Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dielectric breakdown of oxide films in electronic devices

Abstract

Dielectric breakdown is a sudden and catastrophic increase in the conductivity of an insulator caused by electrical stress. It is one of the major reliability issues in electronic devices using insulating films as gate insulators and in energy and memory capacitors. Despite extensive studies, our understanding of the physical mechanisms driving the breakdown process remains incomplete, and atomistic models describing the dielectric breakdown are controversial. This Review surveys the enormous amount of data and knowledge accumulated from experimental and theoretical studies of dielectric breakdown in different insulating materials, focusing on describing phenomenological models and novel computational approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamentals of the dielectric breakdown process.
Fig. 2: Electrical and structural characterization of the dielectric breakdown process.
Fig. 3: Timeline of major milestones in the investigation of the dielectric breakdown process.
Fig. 4: The most relevant phenomenological DB models.
Fig. 5: Atomistic breakdown model.

Similar content being viewed by others

References

  1. Wagner, K. W. The physical nature of the electrical breakdown of solid dielectrics. J. Am. Inst. Electr. Eng. 41, 1034–1044 (1922).

    Article  Google Scholar 

  2. Von Hippel, A. The mechanism of electrical breakdown in solid insulators. Z. Physik 67, 707 (1931).

    Article  Google Scholar 

  3. Fowler, R. H. Notes on some electronic properties of conductors and insulators. Proc. R. Soc. Lond. A 141, 56–71 (1933).

    Article  CAS  Google Scholar 

  4. Zener, C. A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145, 523–529 (1934).

    Article  CAS  Google Scholar 

  5. Wu, E. Y. Facts and myths of dielectric breakdown processes — part I: statistics, experimental, and physical acceleration models. IEEE Trans. Electron Devices 66, 4523–4534 (2019). Experimental data on dielectric breakdown in a wide range of dielectric materials are reviewed together in a common framework.

    Article  CAS  Google Scholar 

  6. Lombardo, S. et al. Dielectric breakdown mechanisms in gate oxides. J. Appl. Phys. 98, 121301 (2005).

    Article  Google Scholar 

  7. Palumbo, F. et al. A review on dielectric breakdown in thin dielectrics: silicon dioxide, high-k, and layered dielectrics. Adv. Funct. Mater. 30, 1900657 (2020). The fundamentals of the dielectric breakdown phenomenon in traditional and future thin dielectrics including 2D materials are comprehensively reviewed.

    Article  CAS  Google Scholar 

  8. Spinelli, A. S., Compagnoni, C. M. & Lacaita, A. L. Reliability of NAND flash memories: planar cells and emerging issues in 3D devices. Computers 6, 16 (2017).

    Article  Google Scholar 

  9. Chen, A. A review of emerging non-volatile memory (NVM) technologies and applications. Solid State Electron. 125, 25–38 (2016).

    Article  CAS  Google Scholar 

  10. Wang, G. et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 121, 6124–6172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, L. et al. Design strategies of perovskite energy-storage dielectrics for next-generation capacitors. J. Eur. Ceram. Soc. 43, 5713–5747 (2023).

    Article  CAS  Google Scholar 

  12. Laadjal, K. & Cardoso, A. J. M. Multilayer ceramic capacitors: an overview of failure mechanisms, perspectives, and challenges. Electronics 12, 1297 (2023). A review of important parameters that may be used to improve energy-storage qualities of multilayer ceramic capacitors including their failure and dielectric breakdown.

    Article  CAS  Google Scholar 

  13. Singh, M. et al. Enhanced dielectric strength and capacitive energy density of cyclic polystyrene films. ACS Polym. Au 2, 324–332 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao, X. et al. Piezoelectric actuators and motors: materials, designs, and applications. Adv. Mater. Technol. 5, 1900716 (2020).

    Article  CAS  Google Scholar 

  15. Cai, Z., Feng, P., Zhu, C. & Wang, X. Dielectric breakdown behavior of ferroelectric ceramics: the role of pores. J. Eur. Ceram. Soc. 41, 2533–2538 (2021).

    Article  CAS  Google Scholar 

  16. Akinlaja, J. & Sachs, F. The breakdown of cell membranes by electrical and mechanical stress. Biophys. J. 75, 247–254 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weitzel, K.-M. Charge attachment-induced transport: toward new paradigms in solid state electrochemistry. Curr. Opin. Electrochem. 26, 100672 (2021).

    Article  CAS  Google Scholar 

  18. Chau, R. et al. High-/spl kappa//metal-gate stack and its MOSFET characteristics. IEEE Electron Device Lett. 25, 408–410 (2004).

    Article  CAS  Google Scholar 

  19. Lee, H.-J. et al. Intel 22nm finFET (22FFL) process technology for RF and mm wave applications and circuit design optimization for finFET technology. In 2018 IEEE International Electron Devices Meeting (IEDM) 14.1.1–14.1.4 (IEEE, 2018).

  20. Brière, O., Halimaoui, A. & Ghibaudo, G. Breakdown characteristics of ultra thin gate oxides following field and temperature stresses. Solid State Electron. 41, 981–985 (1997).

    Article  Google Scholar 

  21. Raghavan, N., Pey, K. L. & Shubhakar, K. High-k dielectric breakdown in nanoscale logic devices — scientific insight and technology impact. Microelectron. Reliab. 54, 847–860 (2014). A review of the scientific understanding of the various regimes of breakdown in high-k gate stacks using electrical, physical and statistical techniques along with an application of these findings to predict the impact they will have from a technology perspective.

    Article  CAS  Google Scholar 

  22. McPherson, J. W. & Mogul, H. C. Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in SiO2 thin films. J. Appl. Phys. 84, 1513–1523 (1998). One of the first and most relevant papers on the thermochemical (E) breakdown model.

    Article  CAS  Google Scholar 

  23. McPherson, J., Kim, J.-Y., Shanware, A. & Mogul, H. Thermochemical description of dielectric breakdown in high dielectric constant materials. Appl. Phys. Lett. 82, 2121–2123 (2003).

    Article  CAS  Google Scholar 

  24. McPherson, J., Kim, J., Shanware, A., Mogul, H. & Rodriguez, J. Trends in the ultimate breakdown strength of high dielectric-constant materials. IEEE Trans. Electron Devices 50, 1771–1778 (2003).

    Article  CAS  Google Scholar 

  25. Chen, I.-C., Holland, S. & Hu, C. Electrical breakdown in thin gate and tunneling oxides. IEEE Trans. Electron Devices 32, 413–422 (1985). One of the first papers on the 1/E breakdown model.

    Article  Google Scholar 

  26. Chen, I., Holland, S. & Hu, C. Hole trapping and breakdown in thin SiO2. IEEE Electron Device Lett. 7, 164–167 (1986).

    Article  Google Scholar 

  27. Miranda, E., Sune, J., Rodriguez, R., Nafria, M. & Aymerich, X. A function-fit model for the soft breakdown failure mode. IEEE Electron Device Lett. 20, 265–267 (1999).

    Article  Google Scholar 

  28. Wu, E., Harmon, D. & Han, L.-K. Interrelationship of voltage and temperature dependence of oxide breakdown for ultrathin oxides. IEEE Electron Device Lett. 21, 362–364 (2000).

    Article  CAS  Google Scholar 

  29. Padovani, A., Gao, D. Z., Shluger, A. L. & Larcher, L. A microscopic mechanism of dielectric breakdown in SiO2 films: an insight from multi-scale modeling. J. Appl. Phys. 121, 155101 (2017).

    Article  Google Scholar 

  30. Strand, J., La Torraca, P., Padovani, A., Larcher, L. & Shluger, A. L. Dielectric breakdown in HfO2 dielectrics: using multiscale modeling to identify the critical physical processes involved in oxide degradation. J. Appl. Phys. 131, 234501 (2022).

    Article  CAS  Google Scholar 

  31. Helms, C. R. & Poindexter The silicon-silicon dioxide system: its microstructure and imperfections. Rep. Prog. Phys. 57, 791–852 (1994).

    Article  CAS  Google Scholar 

  32. Grill, A. Dielectric Films for Advanced Microelectronics Ch. 1 (Wiley, 2007).

  33. Grill, A., Gates, S. M., Ryan, T. E., Nguyen, S. V. & Priyadarshini, D. Progress in the development and understanding of advanced low k and ultralow k dielectrics for very large-scale integrated interconnects — state of the art. Appl. Phys. Rev. 1, 011306 (2014).

    Article  Google Scholar 

  34. Jenkins, M. et al. Review-beyond the highs and lows: a perspective on the future of dielectrics research for nanoelectronic devices. ECS J. Solid State Sci. Technol. 8, N159 (2019).

    Article  CAS  Google Scholar 

  35. James, D. Recent innovations in DRAM manufacturing. In 2010 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 264–269 (IEEE, 2010).

  36. Mueller, W. et al. Challenges for the DRAM cell scaling to 40nm. In IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest. 1–4 (IEEE, 2005).

  37. Park, J. M. et al. 20nm DRAM: a new beginning of another revolution. In 2015 IEEE International Electron Devices Meeting (IEDM) 26.5.1–26.5.4 (IEEE, 2015).

  38. Huang, M. et al. A 3D stackable 1T1C DRAM: architecture, process integration and circuit simulation. In 2023 IEEE International Memory Workshop (IMW) 1–4 (IEEE, 2023).

  39. Chen, K. J. et al. GaN-on-Si power technology: devices and applications. IEEE Trans. Electron Devices 64, 779–795 (2017).

    Article  Google Scholar 

  40. Meneghesso, G. et al. Reliability of power devices: bias-induced threshold voltage instability and dielectric breakdown in GaN MIS-HEMTs. In 2016 IEEE International Integrated Reliability Workshop (IIRW) 35–40 (IEEE, 2016).

  41. Meneghini, M. et al. Reliability and failure analysis in power GaN-HEMTs: an overview. In 2017 IEEE International Reliability Physics Symposium (IRPS) 3B-2.1–3B-2.8 (IEEE, 2017).

  42. Warnock, S. et al. Time-dependent dielectric breakdown in high-voltage GaN MIS-HEMTs: the role of temperature. IEEE Trans. Electron Devices 64, 3132–3138 (2017).

    Article  CAS  Google Scholar 

  43. Liu, T. et al. Time-dependent dielectric breakdown of commercial 1.2 kV 4H-SiC power MOSFETs. IEEE J. Electron Devices Soc. 9, 633–639 (2021).

    Article  CAS  Google Scholar 

  44. Chbili, Z. et al. Modeling early breakdown failures of gate oxide in SiC power MOSFETs. IEEE Trans. Electron Devices 63, 3605–3613 (2016).

    Article  CAS  Google Scholar 

  45. Cheung, K. P. SiC power MOSFET gate oxide breakdown reliability — current status. In 2018 IEEE International Reliability Physics Symposium (IRPS) 2B.3-1–2B.3-5 (IEEE, 2018).

  46. Croes, K. et al. Current understanding of BEOL TDDB lifetime models. ECS J. Solid State Sci. Technol. 4, N3094 (2014).

    Article  Google Scholar 

  47. Mutch, M. J., Lenahan, P. M. & King, S. W. Defect chemistry and electronic transport in low-k dielectrics studied with electrically detected magnetic resonance. J. Appl. Phys. 119, 094102 (2016).

    Article  Google Scholar 

  48. Pomorski, T. A. et al. Defect structure and electronic properties of SiOC:H films used for back end of line dielectrics. J. Appl. Phys. 115, 234508 (2014).

    Article  Google Scholar 

  49. Wu, C. et al. Insights into metal drift induced failure in MOL and BEOL. In 2018 IEEE International Reliability Physics Symposium (IRPS) 3A.1-1–3A.1-7 (IEEE, 2018).

  50. Chen, F., Shinosky, M., Aitken, J., Yang, C.-C. & Edelstein, D. Invasion percolation model for abnormal time-dependent dielectric breakdown characteristic of low-k dielectrics due to massive metallic diffusion. Appl. Phys. Lett. 101, 242904 (2012).

    Article  Google Scholar 

  51. Wang, D. D. et al. Failure mechanism analysis and process improvement on time-dependent dielectric breakdown of Cu/ultra-low-k dielectric based on complementary Raman and FTIR spectroscopy study. AIP Adv. 4, 077124 (2014).

    Article  Google Scholar 

  52. Chen, F. et al. Line edge roughness and spacing effect on low-k TDDB characteristics. In 2008 IEEE International Reliability Physics Symposium, 132–137 (IEEE, 2008).

  53. Chen, F. et al. A comprehensive study of low-k SiCOH TDDB phenomena and its reliability lifetime model development. In 2006 IEEE International Reliability Physics Symposium Proceedings 46–53 (IEEE, 2006).

  54. Liniger, E. G., Cohen, S. A. & Bonilla, G. Low-field TDDB reliability data to enable accurate lifetime predictions. In 2014 IEEE International Reliability Physics Symposium BD.4.1–BD.4.4 (IEEE, 2014).

  55. Wong, T. K. Time dependent dielectric breakdown in copper low-k interconnects: mechanisms and reliability models. Materials 5, 1602–1625 (2012). A good overview of the major dielectric reliability models in the literature.

    Article  CAS  PubMed Central  Google Scholar 

  56. Aritome, S., Shirota, R., Hemink, G., Endoh, T. & Masuoka, F. Reliability issues of flash memory cells. Proc. IEEE 81, 776–788 (1993).

    Article  Google Scholar 

  57. Kitahara, Y., Hagishima, D. & Matsuzawa, K. Reliability of NAND flash memories induced by anode hole generation in floating-gate. In 2011 International Conference on Simulation of Semiconductor Processes and Devices 131–134 (IEEE, 2011).

  58. Schäfers, M. et al. Electric breakdown in ultrathin MgO tunnel barrier junctions for spin-transfer torque switching. Appl. Phys. Lett. 95, 232119 (2009).

    Article  Google Scholar 

  59. Choi, C.-M. et al. Temperature dependence of reliability characteristics for magnetic tunnel junctions with a thin MgO dielectric film. Semicond. Sci. Technol. 31, 075004 (2016).

    Article  Google Scholar 

  60. Amara-Dababi, S. et al. Breakdown mechanisms in MgO based magnetic tunnel junctions and correlation with low frequency noise. In 2014 IEEE International Reliability Physics Symposium 6A.1.1–6A.1.7 (IEEE, 2014).

  61. Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

    Article  CAS  Google Scholar 

  62. Schowalter, L. J. et al. Epitaxial growth and characterization of CaF2 on Si. J. Appl. Phys. 58, 302–308 (1985).

    Article  CAS  Google Scholar 

  63. Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020). An extensive review of dielectrics for nanoelectronic devices based on 2D materials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wen, C. & Lanza, M. Calcium fluoride as high-k dielectric for 2D electronics. Appl. Phys. Rev. 8, 021307 (2021).

    Article  CAS  Google Scholar 

  65. Harari, E. Dielectric breakdown in electrically stressed thin films of thermal SiO2. J. Appl. Phys. 49, 2478–2489 (1978).

    Article  CAS  Google Scholar 

  66. Martin, A., O’Sullivan, P. & Mathewson, A. Dielectric reliability measurement methods: a review. Microelectron. Reliab. 38, 37–72 (1998). This work provides a complete review of the dielectric reliability electrical characterization, discussing the typically used test structures, the different stress tests and the analysis of the experimental results.

    Article  Google Scholar 

  67. Eriguchi, K. & Kosaka, Y. Correlation between two time-dependent dielectric breakdown measurements for the gate oxides damaged by plasma processing. IEEE Trans. Electron Devices 45, 160–164 (1998).

    Article  CAS  Google Scholar 

  68. Wu, E. & Vollertsen, R.-P. On the Weibull shape factor of intrinsic breakdown of dielectric films and its accurate experimental determination. part I: theory, methodology, experimental techniques. IEEE Trans. Electron Devices 49, 2131–2140 (2002).

    Article  CAS  Google Scholar 

  69. Ho, C.-H., Kim, S. Y. & Roy, K. Ultra-thin dielectric breakdown in devices and circuits: a brief review. Microelectron. Reliab. 55, 308–317 (2015).

    Article  CAS  Google Scholar 

  70. Wu, E., Abadeer, W., Han, L.-K., Lo, S.-H. & Hueckel, G. Challenges for accurate reliability projections in the ultra-thin oxide regime. In 1999 IEEE International Reliability Physics Symposium Proceedings. 37th Annual (Cat. No.99CH36296) (IEEE, 1999).

  71. Pompl, T., Engel, C., Wurzer, H. & Kerber, M. Soft breakdown and hard breakdown in ultra-thin oxides. Microelectron. Reliab. 41, 543–551 (2001).

    Article  Google Scholar 

  72. Wu, E., Nowak, E. & Lai, W. Off-state mode TDDB reliability for ultra-thin gate oxides: new methodology and the impact of oxide thickness scaling. In 2004 IEEE International Reliability Physics Symposium. Proceedings 84–94 (IEEE, 2004).

  73. Berman, A. Time-zero dielectric reliability test by a ramp method. In 19th International Reliability Physics Symposium 204–209 (IEEE, 1981).

  74. Haase, G. S. & McPherson, J. W. Modeling of interconnect dielectric lifetime under stress conditions and new extrapolation methodologies for time-dependent dielectric breakdown. In 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual 390–398 (IEEE, 2007).

  75. Feng, Q. et al. Formation mechanism, dielectric properties, and energy-storage density in LiNbO3-doped Na0.47Bi0.47Ba0.06TiO3 ceramics. J. Mater. Sci. Mater. Electron. 31, 13368–13375 (2020).

    Article  CAS  Google Scholar 

  76. Nguyen, M. D., Birkhölzer, Y. A., Houwman, E. P., Koster, G. & Rijnders, G. Enhancing the energy storage density and breakdown strength in PbZrO3/Pb0.9La0.1Zr0.52Ti0.48O3 derived antiferroelectric/relaxor ferroelectric multilayers. Adv. Energy Mater. 12, 2200517 (2022).

    Article  CAS  Google Scholar 

  77. Ranjan, A. et al. Dielectric breakdown in single-crystal hexagonal boron nitride. ACS Appl. Electron. Mater. 3, 3547–3554 (2021).

    Article  CAS  Google Scholar 

  78. Ranjan, A. et al. Molecular bridges link monolayers of hexagonal boron nitride during dielectric breakdown. ACS Appl. Electron. Mater. 5, 1262–1276 (2023).

    Article  CAS  Google Scholar 

  79. Stathis, J. Physical and predictive models of ultra thin oxide reliability in CMOS devices and circuits. In 2001 IEEE International Reliability Physics Symposium Proceedings. 39th Annual (Cat. No.00CH37167) 132–149 (IEEE, 2001).

  80. O’Connor, R., Hughes, G. & Kauerauf, T. Time-dependent dielectric breakdown and stress-induced leakage current characteristics of 0.7-nm-EOT HfO2 pFETs. IEEE Trans. Device Mater. Reliab. 11, 290–294 (2011).

    Article  Google Scholar 

  81. Degraeve, R., Kaczer, B. & Groeseneken, G. Degradation and breakdown in thin oxide layers: mechanisms, models and reliability prediction. Microelectron. Reliab. 39, 1445–1460 (1999). An overview of dielectric breakdown phenomena, their mutual interactions, their effect on gate oxide reliability and their consequences for oxide thickness scaling, introducing the percolation model.

    Article  Google Scholar 

  82. Suñé, J. et al. Nondestructive multiple breakdown events in very thin SiO2 films. Appl. Phys. Lett. 55, 128–130 (1989).

    Article  Google Scholar 

  83. Suñé, J. et al. On the breakdown statistics of very thin SiO2 films. Thin Solid Films 185, 347–362 (1990).

    Article  Google Scholar 

  84. Degraeve, R. et al. New insights in the relation between electron trap generation and the statistical properties of oxide breakdown. IEEE Trans. Electron Devices 45, 904–911 (1998).

    Article  CAS  Google Scholar 

  85. Wu, E. Y. et al. Applications of clustering model to bimodal distributions for dielectric breakdown. J. Vac. Sci. Technol. B 35, 01A112 (2017).

    Article  Google Scholar 

  86. Wu, E. et al. Voltage-dependent voltage-acceleration of oxide breakdown for ultra-thin oxides. In International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138) 541–544 (IEEE, 2000).

  87. Wu, E. et al. Interplay of voltage and temperature acceleration of oxide breakdown for ultra-thin gate oxides. Solid State Electron. 46, 1787–1798 (2002).

    Article  CAS  Google Scholar 

  88. Zhao, L. et al. Direct observation of the 1/E dependence of time dependent dielectric breakdown in the presence of copper. Appl. Phys. Lett. 98, 032107 (2011).

    Article  Google Scholar 

  89. Chery, E., Federspiel, X., Roy, D., Volpi, F. & Chaix, J.-M. Identification of the (√E+1/E)-dependence of porous low-k time dependent dielectric breakdown using over one year long package level tests. Microelectron. Eng. 109, 90–93 (2013).

    Article  CAS  Google Scholar 

  90. Padovani, A. et al. Towards a universal model of dielectric breakdown. In 2023 IEEE International Reliability Physics Symposium (IRPS) 1–8 (IEEE, 2023). This paper presents a new atomistic model reconciling E and 1/E breakdown theories within a unified physical framework.

  91. Choi, C., Sukegawa, H., Mitani, S. & Song, Y. Investigation of ramped voltage stress to screen defective magnetic tunnel junctions. Semicond. Sci. Technol. 33, 015006 (2017).

    Article  Google Scholar 

  92. La Torraca, P. et al. Atomic defects profiling and reliability of amorphous Al2O3 metal-insulator-metal stacks. IEEE Trans. Electron Devices 69, 3884–3891 (2022).

    Article  Google Scholar 

  93. Tang, L., Pey, K., Tung, C., Radhakrishnan, M. & Lin, W. Gate dielectric-breakdown-induced microstructural damage in MOSFETs. IEEE Trans. Device Mater. Reliab. 4, 38–45 (2004).

    Article  CAS  Google Scholar 

  94. Ranjan, R. et al. A new breakdown failure mechanism in HfO2 gate dielectric. In 2004 IEEE International Reliability Physics Symposium. Proceedings 347–352 (IEEE, 2004).

  95. Selvarajoo, T. et al. Dielectric-breakdown-induced epitaxy: a universal breakdown defect in ultrathin gate dielectrics. IEEE Trans. Device Mater. Reliab. 5, 190–197 (2005).

    Article  CAS  Google Scholar 

  96. Wu, H. et al. Dielectric breakdown in epitaxial BaTiO3 thin films. J. Vac. Sci. Technol. B 38, 044007 (2020).

    Article  CAS  Google Scholar 

  97. Zhang, T., Ai, J. & Du, J. Contribution to the understanding of the dielectric breakdown mechanism of ZTA ceramics. Adv. Eng. Mater. 25, 2200786 (2022).

    Article  Google Scholar 

  98. Chen, J.-Y. et al. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 13, 3671–3677 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Fujii, T., Arita, M., Hamada, K., Takahashi, Y. & Sakaguchi, N. In-situ transmission electron microscopy of conductive filaments in NiO resistance random access memory and its analysis. J. Appl. Phys. 113, 083701 (2013).

    Article  Google Scholar 

  100. Mehonic, A. et al. Nanoscale transformations in metastable, amorphous, silicon rich silica. Adv. Mater. 28, 7486–7493 (2016). This work provides a complete characterization of the degradation process in silicon oxide combining imaging techniques (TEM, EELS and AFM), showing the formation of oxygen-deficient regions and the simultaneous release of oxygen during the degradation process.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, Y. et al. Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12, 7232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lombardo, S. et al. Electrical and thermal transient during dielectric breakdown of thin oxides in metal-SiO2-silicon capacitors. J. Appl. Phys. 84, 472–479 (1998).

    Article  CAS  Google Scholar 

  103. Pey, K. et al. Gate dielectric degradation mechanism associated with DBIE evolution. In 2004 IEEE International Reliability Physics Symposium. Proceedings 117–121 (IEEE, 2004).

  104. Privitera, S. et al. Microscopy study of the conductive filament in HfO2 resistive switching memory devices. Microelectron. Eng. 109, 75–78 (2013).

    Article  CAS  Google Scholar 

  105. Jiang, L. et al. Dielectric breakdown in chemical vapor deposited hexagonal boron nitride. ACS Appl. Mater. Interfaces 9, 39758–39770 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Saura, X., Suñé, J., Monaghan, S., Hurley, P. K. & Miranda, E. Analysis of the breakdown spot spatial distribution in Pt/HfO2/Pt capacitors using nearest neighbor statistics. J. Appl. Phys. https://doi.org/10.1063/1.4825321 (2013).

  107. Iglesias, V. et al. Correlation between the nanoscale electrical and morphological properties of crystallized hafnium oxide-based metal oxide semiconductor structures. Appl. Phys. Lett. 97, 262906 (2010).

    Article  Google Scholar 

  108. Iglesias, V. et al. Dielectric breakdown in polycrystalline hafnium oxide gate dielectrics investigated by conductive atomic force microscopy. J. Vac. Sci. Technol. B 29, 01AB02 (2011).

    Article  Google Scholar 

  109. Zhou, Y., Ang, D. S., Kalaga, P. S. & Gollu, S. R. Oxide breakdown path for optical sensing at the nanoscale level. In 2018 IEEE International Reliability Physics Symposium (IRPS) P-GD.8-1–P-GD.8-5 (IEEE, 2018).

  110. Wu, Y.-L. & Lin, S.-T. Breakdown spots propagation in ultra-thin SiO2 films under repetitive ramped voltage stress using conductive atomic force microscopy. J. Phys. Chem. Solids 69, 470–474 (2008).

    Article  CAS  Google Scholar 

  111. Lanza, M., Celano, U. & Miao, F. Nanoscale characterization of resistive switching using advanced conductive atomic force microscopy based setups. J. Electroceram. 39, 94–108 (2017).

    Article  CAS  Google Scholar 

  112. Celano, U. et al. Conductive-AFM tomography for 3D filament observation in resistive switching devices. In 2013 IEEE International Electron Devices Meeting 21.6.1–21.6.4 (IEEE, 2013).

  113. Celano, U. et al. Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett. 14, 2401–2406 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Celano, U. et al. Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory. Nano Lett. 15, 7970–7975 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Buckwell, M., Montesi, L., Hudziak, S., Mehonic, A. & Kenyon, A. J. Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM. Nanoscale 7, 18030–18035 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Choi, B. J. et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005).

    Article  Google Scholar 

  117. Li, X., Tung, C. H. & Pey, K. L. The nature of dielectric breakdown. Appl. Phys. Lett. 93, 072903 (2008).

    Article  Google Scholar 

  118. Ranjan, R. et al. Breakdown-induced thermochemical reactions in HfO2 high-k/polycrystalline silicon gate stacks. Appl. Phys. Lett. 87, 242907 (2005).

    Article  Google Scholar 

  119. Lenahan, P. M. & Conley Jr, J. F. What can electron paramagnetic resonance tell us about the Si/SiO2 system? J. Vac. Sci. Technol. B 16, 2134–2153 (1998). This work provides an overview of the paramagnetic centres experimentally detected by EPR in Si/SiO2 interfaces, which can be associated with electrically active defects and relevant from the devices reliability standpoint.

    Article  CAS  Google Scholar 

  120. Sharov, F. V. et al. Probing the atomic-scale mechanisms of time-dependent dielectric breakdown in Si/SiO2 MOSFETs (June 2022). IEEE Trans. Device Mater. Reliab. 22, 322–331 (2022).

    Article  CAS  Google Scholar 

  121. Caplan, P. J., Poindexter, E. H., Deal, B. E. & Razouk, R. R. ESR centers, interface states, and oxide fixed charge in thermally oxidized silicon wafers. J. Appl. Phys. 50, 5847–5854 (1979).

    Article  CAS  Google Scholar 

  122. Poindexter, E. H. et al. Electronic traps and Pb centers at the Si/SiO2 interface: band-gap energy distribution. J. Appl. Phys. 56, 2844–2849 (1984).

    Article  CAS  Google Scholar 

  123. Stesmans, A. Revision of H2 passivation of Pb interface defects in standard (111)Si/SiO2. Appl. Phys. Lett. 68, 2723–2725 (1996).

    Article  CAS  Google Scholar 

  124. Moxim, S. J. et al. Atomic-scale defects generated in the early/intermediate stages of dielectric breakdown in Si/SiO2 transistors. Appl. Phys. Lett. 120, 063502 (2022).

    Article  CAS  Google Scholar 

  125. Barklie, R. C. & Wright, S. Electron paramagnetic resonance characterization of defects in HfO2 and ZrO2 powders and films. J. Vac. Sci. Technol. B 27, 317–320 (2009).

    Article  CAS  Google Scholar 

  126. Gillen, R., Robertson, J. & Clark, S. J. Electron spin resonance signature of the oxygen vacancy in HfO2. Appl. Phys. Lett. 101, 102904 (2012).

    Article  Google Scholar 

  127. Islamov, D. R. et al. Oxygen vacancies in zirconium oxide as the blue luminescence centres and traps responsible for charge transport: part II — films. Materialia 15, 100980 (2021).

    Article  CAS  Google Scholar 

  128. Vandelli, L. et al. A physical model of the temperature dependence of the current through SiO2/HfO2 stacks. IEEE Trans. Electron Devices 58, 2878–2887 (2011).

    Article  CAS  Google Scholar 

  129. Torraca, P. L. et al. Electrically active defects in Al2O3-InGaAs MOS stacks at cryogenic temperatures. In 2023 IEEE International Integrated Reliability Workshop (IIRW) 1–5 (IEEE, 2023).

  130. Klein, N. The mechanism of self-healing electrical breakdown in MOS structures. IEEE Trans. Electron Devices ED-13, 788–805 (1966).

    Article  Google Scholar 

  131. Klein, N. in Advances in Electronics and Electron Physics Vol. 26, 309–424 (Academic, 1969).

  132. Klein, N. Switching and breakdown in films. Thin Solid Films 7, 149–177 (1971).

    Article  CAS  Google Scholar 

  133. Shatzkes, M., Av Ron, M. & Anderson, R. M. On the nature of conduction and switching in SiO2. J. Appl. Phys. 45, 2065–2077 (1974).

    Article  CAS  Google Scholar 

  134. DiStefano, T. H. & Shatzkes, M. Dielectric instability and breakdown in SiO2 thin films. J. Vac. Sci. Technol. 13, 50–54 (1976).

    Article  CAS  Google Scholar 

  135. Solomon, P. Breakdown in silicon oxide — a review. J. Vac. Sci. Technol. 14, 1122–1130 (1977).

    Article  CAS  Google Scholar 

  136. Klein, N. Mechanisms of electrical breakdown in thin insulators — an open subject. Thin Solid Films 100, 335–340 (1983).

    Article  CAS  Google Scholar 

  137. O’Dwyer, J. J. Theory of high field conduction in a dielectric. J. Appl. Phys. 40, 3887–3890 (1969).

    Article  Google Scholar 

  138. Klein, N. A theory of localized electronic breakdown in insulating films. Adv. Phys. 21, 605–645 (1972).

    Article  CAS  Google Scholar 

  139. Fischetti, M. V. Model for the generation of positive charge at the Si-SiO2 interface based on hot-hole injection from the anode. Phys. Rev. B 31, 2099–2113 (1985).

    Article  CAS  Google Scholar 

  140. Jonscher, A. K. & Lacoste, R. On a cumulative model of dielectric breakdown in solids. IEEE Trans. Electr. Insul. EI-19, 567–577 (1984). One of the first works linking breakdown to point defects, their generation and their evolution into defect clusters and a breakdown spot. Many of the proposed ideas are today acknowledged as key aspects of the breakdown process.

    Article  CAS  Google Scholar 

  141. Ridley, B. K. Mechanism of electrical breakdown in SiO2 films. J. Appl. Phys. 46, 998–1007 (1975).

    Article  CAS  Google Scholar 

  142. Budenstein, P. P. On the mechanism of dielectric breakdown of solids. IEEE Trans. Electr. Insul. EI-15, 225–240 (1980).

    Article  CAS  Google Scholar 

  143. Maserjian, J. & Zamani, N. Behavior of the Si/SiO2 interface observed by Fowler Nordheim tunneling. J. Appl. Phys. 53, 559–567 (1982). Discovery of the stress-induced leakage current (SILC) phenomenon, which implied for the first time that a defect generation mechanism was involved in the degradation and DB of the dielectric.

    Article  CAS  Google Scholar 

  144. Maserjian, J. & Zamani, N. Observation of positively charged state generation near the Si/SiO2 interface during Fowler-Nordheim tunneling. J. Vac. Sci. Technol. 20, 743–746 (1982).

    Article  CAS  Google Scholar 

  145. Balland, B., Plossu, C. & Bardy, S. Degradation of metal/oxide/semiconductor structures by Fowler-Nordheim tunnelling injection. Thin Solid Films 148, 149–162 (1987).

    Article  CAS  Google Scholar 

  146. Avni, E. & Shappir, J. A model for silicon oxide breakdown under high field and current stress. J. Appl. Phys. 64, 743–748 (1988).

    Article  CAS  Google Scholar 

  147. Weinberg, Z. A. & Nguyen, T. N. The relation between positive charge and breakdown in metal oxide silicon structures. J. Appl. Phys. 61, 1947–1956 (1987).

    Article  CAS  Google Scholar 

  148. McPherson, J. & Baglee, D. Acceleration factors for thin gate oxide stressing. In 23rd International Reliability Physics Symposium 1–5 (IEEE, 1985).

  149. DiMaria, D. J. & Stasiak, J. W. Trap creation in silicon dioxide produced by hot electrons. J. Appl. Phys. 65, 2342–2356 (1989).

    Article  CAS  Google Scholar 

  150. Wu, E. Y. & Suñé, J. Power-law voltage acceleration: a key element for ultra-thin gate oxide reliability. Microelectron. Reliab. 45, 1809–1834 (2005).

    Article  CAS  Google Scholar 

  151. McPherson, J. Time dependent dielectric breakdown physics — models revisited. Microelectron. Reliab. 52, 1753–1760 (2012). This work provides a critical discussion and comparison of the historically most widely used dielectric breakdown models.

    Article  CAS  Google Scholar 

  152. Teramoto, A. et al. Study of oxide breakdown under very low electric field. In 1999 IEEE International Reliability Physics Symposium Proceedings. 37th Annual (Cat. No.99CH36296) 66–71 (IEEE, 1999).

  153. Cheung, K. A physics-based, unified gate-oxide breakdown model. In International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318) 719–722 (IEEE, 1999).

  154. McPherson, J. W., Khamankar, R. B. & Shanware, A. Complementary model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics. J. Appl. Phys. 88, 5351–5359 (2000).

    Article  CAS  Google Scholar 

  155. Schuegraf, K. & Hu, C. Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation. IEEE Trans. Electron Devices 41, 761–767 (1994).

    Article  CAS  Google Scholar 

  156. Nissan-Cohen, Y. & Gorczyca, T. The effect of hydrogen on trap generation, positive charge trapping, and time-dependent dielectric breakdown of gate oxides. IEEE Electron Device Lett. 9, 287–289 (1988).

    Article  CAS  Google Scholar 

  157. Conley, J. & Lenahan, P. Room temperature reactions involving silicon dangling bond centers and molecular hydrogen in amorphous SiO2 thin films on silicon. IEEE Trans. Nuclear Sci. 39, 2186–2191 (1992).

    Article  CAS  Google Scholar 

  158. Haggag, A., Liu, N., Menke, D. & Moosa, M. Physical model for the power-law voltage and current acceleration of TDDB. Microelectron. Reliab. 45, 1855–1860 (2005).

    Article  Google Scholar 

  159. Nicollian, P. E. et al. The current understanding of the trap generation mechanisms that lead to the power law model for gate dielectric breakdown. In 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual 197–208 (IEEE, 2007).

  160. Lloyd, J. R., Liniger, E. & Shaw, T. M. Simple model for time-dependent dielectric breakdown in inter- and intralevel low-k dielectrics. J. Appl. Phys. 98, 084109 (2005).

    Article  Google Scholar 

  161. Wu, W., Duan, X. & Yuan, J. Modeling of time-dependent dielectric breakdown in copper metallization. IEEE Trans. Device Mater. Reliab. 3, 26–30 (2003).

    Article  CAS  Google Scholar 

  162. Achanta, R. S., Plawsky, J. L. & Gill, W. N. A time dependent dielectric breakdown model for field accelerated low-k breakdown due to copper ions. Appl. Phys. Lett. 91, 234106 (2007).

    Article  Google Scholar 

  163. Allers, K.-H. Prediction of dielectric reliability from I-V characteristics: Poole-Frenkel conduction mechanism leading to √E model for silicon nitride MIM capacitor. Microelectron. Reliab. 44, 411–423 (2004).

    Article  Google Scholar 

  164. Suzumura, N. et al. A new TDDB degradation model based on Cu ion drift in Cu interconnect dielectrics. In 2006 IEEE International Reliability Physics Symposium Proceedings 484–489 (IEEE, 2006).

  165. Hughes, T. W. & Dumin, D. J. Determination of the relative densities of high voltage stressed generated traps near the anode and cathode in 10 nm thick silicon oxides. J. Appl. Phys. 79, 3089–3093 (1996).

    Article  CAS  Google Scholar 

  166. Shiono, N. & Itsumi, M. A lifetime projection method using series model and acceleration factors for TDDB failures of thin gate oxides. In 31st Annual Proceedings Reliability Physics 1993 1–6 (IEEE, 1993).

  167. Dumin, D., Maddux, J., Scott, R. & Subramoniam, R. A model relating wearout to breakdown in thin oxides. IEEE Trans. Electron Devices 41, 1570–1580 (1994).

    Article  CAS  Google Scholar 

  168. Degraeve, R., Roussel, P., Ogier, J., Groeseneken, G. & Maes, H. A new statistical model for fitting bimodal oxide breakdown distributions at different field conditions. Microelectron. Reliab. 36, 1651–1654 (1996).

    Article  Google Scholar 

  169. Stathis, J. Quantitative model of the thickness dependence of breakdown in ultra-thin oxides. Microelectron. Eng. 36, 325–328 (1997).

    Article  CAS  Google Scholar 

  170. Stathis, J. H. Percolation models for gate oxide breakdown. J. Appl. Phys. 86, 5757–5766 (1999). This work provides an overview of statistical percolation models of dielectric breakdown and of the associated concepts.

    Article  CAS  Google Scholar 

  171. Hill, R. M. & Dissado, L. A. Theoretical basis for the statistics of dielectric breakdown. J. Phys. C Solid State Phys. 16, 2145 (1983).

    Article  CAS  Google Scholar 

  172. Hill, R. M. & Dissado, L. A. Examination of the statistics of dielectric breakdown. J. Phys. C Solid State Phys. 16, 4447 (1983).

    Article  CAS  Google Scholar 

  173. Rowland, S. M., Hill, R. M. & Dissado, L. A. Censored Weibull statistics in the dielectric breakdown of thin oxide films. J. Phys. C Solid State Phys. 19, 6263 (1986).

    Article  CAS  Google Scholar 

  174. Nafria, M., Sune, J. & Aymerich, X. Characterization of SiO2 dielectric breakdown for reliability simulation. IEEE Trans. Electron Devices 40, 1662–1668 (1993).

    Article  CAS  Google Scholar 

  175. Depas, M., Nigam, T. & Heyns, M. Soft breakdown of ultra-thin gate oxide layers. IEEE Trans. Electron Devices 43, 1499–1504 (1996).

    Article  CAS  Google Scholar 

  176. Leroux, C., Blachier, D., Briere, O. & Reimbold, G. Light emission microscopy for thin oxide reliability analysis. Microelectron. Eng. 36, 297–300 (1997).

    Article  CAS  Google Scholar 

  177. Crupi, F., Degraeve, R., Groeseneken, G., Nigam, T. & Maes, H. On the properties of the gate and substrate current after soft breakdown in ultrathin oxide layers. IEEE Trans. Electron Devices 45, 2329–2334 (1998).

    Article  CAS  Google Scholar 

  178. Weir, B. et al. Ultra-thin gate dielectrics: they break down, but do they fail? In International Electron Devices Meeting. IEDM Technical Digest 73–76 (IEEE, 1997).

  179. Monsieur, F., Vincent, E., Pananakakis, G. & Ghibaudo, G. Wear-out, breakdown occurrence and failure detection in 18-25 Å ultrathin oxides. Microelectron. Reliab. 41, 1035–1039 (2001).

    Article  Google Scholar 

  180. Linder, B., Lombardo, S., Stathis, J., Vayshenker, A. & Frank, D. Voltage dependence of hard breakdown growth and the reliability implication in thin dielectrics. IEEE Electron Device Lett. 23, 661–663 (2002).

    Article  CAS  Google Scholar 

  181. Wu, E. & Sune, J. Successive breakdown events and their relation with soft and hard breakdown modes. IEEE Electron Device Lett. 24, 692–694 (2003).

    Article  Google Scholar 

  182. Bohr, M. T., Chau, R. S., Ghani, T. & Mistry, K. The high-k solution. IEEE Spectr. 44, 29–35 (2007).

    Article  Google Scholar 

  183. Wong, H. & Gritsenko, V. Defects in silicon oxynitride gate dielectric films. Microelectron. Reliab. 42, 597–605 (2002).

    Article  Google Scholar 

  184. Wong, H. & Iwai, H. On the scaling issues and high-k replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectron. Eng. 83, 1867–1904 (2006).

    Article  CAS  Google Scholar 

  185. Damlencourt, J.-F. et al. Electrical and physico-chemical characterization of HfO2/SiO2 gate oxide stacks prepared by atomic layer deposition. Solid State Electron. 47, 1613–1616 (2003).

    Article  CAS  Google Scholar 

  186. Bersuker, G. et al. The effect of interfacial layer properties on the performance of Hf-based gate stack devices. J. Appl. Phys. 100, 094108 (2006).

    Article  Google Scholar 

  187. Heh, D. et al. Spatial distributions of trapping centers in HfO2/SiO2 gate stack. IEEE Trans. Electron Devices 54, 1338–1345 (2007).

    Article  CAS  Google Scholar 

  188. Kerber, A., Cartier, E., Linder, B., Krishnan, S. & Nigam, T. TDDB failure distribution of metal gate/high-k CMOS devices on SOI substrates. In 2009 IEEE International Reliability Physics Symposium 505–509 (IEEE, 2009).

  189. Prasad, C. et al. Dielectric breakdown in a 45 nm high-k/metal gate process technology. In 2008 IEEE International Reliability Physics Symposium 667–668 (IEEE, 2008).

  190. Degraeve, R. et al. Degradation and breakdown of 0.9 nm EOT SiO2 ALD HfO2 metal gate stacks under positive constant voltage stress. In IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest 408–411 (IEEE, 2005).

  191. Bersuker, G. et al. Breakdown in the metal/high-k gate stack: identifying the “weak link” in the multilayer dielectric. In 2008 IEEE International Electron Devices Meeting 1–4 (IEEE, 2008).

  192. Padovani, A. & La Torraca, P. A simple figure of merit to identify the first layer to degrade and fail in dual layer SiOx/HfO2 gate dielectric stacks. Microelectron. Eng. 281, 112080 (2023).

    Article  CAS  Google Scholar 

  193. Mei, S. et al. New understanding of dielectric breakdown in advanced FinFET devices — physical, electrical, statistical and multiphysics study. In 2016 IEEE International Electron Devices Meeting (IEDM) 15.5.1–15.5.4 (IEEE, 2016).

  194. Liu, W. et al. Layout dependence of gate dielectric TDDB in HKMG FinFET technology. In 2016 IEEE International Reliability Physics Symposium (IRPS) 7A-3-1–7A-3-5 (IEEE, 2016).

  195. Liu, C. et al. Systematical study of 14nm FinFET reliability: from device level stress to product HTOL. In 2015 IEEE International Reliability Physics Symposium 2F.3.1–2F.3.5 (IEEE, 2015).

  196. Sagong, H. C. et al. Reliability of advanced FinFET technology nodes beyond planar: invited. In 2020 4th IEEE Electron Devices Technology and Manufacturing Conference (EDTM) 1–4 (IEEE, 2020).

  197. Ranjan, R. et al. Impact of e-SiGe S/D processes on FinFET PFET TDDB reliability. In 2017 IEEE Electron Devices Technology and Manufacturing Conference (EDTM) 20–22 (IEEE, 2017).

  198. Prakash, O., Dabhi, C. K., Chauhan, Y. S. & Amrouch, H. Transistor self-heating: the rising challenge for semiconductor testing. In 2021 IEEE 39th VLSI Test Symposium (VTS) 1–7 (IEEE, 2021).

  199. Choi, K. et al. Reliability on evolutionary FinFET CMOS technology and beyond. In 2020 IEEE International Electron Devices Meeting (IEDM) 9.3.1–9.3.4 (IEEE, 2020).

  200. Lim, J. W., Yoo, C., Park, K. & Jeon, J. Self-heating and corner rounding effects on time dependent dielectric breakdown of stacked multi-nanosheet FETs. IEEE Access 11, 82208–82215 (2023).

    Article  Google Scholar 

  201. Liu, X., Sun, Y., Huang, J., Liu, C. & Shang, X. Study of layout effect on gate oxide TDDB in sub-16nm FinFET technology. In 2021 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) 1–5 (IEEE, 2021).

  202. Ogden, S. P. et al. Charge transport model to predict intrinsic reliability for dielectric materials. J. Appl. Phys. 118, 124102 (2015).

    Article  Google Scholar 

  203. Samadder, T. & Mahapatra, S. Tunneling leakage current dependent RDD model framework for gate oxide TDDB. In 2023 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) 193–196 (IEEE, 2023).

  204. Smidstrup, S. et al. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 32, 015901 (2019).

    Article  PubMed  Google Scholar 

  205. Zhou, Y., Zhang, W., Ma, E. & Deringer, W. L. Device-scale atomistic modelling of phase-change memory materials. Nat. Electron. 6, 746–754 (2023).

    Article  CAS  Google Scholar 

  206. Deal, B. E., Sklar, M., Grove, A. S. & Snow, E. H. Characteristics of the surface state charge (Qss) of thermally oxidized silicon. J. Electrochem. Soc. 114, 266 (1967).

    Article  CAS  Google Scholar 

  207. Kimmel, A., Sushko, P., Shluger, A. & Bersuker, G. Positive and negative oxygen vacancies in amorphous silica. ECS Trans. 19, 3–17 (2009).

    Article  CAS  Google Scholar 

  208. Munde, M. S., Gao, D. Z. & Shluger, A. L. Diffusion and aggregation of oxygen vacancies in amorphous silica. J. Phys. Condens. Matter 29, 245701 (2017).

    Article  PubMed  Google Scholar 

  209. Sushko, P. V. et al. Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations. J. Phys. Condens. Matter 17, S2115 (2005).

    Article  CAS  Google Scholar 

  210. Giacomazzi, L. et al. EPR parameters of E′ centers in v − SiO2 from first-principles calculations. Phys. Rev. B 90, 014108 (2014).

    Article  CAS  Google Scholar 

  211. Goes, W. et al. Identification of oxide defects in semiconductor devices: a systematic approach linking DFT to rate equations and experimental evidence. Microelectron. Reliab. 87, 286–320 (2018). An overview of how the capture/emission processes can be simulated using the theoretical methods developed for calculating rates of charge transfer reactions and applied to identifying defects in semiconductor devices.

    Article  CAS  Google Scholar 

  212. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Article  Google Scholar 

  213. DiMaria, D. J. & Cartier, E. Mechanism for stress induced leakage currents in thin silicon dioxide films. J. Appl. Phys. 78, 3883–3894 (1995).

    Article  CAS  Google Scholar 

  214. Vandelli, L. et al. A physics-based model of the dielectric breakdown in HfO2 for statistical reliability prediction. in 2011 International Reliability Physics Symposium GD.5.1–GD.5.4 (IEEE, 2011).

  215. Foster, A. S., Lopez Gejo, F., Shluger, A. L. & Nieminen, R. M. Vacancy and interstitial defects in hafnia. Phys. Rev. B 65, 174117 (2002).

    Article  Google Scholar 

  216. Tse, K., Liu, D., Xiong, K. & Robertson, J. Oxygen vacancies in high-k oxides. Microelectron. Eng. 84, 2028–2031 (2007).

    Article  CAS  Google Scholar 

  217. Kumar, J. et al. Recent advances in oxygen deficient metal oxides: opportunities as supercapacitor electrodes. Int. J. Energy Res. 46, 7055–7081 (2022).

    Article  CAS  Google Scholar 

  218. Sokolov, A. S. et al. Influence of oxygen vacancies in ALD HfO2−x thin films on non-volatile resistive switching phenomena with a Ti/HfO2−x/Pt structure. Appl. Surf. Sci. 434, 822–830 (2018).

    Article  CAS  Google Scholar 

  219. Dittmann, R., Menzel, S. & Waser, R. Nanoionic memristive phenomena in metal oxides: the valence change mechanism. Adv. Phys. 70, 155–349 (2021). A review of resistive switching phenomena and devices operating according to the bipolar valence change mechanism (VCM).

    Article  Google Scholar 

  220. Strand, J. et al. Intrinsic charge trapping in amorphous oxide films: status and challenges. J. Phys. Condens. Matter 30, 233001 (2018).

    Article  PubMed  Google Scholar 

  221. Tomura, Y., Hasunuma, R., Yamabe, K. & Migita, S. TDDB characteristics of thin polycrystalline and amorphous HfO2 films. In 2014 IEEE International Integrated Reliability Workshop Final Report (IIRW) 151–154 (IEEE, 2014).

  222. Strand, J. & Shluger, A. L. On the structure of oxygen deficient amorphous oxide films. Adv. Sci. 11, 2306243 (2024).

    Article  CAS  Google Scholar 

  223. Padovani, A., Larcher, L., Puglisi, F. M. & Pavan, P. Multiscale modeling of defect-related phenomena in high-k based logic and memory devices. In 2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) 1–6 (IEEE, 2017).

  224. Guo, Z., Ambrosio, F. & Pasquarello, A. Oxygen defects in amorphous Al2O3: a hybrid functional study. Appl. Phys. Lett. 109, 062903 (2016).

    Article  Google Scholar 

  225. Strand, J. W., Cottom, J., Larcher, L. & Shluger, A. L. Effect of electric field on defect generation and migration in HfO2. Phys. Rev. B 102, 014106 (2020).

    Article  CAS  Google Scholar 

  226. Padovani, A. & Larcher, L. Time-dependent dielectric breakdown statistics in SiO2 and HfO2 dielectrics: insights from a multi-scale modeling approach. In 2018 IEEE International Reliability Physics Symposium (IRPS) 3A.2-1–3A.2-7 (IEEE, 2018).

  227. Cheung, K. P. A non-defect precursor gate oxide breakdown model. J. Appl. Phys. 133, 234503 (2023).

    Article  CAS  Google Scholar 

  228. Vici, A. et al. Analytical Markov model to calculate TDDB at any voltage and temperature stress condition. IEEE Trans. Electron Devices 70, 6512–6519 (2023).

    Article  CAS  Google Scholar 

  229. El-Sayed, A.-M., Watkins, M. B., Afanas’ev, V. V. & Shluger, A. L. Nature of intrinsic and extrinsic electron trapping in SiO2. Phys. Rev. B 89, 125201 (2014).

    Article  Google Scholar 

  230. Kaviani, M., Strand, J., Afanas’ev, V. V. & Shluger, A. L. Deep electron and hole polarons and bipolarons in amorphous oxide. Phys. Rev. B 94, 020103 (2016).

    Article  Google Scholar 

  231. Gao, D. Z., El-Sayed, A.-M. & Shluger, A. L. A mechanism for Frenkel defect creation in amorphous SiO2 facilitated by electron injection. Nanotechnology 27, 505207 (2016).

    Article  PubMed  Google Scholar 

  232. Strand, J., Kaviani, M. & Shluger, A. L. Defect creation in amorphous HfO2 facilitated by hole and electron injection. Microelectron. Eng. 178, 279–283 (2017).

    Article  CAS  Google Scholar 

  233. Konstantinou, K., Elliott, S. R. & Akola, J. Inherent electron and hole trapping in amorphous phase-change memory materials: Ge2Sb2Te5. J. Mater. Chem. C 10, 6744–6753 (2022).

    Article  CAS  Google Scholar 

  234. La Torraca, P., Padovani, A., Strand, J., Shluger, A. & Larcher, L. The role of carrier injection in the breakdown mechanism of amorphous Al2O3 layers. IEEE Electron Device Lett. 45, 236–239 (2024).

    Article  Google Scholar 

  235. Gritsenko, V. A., Gismatulin, A. A., Baraban, A. P. & Chin, A. Mechanism of stress induced leakage current in Si3N4. Mater. Res. Express 6, 076401 (2019).

    Article  CAS  Google Scholar 

  236. Di Valentin, C., Palma, G. & Pacchioni, G. Ab initio study of transition levels for intrinsic defects in silicon nitride. J. Phys. Chem. C 115, 561–569 (2011).

    Article  Google Scholar 

  237. Padovani, A. et al. A sensitivity map-based approach to profile defects in MIM capacitors from I-V, C-V, and G-V measurements. IEEE Trans. Electron Devices 66, 1892–1898 (2019).

    Article  CAS  Google Scholar 

  238. Houssa, M. et al. Trap-assisted tunneling in high permittivity gate dielectric stacks. J. Appl. Phys. 87, 8615–8620 (2000).

    Article  CAS  Google Scholar 

  239. Manger, D. et al. Comprehensive investigation of trap-assisted conduction in ultra-thin SrTiO3 layers. Microelectron. Eng. 86, 1815–1817 (2009).

    Article  CAS  Google Scholar 

  240. Sedghi, N., Davey, W., Mitrovic, I. Z. & Hall, S. Reliability studies on Ta2O5 high-κ dielectric metal-insulator-metal capacitors prepared by wet anodization. J. Vac. Sci. Technol. B 29, 01AB10 (2011).

    Article  Google Scholar 

  241. Yasuda, H., Ikeda, N., Hama, K., Takagi, M. T. & Yoshii, I. Relation between stress-induced leakage current and dielectric breakdown in SiN-based antifuses. Jpn. J. Appl. Phys. 34, 1488 (1995).

    Article  CAS  Google Scholar 

  242. Bera, M. & Maiti, C. Electrical properties of SiO2/TiO2 high-k gate dielectric stack. Mater. Sci. Semicond. Process. 9, 909–917 (2006).

    Article  CAS  Google Scholar 

  243. Southwick, R. G., Wu, E., Mehta, S. & Stathis, J. Time dependent dielectric breakdown of SiN, SiBCN and SiOCN spacer dielectrics. In 2017 IEEE International Reliability Physics Symposium (IRPS) DG-1.1–DG-1.5 (IEEE, 2017).

  244. Funck, C. & Menzel, S. Comprehensive model of electron conduction in oxide-based memristive devices. ACS Appl. Electron. Mater. 3, 3674–3692 (2021).

    Article  CAS  Google Scholar 

  245. Kaniselvan, M., Luisier, M. & Mladenović, M. An atomistic modeling framework for valence change memory cells. Solid State Electron. 199, 108506 (2023).

    Article  CAS  Google Scholar 

  246. Pey, K. L., Raghavan, N., Wu, X., Liu, W. & Bosman, M. Dielectric breakdown — recovery in logic and resistive switching in memory — bridging the gap between the two phenomena. In 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology 1–6 (IEEE, 2012).

  247. Magyari-Kope, B. et al. (Invited) The interplay between electronic and ionic transport in the resistive switching process of random access memory devices. ECS Trans. 64, 153 (2014).

    Article  CAS  Google Scholar 

  248. Hattori, Y., Taniguchi, T., Watanabe, K. & Nagashio, K. Layer-by-layer dielectric breakdown of hexagonal boron nitride. ACS Nano 9, 916–921 (2015).

    Article  CAS  PubMed  Google Scholar 

  249. Ranjan, A. et al. Boron vacancies causing breakdown in 2D layered hexagonal boron nitride dielectrics. IEEE Electron Device Lett. 40, 1321–1324 (2019).

    Article  CAS  Google Scholar 

  250. Konstantinou, K. & Elliott, S. R. Atomistic modeling of charge-trapping defects in amorphous Ge-Sb-Te phase-change memory materials. Phys. Status Solidi Rapid Res. Lett. 17, 2200496 (2023).

    Article  CAS  Google Scholar 

  251. Slassi, A. et al. Device-to-materials pathway for electron traps detection in amorphous GeSe-based selectors. Adv. Electron. Mater. 9, 2201224 (2023).

    Article  CAS  Google Scholar 

  252. Warren, A. Reversible thermal breakdown as a switching mechanism in chalcogenide glasses. IEEE Trans. Electron Devices 20, 123–131 (1973).

    Article  CAS  Google Scholar 

  253. Kim, C., Pilania, G. & Ramprasad, R. Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites. J. Phys. Chem. C 120, 14575–14580 (2016).

    Article  CAS  Google Scholar 

  254. Li, J. et al. Machine-learning-assisted discovery of perovskite materials with high dielectric breakdown strength. Mater. Adv. 3, 8639–8646 (2022).

    Article  CAS  Google Scholar 

  255. Kim, C., Pilania, G. & Ramprasad, R. From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown. Chem. Mater. 28, 1304–1311 (2016).

    Article  CAS  Google Scholar 

  256. Yuan, F. & Mueller, T. Identifying models of dielectric breakdown strength from high-throughput data via genetic programming. Sci. Rep. 7, 17594 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Mahapatra, S. et al. A generic trap generation framework for MOSFET reliability — part I: gate only stress-BTI, SILC, and TDDB. IEEE Trans. Electron Devices 71, 114–125 (2024).

    Article  CAS  Google Scholar 

  258. Bersuker, G., Korkin, A., Jeon, Y. & Huff, H. R. A model for gate oxide wear out based on electron capture by localized states. Appl. Phys. Lett. 80, 832–834 (2002).

    Article  CAS  Google Scholar 

  259. Vici, A. et al. A multi-energy level agnostic approach for defect generation during TDDB stress. Solid State Electron. 193, 108298 (2022).

    Article  CAS  Google Scholar 

  260. Lucovsky, G. et al. Control of Si-SiO2 interface properties in MOS devices prepared by plasma-assisted and rapid thermal processes. MRS Online Proc. Library 318, 81–92 (1993).

    Article  Google Scholar 

  261. Hattangady, S. et al. Ultrathin nitrogen-profile engineered gate dielectric films. In International Electron Devices Meeting. Technical Digest 495–498 (IEEE, 1996).

  262. Green, M. L., Gusev, E. P., Degraeve, R. & Garfunkel, E. L. Ultrathin (4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits. J. Appl. Phys. 90, 2057–2121 (2001). This work provides a broad overview of SiO2 and SiON gate dielectrics and of their reliability.

    Article  CAS  Google Scholar 

  263. Hwang, H., Ting, W., Kwong, D.-L. & Lee, J. Electrical and reliability characteristics of ultrathin oxynitride gate dielectric prepared by rapid thermal processing in N2O. In International Technical Digest on Electron Devices 421–424 (IEEE, 1990).

  264. Tombs, N., Wegener, H., Newman, R., Kenney, B. & Coppola, A. A new insulated-gate silicon transistor. Proc. IEEE 54, 87–88 (1966).

    Article  Google Scholar 

  265. Autran, J.-L., Devine, R., Chaneliere, C. & Balland, B. Fabrication and characterization of Si-MOSFET’s with PECVD amorphous Ta2O5 gate insulator. IEEE Electron Device Lett. 18, 447–449 (1997).

    Article  CAS  Google Scholar 

  266. Chaneliere, C., Autran, J., Devine, R. & Balland, B. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. R Rep. 22, 269–322 (1998).

    Article  Google Scholar 

  267. Devine, R. et al. Use of carbon-free Ta2O5 thin-films as a gate insulator. Microelectron. Eng. 36, 61–64 (1997).

    Article  CAS  Google Scholar 

  268. Campbell, S. et al. MOSFET transistors fabricated with high permitivity TiO2 dielectrics. IEEE Trans. Electron Devices 44, 104–109 (1997).

    Article  CAS  Google Scholar 

  269. George, S. et al. Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB… binary reaction sequence chemistry. Appl. Surf. Sci. 82–83, 460–467 (1994).

    Article  Google Scholar 

  270. Wilk, G. D., Wallace, R. M. & Anthony, J. M. High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001).

    Article  CAS  Google Scholar 

  271. Guha, S., Cartier, E., Gribelyuk, M. A., Bojarczuk, N. A. & Copel, M. C. Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics. Appl. Phys. Lett. 77, 2710–2712 (2000).

    Article  CAS  Google Scholar 

  272. Tye, L., El Masry, N. A., Chikyow, T., McLarty, P. & Bedair, S. M. Electrical characteristics of epitaxial CeO2 on Si(111). Appl. Phys. Lett. 65, 3081–3083 (1994).

    Article  CAS  Google Scholar 

  273. Nishikawa, Y., Fukushima, N., Yasuda, N., Nakayama, K. & Ikegawa, S. Electrical properties of single crystalline CeO2 high-k gate dielectrics directly grown on Si (111). Jpn. J. Appl. Phys. 41, 2480 (2002).

    Article  CAS  Google Scholar 

  274. Balog, M., Schieber, M., Patai, S. & Michman, M. Thin films of metal oxides on silicon by chemical vapor deposition with organometallic compounds. I. J. Cryst. Growth 17, 298–301 (1972).

    Article  CAS  Google Scholar 

  275. Kang, L. et al. Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric. IEEE Electron Device Lett. 21, 181–183 (2000).

    Article  CAS  Google Scholar 

  276. Lee, B. H. et al. Characteristics of TaN gate MOSFET with ultrathin hafnium oxide (8Å-12Å). In International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138) 39–42 (IEEE, 2000).

  277. Lee, C. et al. MOS characteristics of ultra thin rapid thermal CVD ZrO2 and Zr silicate gate dielectrics. In International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138) 27–30 (IEEE, 2000).

  278. McKee, R. A., Walker, F. J. & Chisholm, M. F. Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81, 3014–3017 (1998).

    Article  CAS  Google Scholar 

  279. Lin, C.-C., Lai, L.-W., Lin, C.-Y. & Tseng, T.-Y. SrTiO3-SiO2 oxide films for possible high-k gate dielectric applications. Thin Solid Films 515, 8005–8008 (2007).

    Article  CAS  Google Scholar 

  280. Gottlob, H. et al. Investigation of high-k gate stacks with epitaxial Gd2O3 and FUSI NiSi metal gates down to CET = 0.86nm. Mater. Sci. Semicond. Process. 9, 904–908 (2006).

    Article  CAS  Google Scholar 

  281. Kwo, J. et al. High ε gate dielectrics Gd2O3 and Y2O3 for silicon. Appl. Phys. Lett. 77, 130–132 (2000).

    Article  CAS  Google Scholar 

  282. Manchanda, L. & Gurvitch, M. Yttrium oxide/silicon dioxide: a new dielectric structure for VLSI/ULSI circuits. IEEE Electron Device Lett. 9, 180–182 (1988).

    Article  CAS  Google Scholar 

  283. Osten, H., Liu, J., Gaworzewski, P., Bugiel, E. & Zaumseil, P. High-k gate dielectrics with ultra-low leakage current based on praseodymium oxide. In International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138) 653–656 (IEEE, 2000).

  284. Chen, S. et al. Superior electrical properties of crystalline Er2O3 films epitaxially grown on Si substrates. Appl. Phys. Lett. 88, 222902 (2006).

    Article  Google Scholar 

  285. Dakhel, A. A. Characterisation of Nd2O3 thick gate dielectric for silicon. Phys. Status Solidi A 201, 745–755 (2004).

    Article  CAS  Google Scholar 

  286. Xiong, K., Robertson, J., Pourtois, G., Pétry, J. & Müller, M. Impact of incorporated Al on the TiN/HfO2 interface effective work function. J. Appl. Phys. 104, 074501 (2008).

    Article  Google Scholar 

  287. Kita, K., Zhu, L. Q., Nishimura, T., Nagashio, K. & Toriumi, A. (Invited) Formation of dipole layers at oxide interfaces in high-k gate stacks. ECS Trans. 33, 463 (2010).

    Article  CAS  Google Scholar 

  288. Alshareef, H. N. et al. Work function engineering using lanthanum oxide interfacial layers. Appl. Phys. Lett. 89, 232103 (2006).

    Article  Google Scholar 

  289. Kamiyama, S. et al. Systematic study of Vth controllability using ALD-Y2O3, La2O3, and MgO2 layers with HfSiON/metal gate first n-MOSFETs for hp 32 nm bulk devices. In 2008 IEEE International Electron Devices Meeting 1–4 (IEEE, 2008).

  290. Yan, L. et al. Magnesium oxide as a candidate high-κ gate dielectric. Appl. Phys. Lett. 88, 142901 (2006).

    Article  Google Scholar 

  291. Watanabe, T. et al. Highly reliable trench capacitor with SiO2/Si3N4/SiO2 stacked film. In 25th International Reliability Physics Symposium 50–54 (IEEE, 1987).

  292. Kwon, K.-W., Kang, C.-S., Park, S. O., Kang, H.-K. & Ahn, S. T. Thermally robust Ta2O5/ capacitor for the 256-Mbit DRAM. IEEE Trans. Electron Devices 43, 919–923 (1996).

    Article  CAS  Google Scholar 

  293. Jeong, G.-T. et al. A high performance 16 mb DRAM using giga-bit technologies. IEEE Trans. Electron Devices 44, 2064–2069 (1997).

    Article  CAS  Google Scholar 

  294. van Dover, R. B. Amorphous lanthanide-doped TiOx dielectric films. Appl. Phys. Lett. 74, 3041–3043 (1999).

    Article  Google Scholar 

  295. Cheng, C. H. et al. High density and low leakage current in TiO2 MIM capacitors processed at 300 °C. IEEE Electron Device Lett. 29, 845–847 (2008).

    Article  CAS  Google Scholar 

  296. Kim, S. K. et al. Al-doped TiO2 films with ultralow leakage currents for next generation DRAM capacitors. Adv. Mater. 20, 1429–1435 (2008).

    Article  CAS  Google Scholar 

  297. Park, I.-S. et al. Novel MIS Al2O3 capacitor as a prospective technology for Gbit DRAMs. In 2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.00CH37104) 42–43 (IEEE, 2000).

  298. Wu, S.-H., Deng, C.-K., Hou, T.-H. & Chiou, B.-S. Stability of La2O3 metal-insulator-metal capacitors under constant voltage stress. Jpn. J. Appl. Phys. 49, 04DB16 (2010).

    Article  Google Scholar 

  299. Yu, X. et al. A high-density MIM capacitor (13 fF/μm2) using ALD HfO2 dielectrics. IEEE Electron Device Lett. 24, 63–65 (2003).

    Article  CAS  Google Scholar 

  300. Shappir, J., Anis, A. & Pinsky, I. Investigation of MOS capacitors with thin ZrO2 layers and various gate materials for advanced DRAM applications. IEEE Trans. Electron Devices 33, 442–449 (1986).

    Article  Google Scholar 

  301. Mikolajick, T. et al. Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021).

    Article  CAS  Google Scholar 

  302. Menou, N. et al. 0.5 nm EOT low leakage ALD SrTiO3 on TiN MIM capacitors for DRAM applications. In 2008 IEEE International Electron Devices Meeting 1–4 (IEEE, 2008).

  303. Tsui, B.-Y., Hsu, H.-H. & Cheng, C.-H. High-performance metal-insulator-metal capacitors with HfTiO/Y2O3 stacked dielectric. IEEE Electron Device Lett. 31, 875–877 (2010).

    Article  CAS  Google Scholar 

  304. Mori, S. et al. Reliability study of thin inter-poly dielectrics for non-volatile memory application. In 28th Annual Proceedings on Reliability Physics Symposium 132–144 (IEEE, 1990).

  305. Park, Y. et al. Highly manufacturable 32Gb multi-level NAND flash memory with 0.0098 μm2 cell size using TANOS(Si - Oxide - Al2O3 - TaN) Cell Technology. In 2006 International Electron Devices Meeting 1–4 (IEEE, 2006).

  306. Lee, J. J., Wang, X., Bai, W., Lu, N. & Kwong, D.-L. Theoretical and experimental investigation of Si nanocrystal memory device with HfO2 high-k tunneling dielectric. IEEE Trans. Electron Devices 50, 2067–2072 (2003).

    Article  CAS  Google Scholar 

  307. Bernard, Y., Renard, V., Gonon, P. & Jousseaume, V. Back-end-of-line compatible conductive bridging RAM based on Cu and SiO2. Microelectron. Eng. 88, 814–816 (2011).

    Article  CAS  Google Scholar 

  308. Zhang, L. et al. Unipolar resistive switch based on silicon monoxide realized by CMOS technology. IEEE Electron Device Lett. 30, 870–872 (2009).

    Article  Google Scholar 

  309. Prakash, A., Jana, D. & Maikap, S. TaOx-based resistive switching memories: prospective and challenges. Nanoscale Res. Lett. 8, 418 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  310. Wong, H.-S. P. et al. Metal-oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).

    Article  CAS  Google Scholar 

  311. Zahoor, F., Azni Zulkifli, T. Z. & Khanday, F. A. Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett. 15, 90 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Wu, Y., Lee, B. & Wong, H.-S. P. Al2O3-based RRAM using atomic layer deposition (ALD) with 1-μA RESET current. IEEE Electron Device Lett. 31, 1449–1451 (2010).

    Article  CAS  Google Scholar 

  313. Kwon, D.-H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  314. Fan, J. et al. Back-end-of-line a-SiOxCy:H dielectrics for resistive memory. AIP Adv. 8, 095215 (2018).

    Article  Google Scholar 

  315. Chiu, F.-C., Shih, W.-C. & Feng, J.-J. Conduction mechanism of resistive switching films in MgO memory devices. J. Appl. Phys. 111, 094104 (2012).

    Article  Google Scholar 

  316. Zhu, K. et al. Graphene-boron nitride-graphene cross-point memristors with three stable resistive states. ACS Appl. Mater. Interfaces 11, 37999–38005 (2019).

    Article  CAS  PubMed  Google Scholar 

  317. Zagni, N., Puglisi, F. M., Pavan, P. & Alam, M. A. Reliability of HfO2-based ferroelectric FETs: a critical review of current and future challenges. Proc. IEEE 111, 158–184 (2023).

    Article  CAS  Google Scholar 

  318. Piquet, J. et al. Impact of design on high-frequency performance of advanced MIM capacitors using Si3N4 dielectric layers. IEEE Trans. Compon. Packag. Technol. 31, 546–551 (2008).

    Article  CAS  Google Scholar 

  319. Yota, J., Shen, H. & Ramanathan, R. Characterization of atomic layer deposition HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal-insulator-metal capacitor dielectric for GaAs HBT technology. J. Vac. Sci. Technol. A 31, 01A134 (2012).

    Article  Google Scholar 

  320. Cowell III, E. W. et al. Advancing MIM electronics: amorphous metal electrodes. Adv. Mater. 23, 74–78 (2011).

    Article  Google Scholar 

  321. Herner, S. B., Weerakkody, A. D., Belkadi, A. & Moddel, G. High performance MIIM diode based on cobalt oxide/titanium oxide. Appl. Phys. Lett. 110, 223901 (2017).

    Article  Google Scholar 

  322. Alimardani, N. et al. Investigation of the impact of insulator material on the performance of dissimilar electrode metal-insulator-metal diodes. J. Appl. Phys. 116, 024508 (2014).

    Article  Google Scholar 

  323. Alimardani, N. & Conley Jr, J. F. Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes. Appl. Phys. Lett. 102, 143501 (2013).

    Article  Google Scholar 

  324. Grover, S. & Moddel, G. Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator tunnel barriers. Solid State Electron. 67, 94–99 (2012).

    Article  CAS  Google Scholar 

  325. Sun, Y., Yu, X., Zhang, R., Chen, B. & Cheng, R. The past and future of multi-gate field-effect transistors: process challenges and reliability issues. J. Semicond. 42, 023102 (2021).

    Article  Google Scholar 

  326. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  327. Kim, S. K. et al. Capacitors with an equivalent oxide thickness of <0.5 nm for nanoscale electronic semiconductor memory. Adv. Funct. Mater. 20, 2989–3003 (2010).

    Article  CAS  Google Scholar 

  328. Nam, K. et al. Origin of incremental step pulse programming (ISPP) slope degradation in charge trap nitride based multi-layer 3D NAND flash. Solid State Electron. 175, 107930 (2021).

    Article  CAS  Google Scholar 

  329. Garg, J. & Wairya, S. in Advances in Energy Technology (eds Bansal, R. C.) 673–681 (Springer, 2022).

  330. Suto, T. et al. 1.2-kv SIC trench-etched double-diffused MOS (TED-MOS). In Silicon Carbide and Related Materials 2018 (vol. 963 of Materials Science Forum) 617–620 (Trans Tech, 2019).

  331. Wu, X. et al. Evolution of filament formation in Ni/HfO2/SiOx/Si-based RRAM devices. Adv. Electron. Mater. 1, 1500130 (2015).

    Article  Google Scholar 

  332. Gupta, A., Ni, K., Prakash, O., Hu, X. S. & Amrouch, H. Temperature dependence and temperature-aware sensing in ferroelectric FET. In 2020 IEEE International Reliability Physics Symposium (IRPS) 1–5 (IEEE, 2020).

  333. Francois, T. et al. Demonstration of BEOL-compatible ferroelectric Hf0.5Zr0.5O2 scaled FeRAM co-integrated with 130nm CMOS for embedded NVM applications. In 2019 IEEE International Electron Devices Meeting (IEDM) 15.7.1–15.7.4 (IEEE, 2019).

  334. McPherson, J. W. Reliability Physics and Engineering (Springer, 2019).

  335. Wu, E. Y., Stathis, J. H. & Han, L.-K. Ultra-thin oxide reliability for ULSI applications. Semicond. Sci. Technol. 15, 425–435 (2000).

    Article  CAS  Google Scholar 

  336. Shubhakar, K. et al. Nanoscale physical analysis of localized breakdown events in HfO2/SiOx dielectric stacks: a correlation study of STM induced BD with C-AFM and TEM. In 2012 19th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits 1–7 (IEEE, 2012).

  337. Yalon, E., Cohen, S., Gavrilov, A. & Ritter, D. Evaluation of the local temperature of conductive filaments in resistive switching materials. Nanotechnology 23, 465201 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.P. acknowledges the FAR 2022–2023 project of the ‘Enzo Ferrari’ Engineering Department of the University of Modena and Reggio Emilia, Italy, for the financial support. J.S. and A.L.S. are grateful to Engineering and Physical Sciences Research Council (EPSRC, grant numbers EP/P013503/1 and EP/R034540/1) for the financial support. Through their membership of the UK’s HEC Materials Chemistry Consortium, which is funded by EPSRC (grant numbers EP/R029431 and EP/X035859/1), this work used the ARCHER2 UK National Supercomputing Service (http://www.archer2.ac.uk). The authors are grateful to E. Wu, G. Bersuker, V. Afanas’ev, T. Grasser, S. Mahapatra, T. Kenyon and A. Mehonic for the valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.P., P.L.T. and A.L.S researched data for the article. All authors contributed substantially to discussion of the content and wrote the article. A.P., P.L.T., J.S. and A.L.S. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Andrea Padovani or Alexander L. Shluger.

Ethics declarations

Competing interests

L.L. works at Applied Materials, the company that develops Ginestra software, which is mentioned in the paper and has been used to produce Fig. 5b–d. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Cheol Seong Hwang and Enrico Zanoni for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padovani, A., La Torraca, P., Strand, J. et al. Dielectric breakdown of oxide films in electronic devices. Nat Rev Mater 9, 607–627 (2024). https://doi.org/10.1038/s41578-024-00702-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00702-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing