multisite exchange-enhanced barocaloric response in Mn3NiN. Phys. Rev. X 8, 041035 (2018).
Tan, S. et al. An antiperovskite compound with multifunctional properties: Mn3PdN. J. Solid State Chem. 302, 122389 (2021).
He, Y. et al. Noncollinear ferrimagnetism and anomalous Hall effects in Mn4N thin films. Phys. Rev. B 106, L060409 (2022).
Liu, J. & Balents, L. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 119, 087202 (2017).
Zhou, X. et al. Spin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets Mn3XN with X = Ga, Zn, Ag, or Ni. Phys. Rev. B 99, 104428 (2019).
Gomonaj, E. V. & L’vov, V. A. Phenomenologic study of phase transitions in noncollinear antiferromagnets of metallic perovskite type. Ph. Transit. 38, 15–31 (1992).
Nan, T. et al. Controlling spin current polarization through non-collinear antiferromagnetism. Nat. Commun. 11, 4671 (2020). The spin-torque ferromagnetic resonance study investigates the presence of transverse spin currents with unusual spin polarization directions in a non-collinear antiferromagnet.
Johnson, F. et al. Identifying the octupole antiferromagnetic domain orientation in Mn3NiN by scanning anomalous Nernst effect microscopy. Appl. Phys. Lett. 120, 232402 (2022).
Rendell-Bhatti, F. et al. Improving barocaloric properties by tailoring transition hysteresis in Mn3Cu1−xSnxN antiperovskites. J. Phys. Energy 5, 024018 (2023).
Lukashev, P., Sabirianov, R. F. & Belashchenko, K. Theory of the piezomagnetic effect in Mn-based antiperovskites. Phys. Rev. B 78, 184414 (2008).
Lukashev, P. & Sabirianov, R. F. Spin density in frustrated magnets under mechanical stress: Mn-based antiperovskites. J. Appl. Phys. 107, 09E115 (2010).
Lukashev, P. & Sabirianov, R. F. Flexomagnetic effect in frustrated triangular magnetic structures. Phys. Rev. B 82, 094417 (2010).
Zemen, J. et al. Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: ab initio theory. Phys. Rev. B 95, 184438 (2017).
Zemen, J., Gercsi, Z. & Sandeman, K. G. Piezomagnetism as a counterpart of the magnetovolume effect in magnetically frustrated Mn-based antiperovskite nitrides. Phys. Rev. B 96, 024451 (2017).
Boldrin, D. et al. Giant piezomagnetism in Mn3NiN. ACS Appl. Mater. Interfaces 10, 18863–18868 (2018).
Boldrin, D. et al. The biaxial strain dependence of magnetic order in spin frustrated Mn3NiN thin films. Adv. Funct. Mater. 29, 1902502 (2019).
Quintela, C. X. et al. Epitaxial antiperovskite/perovskite heterostructures for materials design. Sci. Adv. 6, eaba4017 (2020).
Yan, H. et al. Electric-field-controlled antiferromagnetic spintronic devices. Adv. Mater. 32, 1905603 (2020).
You, Y. et al. Room temperature anomalous Hall effect in antiferromagnetic Mn3SnN films. Appl. Phys. Lett. 117, 222404 (2020).
Rimmler, B. H. et al. Atomic displacements enabling the observation of the anomalous Hall effect in a non-collinear antiferromagnet. Adv. Mater. 35, 2209616 (2023). The paper shows that the observation of transport effects in antiperovskites does not require tetragonal distortion.
Taylor, J. M. et al. Magnetic and electrical transport signatures of uncompensated moments in epitaxial thin films of the noncollinear antiferromagnet Mn3Ir. Appl. Phys. Lett. 115, 062403 (2019).
Liu, Z. Q. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).
Boldrin, D. et al. Anomalous Hall effect in noncollinear antiferromagnetic Mn3NiN thin films. Phys. Rev. Mater. 3, 094409 (2019).
Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018). This paper reports the observation of a Berry curvature-driven magneto-optical Kerr effect in a non-collinear antiferromagnet.
Feng, W., Guo, G.-Y., Zhou, J., Yao, Y. & Niu, Q. Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3X (X = Rh, Ir, Pt). Phys. Rev. B 92, 144426 (2015).
Wu, M. et al. Magneto-optical Kerr effect in a non-collinear antiferromagnet Mn3Ge. Appl. Phys. Lett. 116, 132408 (2020).
Yamasaki, Y., Nakao, H. & Arima, T.-h Augmented magnetic octupole in kagomé 120-degree antiferromagnets detectable via X-ray magnetic circular dichroism. J. Phys. Soc. Jpn. 89, 083703 (2020).
Kimata, M. et al. X-ray study of ferroic octupole order producing anomalous Hall effect. Nat. Commun. 12, 5582 (2021).
Reichlova, H. et al. Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn. Nat. Commun. 10, 5459 (2019).
Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).
Wuttke, C. et al. Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge. Phys. Rev. B 100, 085111 (2019).
Zhou, X. et al. Giant anomalous Nernst effect in noncollinear antiferromagnetic Mn-based antiperovskite nitrides. Phys. Rev. Mater. 4, 024408 (2020).
Beckert, S. et al. Anomalous Nernst effect in Mn3NiN thin films. Phys. Rev. B 108, 024420 (2023).
Bai, H. et al. Size-dependent anomalous Hall effect in noncollinear antiferromagnetic Mn3Sn films. Appl. Phys. Lett. 117, 052404 (2020).
Yan, G. Q. et al. Quantum sensing and imaging of spin-orbit-torque-driven spin dynamics in the non-collinear antiferromagnet Mn3Sn. Adv. Mater. 34, 2200327 (2022).
Li, S. et al. Nanoscale magnetic domains in polycrystalline Mn3Sn films imaged by a scanning single-spin magnetometer. Nano Lett. 23, 5326–5333 (2023).
Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin-orbit torque. Nat. Mater. 20, 1364–1370 (2021).
Krizek, F. et al. Atomically sharp domain walls in an antiferromagnet. Sci. Adv. 8, eabn3535 (2022).
Reimers, S. et al. Defect-driven antiferromagnetic domain walls in CuMnAs films. Nat. Commun. 13, 724 (2022).
Gurung, G., Shao, D.-F., Paudel, T. R. & Tsymbal, E. Y. Anomalous Hall conductivity of noncollinear magnetic antiperovskites. Phys. Rev. Mater. 3, 044409 (2019).
Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. N. J. Phys. 19, 015008 (2017).
Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).
Kübler, J. & Felser, C. Weyl fermions in antiferromagnetic Mn3Sn and Mn3Ge. Europhys. Lett. 120, 47002 (2018).
Huyen, V. T. N., Suzuki, M.-T., Yamauchi, K. & Oguchi, T. Topology analysis for anomalous Hall effect in the noncollinear antiferromagnetic states of Mn3AN (A = Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt). Phys. Rev. B 100, 094426 (2019).
Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).
Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022).
Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).
Fedchenko, O. et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 10, eadj4883 (2024).
Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024).
Reimers, S. et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun. 15, 2116 (2024).
Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).
Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).
González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).
Shao, D.-F., Zhang, S.-H., Li, M., Eom, C.-B. & Tsymbal, E. Y. Spin-neutral currents for spintronics. Nat. Commun. 12, 7061 (2021).
Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022).
Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).
Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022).
Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).
Shao, D.-F. et al. Néel spin currents in antiferromagnets. Phys. Rev. Lett. 130, 216702 (2023).
Cheong, S.-W. & Huang, F.-T. Altermagnetism with non-collinear spins. npj Quantum Mater. 9, 13 (2024).
Ikhlas, M. et al. Piezomagnetic switching of the anomalous Hall effect in an antiferromagnet at room temperature. Nat. Phys. 18, 1086–1093 (2022).
Taylor, J. M. et al. Anomalous and topological Hall effects in epitaxial thin films of the noncollinear antiferromagnet Mn3Sn. Phys. Rev. B 101, 094404 (2020).
Liu, X. et al. Topological spin textures in a non-collinear antiferromagnet system. Adv. Mater. 35, 2211634 (2023).
Kimbell, G., Kim, C., Wu, W., Cuoco, M. & Robinson, J. W. A. Challenges in identifying chiral spin textures via the topological Hall effect. Commun. Mater. 3, 19 (2022).
Sugimoto, S. et al. Electrical nucleation, displacement, and detection of antiferromagnetic domain walls in the chiral antiferromagnet Mn3Sn. Commun. Phys. 3, 111 (2020). This work investigates the domain wall motion in a non-collinear antiferromagnet with electrical measurements.
Seemann, M., Ködderitzsch, D., Wimmer, S. & Ebert, H. Symmetry-imposed shape of linear response tensors. Phys. Rev. B 92, 155138 (2015).
Brown, P. J., Nunez, V., Tasset, F., Forsyth, J. B. & Radhakrishna, P. Determination of the magnetic structure of Mn3Sn using generalized neutron polarization analysis. J. Phys. Condens. Matter 2, 9409 (1990).
Gradhand, M., Fedorov, D. V., Zahn, P. & Mertig, I. Extrinsic spin Hall effect from first principles. Phys. Rev. Lett. 104, 186403 (2010).
Gradhand, M., Fedorov, D. V., Zahn, P. & Mertig, I. Spin Hall angle versus spin diffusion length: tailored by impurities. Phys. Rev. B 81, 245109 (2010).
Guo, G. Y., Murakami, S., Chen, T.-W. & Nagaosa, N. Intrinsic spin Hall effect in platinum: first-principles calculations. Phys. Rev. Lett. 100, 096401 (2008).
Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Phys. Rev. B 77, 165117 (2008).
Gurung, G., Shao, D.-F. & Tsymbal, E. Y. Transport spin polarization of noncollinear antiferromagnetic antiperovskites. Phys. Rev. Mater. 5, 124411 (2021).
Humphries, A. M. et al. Observation of spin-orbit effects with spin rotation symmetry. Nat. Commun. 8, 911 (2017).
Wang, W. et al. Anomalous spin-orbit torques in magnetic single-layer films. Nat. Nanotechnol. 14, 819–824 (2019).
Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019). This paper is a proposal of the presence of the magnetic spin Hall effect in Mn3Sn.
Mook, A., Neumann, R. R., Johansson, A., Henk, J. & Mertig, I. Origin of the magnetic spin Hall effect: spin current vorticity in the Fermi sea. Phys. Rev. Res. 2, 023065 (2020).
Železný, J., Wadley, P., Olejník, K., Hoffmann, A. & Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).
Han, X., Wang, X., Wan, C., Yu, G. & Lv, X. Spin-orbit torques: materials, physics, and devices. Appl. Phys. Lett. 118, 120502 (2021).
Song, C. et al. Spin-orbit torques: materials, mechanisms, performances, and potential applications. Prog. Mater. Sci. 118, 100761 (2021).
Bai, H. et al. Antiferromagnetism: an efficient and controllable spin source. Appl. Phys. Rev. 9, 041316 (2022).
Fert, A., Ramesh, R., Garcia, V., Casanova, F. & Bibes, M. Electrical control of magnetism by electric field and current-induced torques. Rev. Mod. Phys. 96, 015005 (2024).
Yu, G. et al. Current-driven perpendicular magnetization switching in Ta/CoFeB/[TaOx or MgO/TaOx] films with lateral structural asymmetry. Appl. Phys. Lett. 105, 102411 (2014).
Yu, G. et al. Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014).
You, L. et al. Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy. Proc. Natl Acad. Sci. USA 112, 10310–10315 (2015).
Yu, G. et al. Competing effect of spin-orbit torque terms on perpendicular magnetization switching in structures with multiple inversion asymmetries. Sci. Rep. 6, 23956 (2016).
Cui, B. et al. Field-free spin-orbit torque switching of perpendicular magnetization by the Rashba interface. ACS Appl. Mater. Interfaces 11, 39369–39375 (2019).
Liu, L. et al. Current-induced magnetization switching in all-oxide heterostructures. Nat. Nanotechnol. 14, 939–944 (2019).
Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).
Zhang, W. et al. All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects. Phys. Rev. B 92, 144405 (2015).
Tshitoyan, V. et al. Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn. Phys. Rev. B 92, 214406 (2015).
Ou, Y., Shi, S., Ralph, D. C. & Buhrman, R. A. Strong spin Hall effect in the antiferromagnet PtMn. Phys. Rev. B 93, 220405 (2016).
Zhou, J. et al. Large spin-orbit torque efficiency enhanced by magnetic structure of collinear antiferromagnet IrMn. Sci. Adv. 5, eaau6696 (2019).
Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin-orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).
Oh, Y.-W. et al. Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotechnol. 11, 878–884 (2016).
van den Brink, A. et al. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. 7, 10854 (2016).
Han, W. Perspectives for spintronics in 2D materials. APL Mater. 4, 032401 (2016).
Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).
MacNeill, D. et al. Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).
Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).
Stiehl, G. M. et al. Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β-MoTe2. Phys. Rev. B 100, 184402 (2019).
Liu, Y. & Shao, Q. Two-dimensional materials for energy-efficient spin-orbit torque devices. ACS Nano 14, 9389–9407 (2020).
Shin, I. et al. Spin-orbit torque switching in an all van der Waals heterostructure. Adv. Mater. 34, 2101730 (2022).
Kao, I.-H. et al. Deterministic switching of a perpendicularly polarized magnet using unconventional spin-orbit torques in WTe2. Nat. Mater. 21, 1029–1034 (2022).
Kurebayashi, H., Garcia, J. H., Khan, S., Sinova, J. & Roche, S. Magnetism, symmetry and spin transport in van der Waals layered systems. Nat. Rev. Phys. 4, 150–166 (2022).
Zhang, W. et al. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016).
Kondou, K. et al. Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet. Nat. Commun. 12, 6491 (2021).
Liu, Y. et al. Current-induced out-of-plane spin accumulation on the (001) surface of the IrMn3 antiferromagnet. Phys. Rev. Appl. 12, 064046 (2019).
Bai, H. et al. Control of spin-orbit torques through magnetic symmetry in differently oriented noncollinear antiferromagnetic Mn3Pt. Phys. Rev. B 104, 104401 (2021).
You, Y. et al. Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet. Nat. Commun. 12, 6524 (2021).
Hazra, B. K. et al. Generation of out-of-plane polarized spin current by spin swapping. Nat. Commun. 14, 4549 (2023). This study is a proposal of the spin swapping mechanism as alternative explanation for the transverse spin currents with out-of-plane spin polarization in Mn3Sn.
Novakov, S. et al. Composite spin Hall conductivity from non collinear antiferromagnetic order. Adv. Mater. 35, 2209866 (2023).
Cao, C. et al. Anomalous spin current anisotropy in a noncollinear antiferromagnet. Nat. Commun. 14, 5873 (2023).
Liang, S. et al. Interface-relevant out-of-plane spin polarization in IrMn3/permalloy bilayers. Phys. Rev. B 107, 184427 (2023).
Lifshits, M. B. & Dyakonov, M. I. Swapping spin currents: interchanging spin and flow directions. Phys. Rev. Lett. 103, 186601 (2009).
Amin, V., Zemen, J. & Stiles, M. Interface-generated spin currents. Phys. Rev. Lett. 121, 136805 (2018).
Amin, V. P., Haney, P. M. & Stiles, M. D. Interfacial spin-orbit torques. J. Appl. Phys. 128, 151101 (2020).
Meng, D. et al. Field-free spin-orbit torque driven perpendicular magnetization switching of ferrimagnetic layer based on noncollinear antiferromagnetic spin source. Adv. Electron. Mater. 10, 2300665 (2024).
Hu, S. et al. Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet. Nat. Commun. 13, 4447 (2022).
Wang, X. et al. Spin currents with unusual spin orientations in noncollinear Weyl antiferromagnetic Mn3Sn. Phys. Rev. Mater. 7, 034404 (2023).
Karimeddiny, S., Mittelstaedt, J. A., Buhrman, R. A. & Ralph, D. C. Transverse and longitudinal spin-torque ferromagnetic resonance for improved measurement of spin-orbit torque. Phys. Rev. Appl. 14, 024024 (2020).
Cham, T. M., Karimeddiny, S., Gupta, V., Mittelstaedt, J. A. & Ralph, D. C. Separation of artifacts from spin torque ferromagnetic resonance measurements of spin orbit torque for the low symmetry van der Waals semi metal ZrTe3. Adv. Quantum Technol. 5, 2100111 (2022).
Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Orbitronics: the intrinsic orbital current in p-doped silicon. Phys. Rev. Lett. 95, 066601 (2005).
Kontani, H., Tanaka, T., Hirashima, D. S., Yamada, K. & Inoue, J. Giant orbital Hall effect in transition metals: origin of large spin and anomalous Hall effects. Phys. Rev. Lett. 102, 016601 (2009).
Go, D., Jo, D., Kim, C. & Lee, H.-W. Intrinsic spin and orbital Hall effects from orbital texture. Phys. Rev. Lett. 121, 086602 (2018).
Bose, A. et al. Detection of long-range orbital-Hall torques. Phys. Rev. B 107, 134423 (2023).
Choi, Y.-G. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–56 (2023).
Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).
Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).
Bodnar, S. Y. et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018).
Wadley, P. et al. Current polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 13, 362–365 (2018).
Reimers, S. et al. Current-driven writing process in antiferromagnetic Mn2Au for memory applications. Nat. Commun. 14, 1861 (2023).
Gomonay, O. V. & Loktev, V. M. Using generalized Landau–Lifshitz equations to describe the dynamics of multi-sublattice antiferromagnets induced by spin-polarized current. Low Temp. Phys. 41, 698–704 (2015).
Fujita, H. Field-free, spin-current control of magnetization in non-collinear chiral antiferromagnets. Phys. Stat. Sol. Rapid Res. Lett. 11, 1600360 (2017).
Yamane, Y., Gomonay, O. & Sinova, J. Dynamics of noncollinear antiferromagnetic textures driven by spin current injection. Phys. Rev. B 100, 054415 (2019).
Gurung, G., Shao, D.-F. & Tsymbal, E. Y. Spin-torque switching of noncollinear antiferromagnetic antiperovskites. Phys. Rev. B 101, 140405 (2020).
Ghosh, S., Manchon, A. & Železný, J. Unconventional robust spin-transfer torque in noncollinear antiferromagnetic junctions. Phys. Rev. Lett. 128, 097702 (2022).
Tsai, H. et al. Large Hall signal due to electrical switching of an antiferromagnetic Weyl semimetal state. Small Sci. 1, 2000025 (2021).
Tsai, H. et al. Spin-orbit torque switching of the antiferromagnetic state in polycrystalline Mn3Sn/Cu/heavy metal heterostructures. AIP Adv. 11, 045110 (2021).
Krishnaswamy, G. K. et al. Time-dependent multistate switching of topological antiferromagnetic order in Mn3Sn. Phys. Rev. Appl. 18, 024064 (2022).
Olejník, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).
Meinert, M., Graulich, D. & Matalla-Wagner, T. Electrical switching of antiferromagnetic Mn2Au and the role of thermal activation. Phys. Rev. Appl. 9, 064040 (2018).
Muduli, P. K. et al. Evaluation of spin diffusion length and spin Hall angle of the antiferromagnetic Weyl semimetal Mn3Sn. Phys. Rev. B 99, 184425 (2019).
Park, P. et al. Magnetic excitations in non-collinear antiferromagnetic Weyl semimetal Mn3Sn. npj Quantum Mater. 3, 63 (2018).
Cheng, B. et al. Terahertz conductivity of the magnetic Weyl semimetal Mn3Sn films. Appl. Phys. Lett. 115, 012405 (2019).
Matsuda, T. et al. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films. Nat. Commun. 11, 909 (2020).
Matsuda, T. et al. Ultrafast dynamics of intrinsic anomalous Hall effect in the topological antiferromagnet Mn3Sn. Phys. Rev. Lett. 130, 126302 (2023).
Arpaci, S. et al. Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements. Nat. Commun. 12, 3828 (2021).
Amin, V. P., Li, J., Stiles, M. D. & Haney, P. M. Intrinsic spin currents in ferromagnets. Phys. Rev. B 99, 220405 (2019).
Céspedes Berrocal, D. et al. Current induced spin torques on single GdFeCo magnetic layers. Adv. Mater. 33, 2007047 (2021).
Go, D. et al. Noncollinear spin current for switching of chiral magnetic textures. Phys. Rev. Lett. 129, 097204 (2022).
Xie, H. et al. Magnetization switching in polycrystalline Mn3Sn thin film induced by self-generated spin-polarized current. Nat. Commun. 13, 5744 (2022).
Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).
Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).
Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).
Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).
Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).
Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).
Fina, I. et al. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat. Commun. 5, 4671 (2014).
Du, A. et al. Electrical manipulation and detection of antiferromagnetism in magnetic tunnel junctions. Nat. Electron. 6, 425–433 (2023).
Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).
Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin–momentum coupling. Phys. Rev. X 12, 011028 (2022).
Dong, J. et al. Tunneling magnetoresistance in noncollinear antiferromagnetic tunnel junctions. Phys. Rev. Lett. 128, 197201 (2022).
Shi, J. et al. Electrically controlled all-antiferromagnetic tunnel junctions on silicon with large room-temperature magnetoresistance. Adv. Mater. 36, 2312008 (2024).
Krén, E., Kádár, G., Pál, L. & Szabó, P. Investigation of the first-order magnetic transformation in Mn3Pt. J. Appl. Phys. 38, 1265–1266 (1967).
Mathon, J. & Umerski, A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 63, 220403 (2001).
Butler, W. H., Zhang, X.-G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe ∣MgO ∣Fe sandwiches. Phys. Rev. B 63, 054416 (2001).
Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015).
Yang, S.-H., Garg, C. & Parkin, S. S. P. Chiral exchange drag and chirality oscillations in synthetic antiferromagnets. Nat. Phys. 15, 543–548 (2019).
Li, X. et al. Chiral domain walls of Mn3Sn and their memory. Nat. Commun. 10, 3021 (2019).
Wu, M. et al. Current-driven fast magnetic octupole domain-wall motion in noncollinear antiferromagnets. Nat. Commun. 15, 4305 (2024).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Felser, C. & Gooth, J. Topology and chirality. Preprint at https://arXiv.org/abs/2205.05809 (2022).
Kawamura, H. Spin- and chirality-orderings of frustrated magnets stacked-triangular anti-ferromagnets and spin glasses. Can. J. Phys. 79, 1447–1458 (2001).
Dresselhaus, M. S., Dresselhaus, G. & Jorio, A. Group Theory: Application to the Physics of Condensed Matter (Springer-Verlag, 2008).
Suzuki, M.-T., Koretsune, T., Ochi, M. & Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 95, 094406 (2017).
Yoon, J.-Y. et al. Handedness anomaly in a non-collinear antiferromagnet under spin-orbit torque. Nat. Mater. 22, 1106–1113 (2023).
Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A Math. Phys. Sci. 392, 45–57 (1984).
Gradhand, M. et al. First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons. J. Phys. Condens. Matter 24, 213202 (2012).
Zhang, Y. et al. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, Pt). Phys. Rev. B 95, 075128 (2017).
Acknowledgements
The authors greatly acknowledge J.-C. Jeon and A. Johansson for critically revising the manuscript and J. Taylor, J. Joon and R. Neumann for insightful discussions. The authors extend our thanks to B. K. Hazra, H. Meyerheim, G. Woltersdorf, I. Mertig and C. Felser for the many years of fruitful collaboration.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Yaroslav Tserkovnyak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rimmler, B.H., Pal, B. & Parkin, S.S.P. Non-collinear antiferromagnetic spintronics. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00706-w
Accepted:
Published:
DOI: https://doi.org/10.1038/s41578-024-00706-w