Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Activity versus stability of atomically dispersed transition-metal electrocatalysts

Abstract

Polymer electrolyte fuel cells operating on clean and sustainable hydrogen are an attractive solution for clean transportation. However, polymer electrolyte fuel cells are costly owing to the use of considerable amounts of platinum group metal (PGM) catalysts, which are needed to catalyse the very slow oxygen reduction reaction at the cathode. The most attractive path in that regard is a complete replacement of precious metal catalysts by PGM-free materials with similar or better performance. Since 2010, numerous promising catalysts have been proposed for PGM-free electrocatalysis. However, the best-performing catalysts do not yet meet the requirements of practical systems. One important hurdle in catalyst discovery is relying heavily on empirical rather than rational design-based approaches. This Perspective article focuses on the most promising PGM-free oxygen reduction reaction catalysts based on atomically dispersed, nitrogen-coordinated single-atom metal sites (M–N–C catalysts). We specifically concentrate on the active-site structure and critical factors governing catalytic activity and performance durability. We propose potentially effective strategies for improving performance by controlling the catalyst structure at the atomic scale, mesoscale and nanoscale. We highlight the importance of overcoming often-observed activity–stability trade-offs and the importance of advanced modelling for the rational design of catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atomically dispersed, nitrogen-coordinated metal sites in Fe–N–C catalysts.
Fig. 2: Nitrogen coordination of single-atom metal sites governing catalytic activity and stability.
Fig. 3: Strategies for improving intrinsic and mass activity of M–N–C catalysts.
Fig. 4: Regulating nitrogen coordination and local structures to enhance stability.
Fig. 5: Activity and stability improvements of Fe–N–C catalysts.

Similar content being viewed by others

References

  1. Abbasi, R. et al. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv. Mater. 31, 1805876 (2019).

    Article  Google Scholar 

  2. Cullen, D. A. et al. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462–474 (2021).

    Article  CAS  Google Scholar 

  3. Weber, A. Z., Balasubramanian, S. & Das, P. K. in Advances in Chemical Engineering (ed. Sundmacher, K.) Vol. 41, 65–144 (Academic Press, 2012).

  4. Wang, X. X., Swihart, M. T. & Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2, 578–589 (2019).

    Article  CAS  Google Scholar 

  5. Thompson, S. T. et al. ElectroCat: DOE’s approach to PGM-free catalyst and electrode R&D. Solid State Ion. 319, 68–76 (2018).

    Article  CAS  Google Scholar 

  6. Kramm, U. I. et al. On an easy way to prepare metal–nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J. Am. Chem. Soc. 138, 635–640 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Jaouen, F. & Dodelet, J.-P. O2 reduction mechanism on non-noble metal catalysts for PEM fuel cells. Part I: experimental rates of O2 electroreduction, H2O2 electroreduction, and H2O2 disproportionation. J. Phys. Chem. C 113, 15422–15432 (2009).

    Article  CAS  Google Scholar 

  8. Leonard, N. D. et al. Deconvolution of utilization, site density, and turnover frequency of Fe–nitrogen–carbon oxygen reduction reaction catalysts prepared with secondary N-precursors. ACS Catal. 8, 1640–1647 (2018).

    Article  CAS  Google Scholar 

  9. He, Y., Liu, S., Priest, C., Shi, Q. & Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 49, 3484–3524 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. He, Y. & Wu, G. PGM-free oxygen-reduction catalyst development for proton-exchange membrane fuel cells: challenges, solutions, and promises. Acc. Mater. Res. 3, 224–236 (2022).

    Article  CAS  Google Scholar 

  11. Gewirth, A. A., Varnell, J. A. & DiAscro, A. M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev. 118, 2313–2339 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, H. et al. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 12, 2548–2558 (2019).

    Article  CAS  Google Scholar 

  13. Wang, X. X. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018).

    Article  Google Scholar 

  14. Li, J. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018).

    Article  CAS  Google Scholar 

  15. Zhang, H. et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 139, 14143–14149 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Wu, G. et al. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy 29, 83–110 (2016).

    Article  CAS  Google Scholar 

  17. Chen, M., He, Y., Spendelow, J. S. & Wu, G. Atomically dispersed metal catalysts for oxygen reduction. ACS Energy Lett. 4, 1619–1633 (2019).

