Abstract
CO2 electroreduction (CO2E) is one promising strategy towards decarbonization, offering a path to produce widely used chemicals such as fuels or manufacturing feedstocks using renewable energy and waste CO2 (as opposed to fossil fuels). CO2E performance at the laboratory scale is advancing quickly, including ongoing scale-up and industrialization efforts. To address global CO2 emissions (~37 Gt per year), CO2 electrolysers and components, as well as upstream and downstream associated technologies, must be deployed at the gigawatt scale. This entails considerable challenges beyond performance, such as resource availability, deployment readability and end-of-life system management, which are today overlooked. In this Review, we analyse the impending resource challenges as CO2E deployment approaches gigatonne scale, considering a life cycle assessment focused on the associated materials and their corresponding global warming impact. We identify scalability bottlenecks related to membranes, electrode supports and anode materials, among others, and discuss the need for more stable carbon-efficient systems and materials recycling strategies. We conclude with potential approaches to rationally design materials towards sustainable CO2 capture and electrolysis at the gigatonne scale.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
International Energy Agency. CO2 emissions in 2022 (IEA, 2023).
Fisher, B. et al. in Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 3 (eds Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. & Meyer, L. A.) 169–250 (Cambridge Univ. Press, 2007).
CO2.Earth. 2100 projections. CO2.Earth https://www.co2.earth/2100-projections (2024).
United Nations Framework Convention on Climate Change. The Paris Agreement. UNFCCC https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (2022).
United Nations Framework Convention on Climate Change. The Glasgow Climate Pact: key outcomes from COP26. UNFCCC https://unfccc.int/process-and-meetings/the-paris-agreement/the-glasgow-climate-pact-key-outcomes-from-cop26 (2021).
Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2023).
Pickering, B., Lombardi, F. & Pfenninger, S. Diversity of options to eliminate fossil fuels and reach carbon neutrality across the entire European energy system. Joule 6, 1253–1276 (2022).
Nesbitt, E. R. Using waste carbon feedstocks to produce chemicals. Ind. Biotechnol. 16, 147–163 (2020).
Hepburn, C. et al. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87–97 (2019).
Centi, G. & Perathoner, S. in Handbook of Climate Change Mitigation and Adaptation (eds Lackner, M., Sajjadi, B. & Chen, W.-Y.) 1803–1852 (2022).
Barecka, M. H., Ager, J. W. & Lapkin, A. A. Carbon neutral manufacturing via on-site CO2 recycling. iScience 24, 102514 (2021).
Markewitz, P. et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 5, 7281–7305 (2012).
Drechsler, C. & Agar, D. W. Intensified integrated direct air capture — power-to-gas process based on H2O and CO2 from ambient air. Appl. Energy 273, 115076 (2020).
Barzagli, F., Giorgi, C., Mani, F. & Peruzzini, M. Screening study of different amine-based solutions as sorbents for direct CO2 capture from air. ACS Sustain. Chem. Eng. 8, 14013–14021 (2020).
Veselovskaya, J. V. et al. Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent. Int. J. Greenh. Gas Control 17, 332–340 (2013).
European Parliament. Circular economy: definition, importance and benefits. European Parliament https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importance-and-benefits (2023).
Kaiser, S., Gold, S. & Bringezu, S. Environmental and economic assessment of CO2-based value chains for a circular carbon use in consumer products. Resour. Conserv. Recycl. 184, 106422 (2022).
Khoo, H. H., Halim, I. & Handoko, A. D. LCA of electrochemical reduction of CO2 to ethylene. J. CO2 Util. 41, 101229 (2020).
Cheng, Y., Hou, P., Wang, X. & Kang, P. CO2 electrolysis system under industrially relevant conditions. Acc. Chem. Res. 55, 231–240 (2022).
Martindale, B. Electrifying start-up. Nat. Catal. 4, 924–925 (2021).
Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).
CERT Systems. Essential chemicals without fossil fuels. CERT https://co2cert.com/ (2024).
eChemicles. Electrolysis for a better tomorrow! eChemicles https://echemicles.com/ (2024).
Dioxycle. Technology. Dioxycle https://dioxycle.com/#technology (2024).
Zhang, Z. et al. Membrane electrode assembly for electrocatalytic CO2 reduction: principle and application. Angew. Chem. Int. Ed. 62, e202302789 (2023).
Nguyen, T. N. & Dinh, C. T. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem. Soc. Rev. 49, 7488–7504 (2020).
Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain. 5, 563–573 (2022).
Park, J. et al. Strategies for CO2 electroreduction in cation exchange membrane electrode assembly. Chem. Eng. J. 453, 139826 (2023).
Ma, M., Kim, S., Chorkendorff, I. & Seger, B. Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci. 11, 8854–8861 (2020).
Wren, J. C. et al. Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature. J. Electrochem. Soc. 155, B42 (2007).
Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).
Noh, S., Jeon, J. Y., Adhikari, S., Kim, Y. S. & Bae, C. Molecular engineering of hydroxide conducting polymers for anion exchange membranes in electrochemical energy conversion technology. Acc. Chem. Res. 52, 2745–2755 (2019).
Vermaas, D. A. & Smith, W. A. Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane. ACS Energy Lett. 1, 1143–1148 (2016).
Salvatore, D. A. et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 3, 149–154 (2018).
Stephens, I. E. L. et al. Roadmap on low temperature electrochemical CO2 reduction. J. Phys. Energy 4, 042003 (2022).
Wakerley, D. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7, 130–143 (2022).
Verma, S., Lu, X., Ma, S., Masel, R. I. & Kenis, P. J. A. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016).
Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2018).
Larrazábal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).
Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 1–3 (2020).
Fan, M. et al. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis. Nat. Catal. 6, 763–772 (2023).
Xie, Y. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 5, 564–570 (2022).
Li, H. et al. Tailoring acidic microenvironments for carbon-efficient CO2 electrolysis over a Ni–N–C catalyst in a membrane electrode assembly electrolyzer. Energy Environ. Sci. 16, 1502–1510 (2023).
Li, L., Liu, Z., Yu, X. & Zhong, M. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew. Chem. Int. Ed. 62, e202300226 (2023).
Zhao, Y. et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat. Synth. 2, 403–412 (2023).
Xie, K. et al. Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nat. Commun. 13, 3609 (2022).
Deutz, S. & Bardow, A. Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nat. Energy 6, 203–213 (2021).
Fernández-González, J., Rumayor, M., Domínguez-Ramos, A. & Irabien, Á. CO2 electroreduction: sustainability analysis of the renewable synthetic natural gas. Int. J. Greenh. Gas Control 114, 103549 (2022).
Rheticus research project enters phase 2. Siemens https://www.siemens-energy.com/global/en/home/press-releases/research-project-rheticus.html (2019).
International Renewable Energy Agency. Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5°C climate goal (IRENA, 2020).
Raya-Imbernón, A. et al. Renewable syngas generation via low-temperature electrolysis: opportunities and challenges. ACS Energy Lett. 9, 288–297 (2024).
Schreiber, M. W. Industrial CO2 electroreduction to ethylene: main technical challenges. Curr. Opin. Electrochem. 44, 101438 (2023).
Rizwan, M., Alstad, V. & Jäschke, J. Design considerations for industrial water electrolyzer plants. Int. J. Hydrog. Energy 46, 37120–37136 (2021).
Edwards, J. P. et al. Pilot-scale CO2 electrolysis enables a semi-empirical electrolyzer model. ACS Energy Lett. 8, 2576–2584 (2023).
Burdyny, T. & Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).
Đukić, T. et al. Understanding the crucial significance of the temperature and potential window on the stability of carbon supported Pt-alloy nanoparticles as oxygen reduction reaction electrocatalysts. ACS Catal. 12, 101–115 (2022).
European Commission. Critical raw materials. European Commission https://ec.europa.eu/growth/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en (2023).
US Geological Survey. Mineral commodity summaries 2021 (USGS, 2021).
Garside, M. Demand for iridium worldwide from 2010 to 2024. Statista https://www.statista.com/statistics/585840/demand-for-iridium-worldwide/ (2024).
Gunn, G. (ed.) Critical Metals Handbook (Wiley, 2014).
Hegge, F. et al. Efficient and stable low iridium loaded anodes for PEM water electrolysis made possible by nanofiber interlayers. ACS Appl. Energy Mater. 3, 8276–8284 (2020).
Babic, U., Suermann, M., Büchi, F. N., Gubler, L. & Schmidt, T. J. Identifying critical gaps for polymer electrolyte water electrolysis development. J. Electrochem. Soc. 164, F387 (2017).
Nuss, P. & Eckelman, M. J. Life cycle assessment of metals: a scientific synthesis. PLoS ONE 9, e101298 (2014).
Pan, S. et al. Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nat. Commun. 13, 2294 (2022).
Yu, J. et al. Sustainable oxygen evolution electrocatalysis in aqueous 1 M H2SO4 with Earth abundant nanostructured Co3O4. Nat. Commun. 13, 4341 (2022).
Reichl, C. & Schatz, M. World mining data 2021: volume 36 (Federal Ministry of Agriculture, Regions and Tourism, 2021).
Jiang, W. et al. Composition-dependent morphology, structure, and catalytical performance of nickel–iron layered double hydroxide as highly-efficient and stable anode catalyst in anion exchange membrane water electrolysis. Adv. Funct. Mater. 32, 2203520 (2022).
Xia, L. et al. Multistep sulfur leaching for the development of a highly efficient and stable NiSx/Ni(OH)2/NiOOH electrocatalyst for anion exchange membrane water electrolysis. ACS Appl. Mater. Interfaces 14, 19397–19408 (2022).
Yang, H. et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 11, 1–8 (2020).
Zheng, T. et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278 (2019).
Liu, X. & Dai, L. Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 1–12 (2016).
Hu, C., Gao, Y., Zhao, L. & Dai, L. Carbon-based metal-free electrocatalysts: recent progress and forward looking. Chem. Catal. 2, 2150–2156 (2022).
Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Electrochemical CO2 reduction: a classification problem. ChemPhysChem 18, 3266–3273 (2017).
Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994).
Chen, S. et al. Engineering water molecules activation center on multisite electrocatalysts for enhanced CO2 methanation. J. Am. Chem. Soc. 144, 12807–12815 (2022).
Li, P. et al. In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts. Nat. Commun. 13, 1965 (2022).
Kong, S. et al. Delocalization state-induced selective bond breaking for efficient methanol electrosynthesis from CO2. Nat. Catal. 6, 6–15 (2022).
García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).
Liu, W. et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 13, 1877 (2022).
Ma, W. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020).
OCOchem. Technology. OCOchem https://ocochem.com/technology/ (2023).
Reller, C. et al. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 7, 1602114 (2017).
Moss, R. L., Tzimas, E., Kara, H. & Kooroshy, J. Critical metals in strategic energy technologies: assessing rare metals as supply-chain bottlenecks in low-carbon energy technologies (Publications Office of the European Union, 2011).
International Copper Association. Copper recycling. ICA https://copperalliance.org/resource/copper-recycling/ (2022).
Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38, 4901–4934 (2013).
DuPont fuel cells’ safe handling and use of perfluorosulfonic acid products (2009).
Feng, M. et al. Characterization of the thermolysis products of Nafion membrane: a potential source of perfluorinated compounds in the environment. Sci. Rep. 5, 1–8 (2015).
scia Systems. scia Multi 1500. scia Systems https://www.scia-systems.com/products/magnetron-sputtering/scia-multi-1500 (2021).
US Environmental Protection Agency. How we use water. EPA https://www.epa.gov/watersense/how-we-use-water (2024).
Ritchie, H. & Roser, M. Water use and stress. Our World in Data https://ourworldindata.org/water-use-stress (2018).
International Renewable Energy Agency. World energy transitions outlook 2023: 1.5 °C pathway (IRENA, 2023).
International Renewable Energy Agency. Global installed renewable energy capacity by technology. Our World in Data https://ourworldindata.org/grapher/installed-global-renewable-energy-capacity-by-technology (2024).
Office of Energy Efficiency and Renewable Energy. Geothermal basics: Geothermal Technologies Office. EERE https://www.energy.gov/eere/geothermal/geothermal-basics (2024).
International Atomic Energy Agency. Nuclear power capacity. IAEA https://pris.iaea.org/pris/worldstatistics/worldtrendnuclearpowercapacity.aspx (2024).
Chowdhury, M. S. et al. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Rev. 27, 100431 (2020).
Xu, Y., Li, J., Tan, Q., Peters, A. L. & Yang, C. Global status of recycling waste solar panels: a review. Waste Manag. 75, 450–458 (2018).
Farrell, C. et al. Assessment of the energy recovery potential of waste photovoltaic (PV) modules. Sci. Rep. 9, 1–13 (2019).
International Renewable Energy Agency. End-of-life management: solar photovoltaic panels. IRENA https://www.irena.org/publications/2016/Jun/End-of-life-management-Solar-Photovoltaic-Panels (2016).
Kadro, J. M. & Hagfeldt, A. The end-of-life of perovskite PV. Joule 1, 29–46 (2017).
Tian, X., Stranks, S. D. & You, F. Life cycle assessment of recycling strategies for perovskite photovoltaic modules. Nat. Sustain. 4, 821–829 (2021).
Deng, R., Chang, N. L., Ouyang, Z. & Chong, C. M. A techno-economic review of silicon photovoltaic module recycling. Renew. Sust. Energ. Rev. 109, 532–550 (2019).
Dubarry, M. et al. A combined hydro-mechanical and pyrometallurgical recycling approach to recover valuable metals from lithium-ion batteries avoiding lithium slagging. Batteries 9, 15 (2022).
Divya, A., Adish, T., Kaustubh, P. & Zade, P. S. Review on recycling of solar modules/panels. Sol. Energy Mater. Sol. Cells 253, 112151 (2023).
Chen, B. et al. Recycling lead and transparent conductors from perovskite solar modules. Nat. Commun. 12, 5859 (2021).
Lauer, A. Electricity emissions around the world — 2023. Shrink That Footprint https://shrinkthatfootprint.com/electricity-emissions-around-the-world-2/ (2023).
Ritchie, H. How does the land use of different electricity sources compare? Our World in Data https://ourworldindata.org/land-use-per-energy-source#article-citation (2022).
Samu, A. A. et al. Intermittent operation of CO2 electrolyzers at industrially relevant current densities. ACS Energy Lett. 7, 1859–1861 (2022).
National Renewable Energy Laboratory. PVWatts calculator: solar resource data. NREL https://pvwatts.nrel.gov/pvwatts.php (2023).
Smith, W. A., Burdyny, T., Vermaas, D. A. & Geerlings, H. Pathways to industrial-scale fuel out of thin air from CO2 electrolysis. Joule 3, 1822–1834 (2019).
International Energy Agency. Direct air capture: a key technology for net zero. IEA https://www.iea.org/events/direct-air-capture-a-key-technology-for-net-zero (2022).
Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).
Luis, P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: consequences and alternatives. Desalination 380, 93–99 (2016).
Fasihi, M., Efimova, O. & Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 224, 957–980 (2019).
Jing, X., Li, F. & Wang, Y. Assessing the economic potential of large-scale carbonate-formation-free CO2 electrolysis. Catal. Sci. Technol. 12, 2912–2919 (2022).
Alerte, T. et al. Downstream of the CO2 electrolyzer: assessing the energy intensity of product separation. ACS Energy Lett. 6, 4405–4412 (2021).
Brunetti, A., Scura, F., Barbieri, G. & Drioli, E. Membrane technologies for CO2 separation. J. Memb. Sci. 359, 115–125 (2010).
Biermann, M., Normann, F., Johnsson, F., Hoballah, R. & Onarheim, K. Capture of CO2 from steam reformer flue gases using monoethanolamine: pilot plant validation and process design for partial capture. Ind. Eng. Chem. Res. 61, 14305–14323 (2022).
Bos, M. J., Kroeze, V., Sutanto, S. & Brilman, D. W. F. Evaluating regeneration options of solid amine sorbent for CO2 removal. Ind. Eng. Chem. Res. 57, 11141–11153 (2018).
Tuinier, M. J. & Van Sint Annaland, M. Biogas purification using cryogenic packed-bed technology. Ind. Eng. Chem. Res. 51, 5552–5558 (2012).
Giordano, L., Roizard, D. & Favre, E. Life cycle assessment of post-combustion CO2 capture: a comparison between membrane separation and chemical absorption processes. Int. J. Greenh. Gas Control 68, 146–163 (2018).
Chen, L., Xu, Q., Oener, S. Z., Fabrizio, K. & Boettcher, S. W. Design principles for water dissociation catalysts in high-performance bipolar membranes. Nat. Commun. 13, 3846 (2022).
Terlouw, T., Bauer, C., Rosa, L. & Mazzotti, M. Life cycle assessment of carbon dioxide removal technologies: a critical review. Energy Environ. Sci. 14, 1701–1721 (2021).
Li, B., Gao, X., Li, J. & Yuan, C. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. Environ. Sci. Technol. 48, 3047–3055 (2014).
Bareiß, K., de la Rua, C., Möckl, M. & Hamacher, T. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. Appl. Energy 237, 862–872 (2019).
Twigg, G. H. The catalytic oxidation of ethylene. Trans. Faraday Soc. 42, 284–290 (1946).
Haber, F. & le Rossignol, R. Über die technische darstellung von ammoniak aus den elementen. Z. Elektrochem. Angew. Phys. Chem. 19, 53–72 (1913).
Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C. & Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 14, 781–814 (2021).
Bachmann, M. et al. Renewable carbon feedstock for polymers: environmental benefits from synergistic use of biomass and CO2. Faraday Discuss. 230, 227–246 (2021).
Dziejarski, B., Serafin, J., Andersson, K. & Krzyżyńska, R. CO2 capture materials: a review of current trends and future challenges. Mater. Today Sustain. 24, 100483 (2023).
The Royal Society. Ammonia: zero-carbon fertiliser, fuel and energy store (The Royal Society, 2020).
Jackson, C. et al. Ammonia to green hydrogen project: feasibility study (Department for Business, Energy and Industrial Strategy, 2020).
Liu, Y., Lucas, É., Sullivan, I., Li, X. & Xiang, C. Challenges and opportunities in continuous flow processes for electrochemically mediated carbon capture. iScience 25, 105153 (2022).
Li, X., Mathur, A., Liu, A. & Liu, Y. Electrifying carbon capture by developing nanomaterials at the interface of molecular and process engineering. Acc. Chem. Res. 56, 2763–2775 (2023).
Zhu, P. et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023).
Yamazaki, Y., Miyaji, M. & Ishitani, O. Utilization of low-concentration CO2 with molecular catalysts assisted by CO2-capturing ability of catalysts, additives, or reaction media. J. Am. Chem. Soc. 144, 6640–6660 (2022).
Kim, D. et al. Electrocatalytic reduction of low concentrations of CO2 gas in a membrane electrode assembly electrolyzer. ACS Energy Lett. 6, 3488–3495 (2021).
O’Brien, C. P. et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 6, 2952–2959 (2021).
Endrődi, B. et al. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 6, 439–448 (2021).
Lin, R., Lu, Y., Xu, J., Huo, J. & Cai, X. Investigation on performance of proton exchange membrane electrolyzer with different flow field structures. Appl. Energy 326, 120011 (2022).
Zhang, S., Liu, S., Xu, H., Liu, G. & Wang, K. Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design. Energy 239, 122102 (2022).
Moreno Soriano, R., Rojas, N., Nieto, E., de Guadalupe González-Huerta, R. & Sandoval-Pineda, J. M. Influence of the gasket materials on the clamping pressure distribution in a PEM water electrolyzer: bolt torques and operation mode in pre-conditioning. Int. J. Hydrog. Energy 46, 25944–25953 (2021).
Xu, Q. et al. Integrated reference electrodes in anion-exchange-membrane electrolyzers: impact of stainless-steel gas-diffusion layers and internal mechanical pressure. ACS Energy Lett. 6, 305–312 (2021).
Dang, J. et al. Hydrogen crossover measurement and durability assessment of high-pressure proton exchange membrane electrolyzer. J. Power Sources 563, 232776 (2023).
Niaz, A. K., Akhtar, A., Park, J. Y. & Lim, H. T. Effects of the operation mode on the degradation behavior of anion exchange membrane water electrolyzers. J. Power Sources 481, 229093 (2021).
Tanudjaja, H. J., Hejase, C. A., Tarabara, V. V., Fane, A. G. & Chew, J. W. Membrane-based separation for oily wastewater: a practical perspective. Water Res. 156, 347–365 (2019).
El-Bourawi, M. S., Ding, Z., Ma, R. & Khayet, M. A framework for better understanding membrane distillation separation process. J. Memb. Sci. 285, 4–29 (2006).
Li, A. et al. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 5, 109–118 (2022).
Wu, Z. Y. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 22, 100–108 (2022).
Shah, K. et al. Cobalt single atom incorporated in ruthenium oxide sphere: a robust bifunctional electrocatalyst for HER and OER. Angew. Chem. Int. Ed. 134, e202114951 (2022).
Wu, Y. J. et al. Evolution of cationic vacancy defects: a motif for surface restructuration of OER precatalyst. Angew. Chem. Int. Ed. 60, 26829–26836 (2021).
Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149–154 (2017).
Oh, N. K. et al. Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nat. Commun. 12, 4606 (2021).
Salvatore, D. A. et al. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 6, 339–348 (2021).
Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).
Dijkstra, H. P., Van Klink, G. P. M. & Van Koten, G. The use of ultra- and nanofiltration techniques in homogeneous catalyst recycling. Acc. Chem. Res. 35, 798–810 (2002).
Molnár, Á. & Papp, A. Catalyst recycling — a survey of recent progress and current status. Coord. Chem. Rev. 349, 1–65 (2017).
Améduri, B. & Hori, H. Recycling and the end of life assessment of fluoropolymers: recent developments, challenges and future trends. Chem. Soc. Rev. 52, 4208–4247 (2023).
Lukić Bilela, L. et al. Impact of per- and polyfluorinated alkyl substances (PFAS) on the marine environment: raising awareness, challenges, legislation, and mitigation approaches under the One Health concept. Mar. Pollut. Bull. 194, 115309 (2023).
Cordner, A. et al. The true cost of PFAS and the benefits of acting now. Environ. Sci. Technol. 55, 9630–9633 (2021).
Yang, B. & Cunman, Z. Progress in constructing high-performance anion exchange membrane: molecular design, microphase controllability and in-device property. Chem. Eng. J. 457, 141094 (2023).
Lim, X. Z. Could the world go PFAS-free? Proposal to ban ‘forever chemicals’ fuels debate. Nature 620, 24–27 (2023).
Zhang, H. et al. Highly efficient decomposition of perfluorocarbons for over 1000 hours via active site regeneration. Angew. Chem. Int. Ed. 62, e202305651 (2023).
Endrődi, B. et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 13, 4098–4105 (2020).
Wang, J. et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 4, 392–398 (2019).
Arunkumar, I., Kim, A. R., Lee, S. H. & Yoo, D. J. Enhanced fumion nanocomposite membranes embedded with graphene oxide as a promising anion exchange membrane for fuel cell application. Int. J. Hydrog. Energy 52, 139–153 (2022).
Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using Sustainion membranes. J. Electrochem. Soc. 165, J3371–J3377 (2018).
Wright, A. G. et al. Hexamethyl-p-terphenyl poly(benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy Environ. Sci. 9, 2130–2142 (2016).
Habibzadeh, F. et al. Ion exchange membranes in electrochemical CO2 reduction processes. Electrochem. Energy Rev. 6, 1–35 (2023).
Lejarazu-Larrañaga, A., Molina, S., Ortiz, J. M., Navarro, R. & García-Calvo, E. Circular economy in membrane technology: using end-of-life reverse osmosis modules for preparation of recycled anion exchange membranes and validation in electrodialysis. J. Memb. Sci. 593, 117423 (2020).
Hou, J. et al. Recyclable cross-linked anion exchange membrane for alkaline fuel cell application. J. Power Sources 375, 404–411 (2018).
Fumatech. Fumion polymers and dispersions for electrochemical processes. Fumatech https://www.fumatech.com/en/products/fumion/ (2024).
Arges, C. G. & Ramani, V. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes. Proc. Natl Acad. Sci. USA 110, 2490–2495 (2013).
Gawel, A. et al. Electrochemical CO2 reduction — the macroscopic world of electrode design, reactor concepts & economic aspects. iScience 25, 104011 (2022).
Uekert, T., Wikoff, H. M. & Badgett, A. Electrolyzer and fuel cell recycling for a circular hydrogen economy. Adv. Sustain. Syst. 8, 2300449 (2024).
Chen, M. et al. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3, 2622–2646 (2019).
Kang, Z. et al. Recycling technologies, policies, prospects, and challenges for spent batteries. iScience 26, 108072 (2023).
Acknowledgements
This work was partially funded by CEX2019-000910-S (MCIN/AEI/10.13039/501100011033), Fundació Cellex, Fundació Mir-Puig and Generalitat de Catalunya through CERCA and the La Caixa Foundation (100010434, EU Horizon 2020 Marie Skłodowska-Curie grant agreement 847648). B.B. acknowledges funding from MCIN/AEI/10.13039/501100011033 and FSE ‘El FSE invierte en tu futuro’ (PRE2019-088522). V.G. acknowledges the Severo Ochoa Excellence Post-doctoral Fellowship (CEX2019-000910-S). A.P.-S. acknowledges funding (PRE2021-098995) from MCIN/AEI/10.13039/501100011033 and FSE+. L.S.M. acknowledges funding from ICFO Student Research Fellowship — Spring 2021 programme.
Author information
Authors and Affiliations
Contributions
F.P.G.d.A. and B.B. conceptualized the article. B.B., L.X., V.G., B.P. and A.P.-S. researched data for the article. B.B. wrote the initial