    Article  CAS  Google Scholar 

  18. Chen, G. et al. Highly accessible and dense surface single metal FeN4 active sites for promoting the oxygen reduction reaction. Energy Environ. Sci. 15, 2619–2628 (2022).

    Article  CAS  Google Scholar 

  19. Uddin, A. et al. High power density platinum group metal-free cathodes for polymer electrolyte fuel cells. ACS Appl. Mater. Interfaces 12, 2216–2224 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, S., Qin, Y., Ding, S. & Su, Y. A DFT study on the activity origin of Fe−N−C sites for oxygen reduction reaction. ChemPhysChem 23, e202200165 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Kattel, S. & Wang, G. A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe, Co, or Ni) clusters between graphitic pores. J. Mater. Chem. A 1, 10790–10797 (2013).

    Article  CAS  Google Scholar 

  22. Liu, K., Wu, G. & Wang, G. Role of local carbon structure surrounding FeN4 sites in boosting the catalytic activity for oxygen reduction. J. Phys. Chem. C 121, 11319–11324 (2017).

    Article  CAS  Google Scholar 

  23. Zhao, X., Levell, Z. H., Yu, S. & Liu, Y. Atomistic understanding of two-dimensional electrocatalysts from first principles. Chem. Rev. 122, 10675–10709 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Holby, E. F., Wang, G. & Zelenay, P. Acid stability and demetalation of PGM-free ORR electrocatalyst structures from density functional theory: a model for ‘single-atom catalyst’ dissolution. ACS Catal. 10, 14527–14539 (2020).

    Article  CAS  Google Scholar 

  25. Li, J. et al. Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 4, 10–19 (2021).

    Article  Google Scholar 

  26. Liu, S. et al. Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 7, 652–663 (2022).

    Article  CAS  Google Scholar 

  27. Liu, S., Shi, Q. & Wu, G. Solving the activity–stability trade-off riddle. Nat. Catal. 4, 6–7 (2021).

    Article  Google Scholar 

  28. Zhu, Y. et al. Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 10, 1902844 (2020).

    Article  CAS  Google Scholar 

  29. Wang, Y. et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 120, 12217–12314 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Li, B. et al. Unraveling the mechanism of ligands regulating electronic structure of MN4 sites with optimized ORR catalytic performance. Appl. Surf. Sci. 595, 153526 (2022).

    Article  CAS  Google Scholar 

  31. Zhang, X. et al. Towards understanding ORR activity and electron-transfer pathway of M-Nx/C electro-catalyst in acidic media. J. Catal. 356, 229–236 (2017).

    Article  CAS  Google Scholar 

  32. Martinez, U., Komini Babu, S., Holby, E. F. & Zelenay, P. Durability challenges and perspective in the development of PGM-free electrocatalysts for the oxygen reduction reaction. Curr. Opin. Electrochem. 9, 224–232 (2018).

    Article  CAS  Google Scholar 

  33. Wu, G., More, K. L., Johnston, C. M. & Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Tylus, U. et al. Elucidating oxygen reduction active sites in pyrolyzed metal–nitrogen coordinated non-precious-metal electrocatalyst systems. J. Phys. Chem. C 118, 8999–9008 (2014).

    Article  CAS  Google Scholar 

  35. Artyushkova, K., Serov, A., Rojas-Carbonell, S. & Atanassov, P. Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal–nitrogen–carbon electrocatalysts. J. Phys. Chem. C 119, 25917–25928 (2015).

    Article  CAS  Google Scholar 

  36. Workman, M. J., Serov, A., Tsui, L.-K., Atanassov, P. & Artyushkova, K. Fe–N–C catalyst graphitic layer structure and fuel cell performance. ACS Energy Lett. 2, 1489–1493 (2017).

    Article  CAS  Google Scholar 

  37. Matter, P. H., Zhang, L. & Ozkan, U. S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J. Catal. 239, 83–96 (2006).

    Article  CAS  Google Scholar 

  38. Hou, X., Hu, Q., Zhang, P. & Mi, J. Oxygen reduction reaction on nitrogen-doped graphene nanoribbons: a density functional theory study. Chem. Phys. Lett. 663, 123–127 (2016).

    Article  CAS  Google Scholar 

  39. Zhang, P., Lian, J. S. & Jiang, Q. Potential dependent and structural selectivity of the oxygen reduction reaction on nitrogen-doped carbon nanotubes: a density functional theory study. Phys. Chem. Chem. Phys. 14, 11715–11723 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Kundu, S. et al. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J. Phys. Chem. C 113, 14302–14310 (2009).

    Article  CAS  Google Scholar 

  41. Morozan, A. et al. Metal-free nitrogen-containing carbon nanotubes prepared from triazole and tetrazole derivatives show high electrocatalytic activity towards the oxygen reduction reaction in alkaline media. ChemSusChem 5, 647–651 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Matter, P. H. & Ozkan, U. S. Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal. Lett. 109, 115–123 (2006).

    Article  CAS  Google Scholar 

  43. Mehmood, A. et al. High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nat. Catal. 5, 311–323 (2022).

    Article  CAS  Google Scholar 

  44. Shi, Q. et al. Supported and coordinated single metal site electrocatalysts. Mater. Today 37, 93–111 (2020).

    Article  CAS  Google Scholar 

  45. Mineva, T. et al. Understanding active sites in pyrolyzed Fe–N–C catalysts for fuel cell cathodes by bridging density functional theory calculations and 57Fe Mössbauer spectroscopy. ACS Catal. 9, 9359–9371 (2019).

    Article  CAS  Google Scholar 

  46. Li, J. et al. Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy Environ. Sci. 9, 2418–2432 (2016).

    Article  CAS  Google Scholar 

  47. Zhang, N. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 13, 111–118 (2020).

    Article  CAS  Google Scholar 

  48. Liu, K. et al. Mn- and N-doped carbon as promising catalysts for oxygen reduction reaction: theoretical prediction and experimental validation. Appl. Catal. B Environ. 243, 195–203 (2019).

    Article  CAS  Google Scholar 

  49. Menga, D., Guilherme Buzanich, A., Wagner, F. & Fellinger, T.-P. Evaluation of the specific activity of M−N−Cs and the intrinsic activity of tetrapyrrolic FeN4 sites for the oxygen reduction reaction. Angew. Chem. Int. Ed. 61, e202207089 (2022).

    Article  CAS  Google Scholar 

  50. Qin, Y., Li, P., Li, Z., Wu, T. & Su, Y. Potential-dependent oxygen reduction on FeN4 under explicit solvation environment. J. Phys. Chem. C 127, 4934–4941 (2023).

    Article  CAS  Google Scholar 

  51. Kattel, S. & Wang, G. Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 5, 452–456 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Yu, S., Levell, Z., Jiang, Z., Zhao, X. & Liu, Y. What is the rate-limiting step of oxygen reduction reaction on Fe–N–C catalysts? J. Am. Chem. Soc. 145, 25352–25356 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Loyola, C. Z. et al. Insights into the electronic structure of Fe penta-coordinated complexes. Spectroscopic examination and electrochemical analysis for the oxygen reduction and oxygen evolution reactions. J. Mater. Chem. A 9, 23802–23816 (2021).

    Article  CAS  Google Scholar 

  54. Zagal, J. H., Specchia, S. & Atanassov, P. Mapping transition metal-MN4 macrocyclic complex catalysts performance for the critical reactivity descriptors. Curr. Opin. Electrochem. 27, 100683 (2021).

    Article  CAS  Google Scholar 

  55. Jiao, L. et al. Chemical vapour deposition of Fe–N–C oxygen reduction catalysts with full utilization of dense Fe–N4 sites. Nat. Mater. 20, 1385–1391 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. He, Y. et al. Dynamically unveiling metal–nitrogen coordination during thermal activation to design high-efficient atomically dispersed CoN4 active sites. Angew. Chem. Int. Ed.60, 9516–9526 (2021).

    Article  CAS  Google Scholar 

  57. Li, J. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem. Int. Ed. 58, 18971–18980 (2019).

    Article  CAS  Google Scholar 

  58. Mohd Adli, N. et al. Engineering atomically dispersed FeN4 active sites for CO2 electroreduction. Angew. Chem. Int. Ed. 60, 1022–1032 (2021).

    Article  CAS  Google Scholar 

  59. Li, Y. et al. Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy Environ. Sci. 15, 2108–2119 (2022).

    Article  CAS  Google Scholar 

  60. Yang, X. et al. Binary atomically dispersed metal-site catalysts with core−shell nanostructures for O2 and CO2 reduction reactions. Small Sci. 1, 2100046 (2021).

    Article  CAS  Google Scholar 

  61. Bates, J. S. et al. Molecular catalyst synthesis strategies to prepare atomically dispersed Fe–N–C heterogeneous catalysts. J. Am. Chem. Soc. 144, 18797–18802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, M.-Q. et al. Pyrolyzed Fe–N–C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium. ACS Catal. 4, 3928–3936 (2014).

    Article  CAS  Google Scholar 

  63. Wu, G. et al. Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells. J. Mater. Chem. 21, 11392–11405 (2011).

    Article  CAS  Google Scholar 

  64. He, Y. et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy Environ. Sci. 12, 250–260 (2019).

    Article  CAS  Google Scholar 

  65. Wang, X. X., Prabhakaran, V., He, Y., Shao, Y. & Wu, G. Iron-free cathode catalysts for proton-exchange-membrane fuel cells: cobalt catalysts and the peroxide mitigation approach. Adv. Mater. 31, 1805126 (2019).

    Article  Google Scholar 

  66. Dodelet, J.-P. Layer of stability. Nat. Energy 7, 578–579 (2022).

    Article  Google Scholar 

  67. Menga, D. et al. Resolving the dilemma of Fe–N–C catalysts by the selective synthesis of tetrapyrrolic active sites via an imprinting strategy. J. Am. Chem. Soc. 143, 18010–18019 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Vinogradov, K. Y. et al. Density functional theory study of the oxygen reduction reaction mechanism on graphene doped with nitrogen and a transition metal. ACS Omega 7, 7066–7073 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kattel, S., Atanassov, P. & Kiefer, B. A density functional theory study of oxygen reduction reaction on non-PGM Fe–Nx–C electrocatalysts. Phys. Chem. Chem. Phys. 16, 13800–13806 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Li, Y. et al. Elucidating the role of P on Mn- and N-doped graphene catalysts in promoting oxygen reduction: density functional theory studies. SusMat 3, 390–401 (2023).

    Article  CAS  Google Scholar 

  71. Resasco, J. et al. Enhancing the connection between computation and experiments in electrocatalysis. Nat. Catal. 5, 374–381 (2022).

    Article  Google Scholar 

  72. Cohen, A. J., Mori-Sánchez, P. & Yang, W. Insights into current limitations of density functional theory. Science 321, 792–794 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  74. Hasan, M. H. & McCrum, I. T. Understanding the role of near-surface solvent in electrochemical adsorption and electrocatalysis with theory and experiment. Curr. Opin. Electrochem. 33, 100937 (2022).

    Article  CAS  Google Scholar 

  75. Sebastián-Pascual, P., Shao-Horn, Y. & Escudero-Escribano, M. Toward understanding the role of the electric double layer structure and electrolyte effects on well-defined interfaces for electrocatalysis. Curr. Opin. Electrochem. 32, 100918 (2022).

    Article  Google Scholar 

  76. Shin, S.-J. et al. On the importance of the electric double layer structure in aqueous electrocatalysis. Nat. Commun. 13, 174 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Govindarajan, N., Xu, A. & Chan, K. How pH affects electrochemical processes. Science 375, 379–380 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Zhu, X., Huang, J. & Eikerling, M. pH effects in a model electrocatalytic reaction disentangled. JACS Au 3, 1052–1064 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhao, C.-X., Li, B.-Q., Liu, J.-N. & Zhang, Q. Intrinsic electrocatalytic activity regulation of M–N–C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 4448–4463 (2021).

    Article  CAS  Google Scholar 

  80. Adabi, H. et al. High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells. Nat. Energy 6, 834–843 (2021).

    Article  CAS  Google Scholar 

  81. Sgarbi, R. et al. Oxygen reduction reaction mechanism and kinetics on M-NxCy and M@N-C active sites present in model M–N–C catalysts under alkaline and acidic conditions. J. Solid State Electrochem. 25, 45–56 (2021).

    Article  CAS  Google Scholar 

  82. Rauf, M. et al. Insight into the different ORR catalytic activity of Fe/N/C between acidic and alkaline media: protonation of pyridinic nitrogen. Electrochem. Commun. 73, 71–74 (2016).

    Article  CAS  Google Scholar 

  83. Yan, Z. et al. Nitrogen-doped bimetallic carbide-graphite composite as highly active and extremely stable electrocatalyst for oxygen reduction reaction in alkaline media. Adv. Funct. Mater. 32, 2204031 (2022).

    Article  CAS  Google Scholar 

  84. Jiang, W.-J. et al. Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx. J. Am. Chem. Soc. 138, 3570–3578 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Lu, F. et al. Engineering FeN4 active sites onto nitrogen-rich carbon with tubular channels for enhanced oxygen reduction reaction performance. Appl. Catal. B Environ. 313, 121464 (2022).

    Article  CAS  Google Scholar 

  86. Liu, F. et al. Manipulating the spin state to activate the atomically dispersed Fe–N–C catalyst for oxygen reduction. EES Catal. 1, 562–570 (2023).

    Article  CAS  Google Scholar 

  87. Jia, Q. et al. Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9, 12496–12505 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Choi, C. H. et al. Stability of Fe–N–C catalysts in acidic medium studied by operando spectroscopy. Angew. Chem. Int. Ed. 54, 12753–12757 (2015).

    Article  CAS  Google Scholar 

  89. Xu, X. et al. Investigation on the demetallation of Fe–N–C for oxygen reduction reaction: the influence of structure and structural evolution of active site. Appl. Catal. B Environ. 309, 121290 (2022).

    Article  CAS  Google Scholar 

  90. Chenitz, R. et al. A specific demetalation of Fe–N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells. Energy Environ. Sci. 11, 365–382 (2018).

    Article  CAS  Google Scholar 

  91. Gao, Y. et al. New insight into effect of potential on degradation of Fe–N–C catalyst for ORR. Front. Energy 15, 421–430 (2021).

    Article  Google Scholar 

  92. Muñoz-Becerra, K., Venegas, R., Duque, L., Zagal, J. H. & Recio, F. J. Recent advances of Fe–N–C pyrolyzed catalysts for the oxygen reduction reaction. Curr. Opin. Electrochem. 23, 154–161 (2020).

    Article  Google Scholar 

  93. Chi, B. et al. Promoting ZIF-8-derived Fe–N–C oxygen reduction catalysts via Zr doping in proton exchange membrane fuel cells: durability and activity enhancements. ACS Catal. 13, 4221–4230 (2023).

    Article  CAS  Google Scholar 

  94. Kiciński, W. et al. Binary transition metal doping to create efficient TM–N–C electrocatalysts and enhance ORR catalysis under an external magnetic field. J. Alloy Compd. 935, 168051 (2023).

    Article  Google Scholar 

  95. Toyao, T. et al. Machine learning for catalysis informatics: recent applications and prospects. ACS Catal. 10, 2260–2297 (2020).

    Article  CAS  Google Scholar 

  96. Yang, W., Fidelis, T. T. & Sun, W.-H. Machine learning in catalysis, from proposal to practicing. ACS Omega 5, 83–88 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Kitchin, J. R. Machine learning in catalysis. Nat. Catal. 1, 230–232 (2018).

    Article  Google Scholar 

  98. Zaera, F. In-situ and operando spectroscopies for the characterization of catalysts and of mechanisms of catalytic reactions. J. Catal. 404, 900–910 (2021).

    Article  CAS  Google Scholar 

  99. Timoshenko, J. & Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Lukashuk, L. & Foettinger, K. In situ and operando spectroscopy: a powerful approach towards understanding catalysts. Johns Matthey Technol. Rev. 62, 316–331 (2018).

    Article  CAS  Google Scholar 

  101. Kort-Kamp, W. J. M. et al. Adaptive learning-driven high-throughput synthesis of oxygen reduction reaction Fe-N-C electrocatalysts. J. Power Sources 559, 232583 (2023).

    Article  CAS  Google Scholar 

  102. Pillai, H. S. et al. Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks. Nat. Commun. 14, 792 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee, S. H. et al. Design principle of Fe–N–C electrocatalysts: how to optimize multimodal porous structures? J. Am. Chem. Soc. 141, 2035–2045 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Wei, J. et al. Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe–N–C electrocatalysts by in situ Raman spectroscopy. ACS Catal. 12, 7811–7820 (2022).

    Article  CAS  Google Scholar 

  105. Liang, W., Chen, J., Liu, Y. & Chen, S. Density-functional-theory calculation analysis of active sites for four-electron reduction of O2 on Fe/N-doped graphene. ACS Catal. 4, 4170–4177 (2014).

    Article  CAS  Google Scholar 

  106. Kim, D. et al. Highly graphitic mesoporous Fe,N-doped carbon materials for oxygen reduction electrochemical catalysts. ACS Appl. Mater. Interfaces 10, 25337–25349 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Mamtani, K. et al. Evolution of N-coordinated iron–carbon (FeNC) catalysts and their oxygen reduction (ORR) performance in acidic media at various stages of catalyst synthesis: an attempt at benchmarking. Catal. Lett. 146, 1749–1770 (2016).

    Article  CAS  Google Scholar 

  108. Yang, X.-D. et al. Modeling Fe/N/C catalysts in monolayer graphene. ACS Catal. 7, 139–145 (2017).

    Article  CAS  Google Scholar 

  109. Proietti, E. et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011).

    Article  PubMed  Google Scholar 

  110. Lefèvre, M., Proietti, E., Jaouen, F. & Dodelet, J.-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009).

    Article  PubMed  Google Scholar 

  111. Zhang, H. et al. Standardized protocols for evaluating platinum group metal-free oxygen reduction reaction electrocatalysts in polymer electrolyte fuel cells. Nat. Catal. 5, 455–462 (2022).

    Article  CAS  Google Scholar 

  112. Herranz, J., Lefèvre, M., Larouche, N., Stansfield, B. & Dodelet, J.-P. Step-by-step synthesis of non-noble metal electrocatalysts for O2 reduction under proton exchange membrane fuel cell conditions. J. Phys. Chem. C 111, 19033–19042 (2007).

    Article  CAS  Google Scholar 

  113. Shao, Y., Dodelet, J. P., Wu, G. & Zelenay, P. PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges. Adv. Mater. 31, e1807615 (2019).

    Article  PubMed  Google Scholar 

  114. Hu, Y. et al. Promotional effect of phosphorus doping on the activity of the Fe-N/C catalyst for the oxygen reduction reaction. Electrochim. Acta 155, 335–340 (2015).

    Article  CAS  Google Scholar 

  115. Guo, L. et al. Promoting atomically dispersed MnN4 sites via sulfur doping for oxygen reduction: unveiling intrinsic activity and degradation in fuel cells. ACS Nano 15, 6886–6899 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Ding, S. et al. Engineering atomic single metal-FeN4Cl sites with enhanced oxygen-reduction activity for high-performance proton exchange membrane fuel cells. ACS Nano 16, 15165–15174 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Li, J. et al. Boosting the oxygen reduction reaction behaviour of atomic Fe–N4 active sites in porous honeycomb-like carbon via P heteroatom doping. J. Mater. Chem. A 10, 18147–18155 (2022).

    Article  CAS  Google Scholar 

  118. Li, B., Shi, C., Zhao, N. & Liu, E. Hydrogen-bond-promoted ORR mechanism in P-doped Fe–N–C materials. J. Phys. Chem. C 127, 1023–1031 (2023).

    Article  CAS  Google Scholar 

  119. Yang, X., Priest, C., Hou, Y. & Wu, G. Atomically dispersed dual-metal-site PGM-free electrocatalysts for oxygen reduction reaction: opportunities and challenges. SusMat 2, 569–590 (2022).

    Article  CAS  Google Scholar 

  120. Li, Y. et al. Atomically dispersed dual-metal site catalysts for enhanced CO2 reduction: mechanistic insight into active site structures. Angew. Chem. Int. Ed. 61, e202205632 (2022).

    Article  CAS  Google Scholar 

  121. Jia, C. et al. Toward rational design of dual-metal-site catalysts: catalytic descriptor exploration. ACS Catal. 12, 3420–3429 (2022).

    Article  CAS  Google Scholar 

  122. Li, Y., Wang, H., Yang, X., O’Carroll, T. & Wu, G. Designing and engineering atomically dispersed metal catalysts for CO2 to CO conversion: from single to dual metal sites. Angew. Chem. Int. Ed. 63, e202317884 (2024).

    Article  CAS  Google Scholar 

  123. Feng, H. et al. Data-driven design of dual-metal-site catalysts for the electrochemical carbon dioxide reduction reaction. J. Mater. Chem. A 10, 18803–18811 (2022).

    Article  CAS  Google Scholar 

  124. Brea, C. & Hu, G. Mechanistic insight into dual-metal-site catalysts for the oxygen reduction reaction. ACS Catal. 13, 4992–4999 (2023).

    Article  CAS  Google Scholar 

  125. Zitolo, A. et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Zeng, Y. et al. Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts. Nat. Catal. 6, 1215–1227 (2023).

    Article  CAS  Google Scholar 

  127. Liu, S. et al. Chemical vapor deposition for atomically dispersed and nitrogen coordinated single metal site catalysts. Angew. Chem. Int. Ed. 59, 21698–21705 (2020).

    Article  CAS  Google Scholar 

  128. Qiao, Z. et al. 3d polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. Appl. Catal. B Environ. 219, 629–639 (2017).

    Article  CAS  Google Scholar 

  129. Wang, W. et al. Synthesis of mesoporous Fe/N/C oxygen reduction catalysts through NaCl crystallite-confined pyrolysis of polyvinylpyrrolidone. J. Mater. Chem. A 4, 12768–12773 (2016).

    Article  CAS  Google Scholar 

  130. Li, W., Liu, J. & Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016).

    Article  CAS  Google Scholar 

  131. He, Y. et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells. Adv. Mater. 32, 2003577 (2020).

    Article  CAS  Google Scholar 

  132. Wan, X. et al. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019).

    Article  CAS  Google Scholar 

  133. Chen, L. et al. Spatial porosity design of Fe–N–C catalysts for high power density PEM fuel cells and detection of water saturation of the catalyst layer by a microwave method. J. Mater. Chem. A 10, 7764–7772 (2022).

    Article  CAS  Google Scholar 

  134. Shu, C. et al. Hierarchically mesoporous carbon spheres coated with a single atomic Fe–N–C layer for balancing activity and mass transfer in fuel cells. Carbon Energy 4, 1–11 (2022).

    Article  CAS  Google Scholar 

  135. Serov, A., Artyushkova, K. & Atanassov, P. Fe–N–C oxygen reduction fuel cell catalyst derived from carbendazim: synthesis, structure, and reactivity. Adv. Energy Mater. 4, 1301735 (2014).

    Article  Google Scholar 

  136. Asset, T. & Atanassov, P. Iron–nitrogen–carbon catalysts for proton exchange membrane fuel cells. Joule 4, 33–44 (2020).

    Article  CAS  Google Scholar 

  137. Ding, W. et al. Three-dimensional layered Fe-N/C catalysts built by electrospinning and the comparison of different active species on oxygen reduction reaction performance. J. Alloy Compd. 848, 156605 (2020).

    Article  CAS  Google Scholar 

  138. Kabir, S. et al. Improving the bulk gas transport of Fe–N–C platinum group metal-free nanofiber electrodes via electrospinning for fuel cell applications. Nano Energy 73, 104791 (2020).

    Article  CAS  Google Scholar 

  139. Li, Y. et al. Multiscale porous Fe–N–C networks as highly efficient catalysts for the oxygen reduction reaction. Nanoscale 11, 19506–19511 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Wu, G. et al. Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Trans. 25, 1299 (2009).

    Article  Google Scholar 

  141. Beltrán, D. E. et al. Elucidation of performance recovery for Fe-based catalyst cathodes in fuel cells. Adv. Energy Sustain. Res. 2, 2100123 (2021).

    Article  Google Scholar 

  142. Yang, X. et al. Tuning two-electron oxygen-reduction pathways for H2O2 electrosynthesis via engineering atomically dispersed single metal site catalysts. Adv. Mater. 34, 2107954 (2022).

    Article  CAS  Google Scholar 

  143. Xie, H. et al. Ta–TiOx nanoparticles as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts. Nat. Energy 7, 281–289 (2022).

    Article  CAS  Google Scholar 

  144. Saha, P. et al. Correlating the morphological changes to electrochemical performance during carbon corrosion in polymer electrolyte fuel cells. J. Mater. Chem. A 10, 12551–12562 (2022).

    Article  CAS  Google Scholar 

  145. Specchia, S., Atanassov, P. & Zagal, J. H. Mapping transition metal–nitrogen–carbon catalyst performance on the critical descriptor diagram. Curr. Opin. Electrochem. 27, 100687 (2021).

    Article  CAS  Google Scholar 

  146. Fu, H. et al. Machine-learning-assisted optimization of a single-atom coordination environment for accelerated Fenton catalysis. ACS Nano 17, 13851–13860 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Sun, H. et al. High throughput screening of single atomic catalysts with optimized local structures for the electrochemical oxygen reduction by machine learning. J. Energy Chem. 81, 349–357 (2023).

    Article  CAS  Google Scholar 

  148. Kumar, K. et al. Fe–N–C electrocatalysts’ durability: effects of single atoms’ mobility and clustering. ACS Catal. 11, 484–494 (2021).

    Article  CAS  Google Scholar 

  149. Bae, G., Chung, M. W., Ji, S. G., Jaouen, F. & Choi, C. H. pH effect on the H2O2-induced deactivation of Fe–N–C catalysts. ACS Catal. 10, 8485–8495 (2020).

    Article  CAS  Google Scholar 

  150. Saveleva, V. A. et al. Potential-induced spin changes in Fe/N/C electrocatalysts assessed by in situ X-ray emission spectroscopy. Angew. Chem. Int. Ed. 60, 11707–11712 (2021).

    Article  CAS  Google Scholar 

  151. Ferrandon, M. et al. Stability of iron species in heat-treated polyaniline-iron-carbon polymer electrolyte fuel cell cathode catalysts. Electrochim. Acta 110, 282–291 (2013).

    Article  CAS  Google Scholar 

  152. Qiao, Z. et al. Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. Energy Environ. Sci. 14, 4948–4960 (2021).

    Article  CAS  Google Scholar 

  153. Kosmala, T. et al. Stable, active, and methanol-tolerant PGM-free surfaces in an acidic medium: electron tunneling at play in Pt/FeNC hybrid catalysts for direct methanol fuel cell cathodes. ACS Catal. 10, 7475–7485 (2020).

    Article  CAS  Google Scholar 

  154. Zeng, Y. et al. Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt. J. Am. Chem. Soc. 145, 17643–17655 (2023).

    Article  CAS  PubMed  Google Scholar 

  155. Zeng, Y. et al. Pt nanoparticles on atomic-metal-rich carbon for heavy-duty fuel cell catalysts: durability enhancement and degradation behavior in membrane electrode assemblies. ACS Catal. 13, 11871–11882 (2023).

    Article  CAS  Google Scholar 

  156. Chen, Z. et al. Enhanced performance of atomically dispersed dual-site Fe–Mn electrocatalysts through cascade reaction mechanism. Appl. Catal. B Environ. 288, 120021 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the US Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Hydrogen and Fuel Cell Technologies Office through Electrocatalysis Consortium (ElectroCat). G.W. also acknowledges partial support from the National Science Foundation (CBET-1804326 and 2223467).

Author information

Authors and Affiliations

Authors

Contributions

G.W. and P.Z. envisioned, developed and wrote the Perspective article.

Corresponding author

Correspondence to Piotr Zelenay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Frédéric Jaouen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Zelenay, P. Activity versus stability of atomically dispersed transition-metal electrocatalysts. Nat Rev Mater 9, 643–656 (2024). https://doi.org/10.1038/s41578-024-00703-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00703-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing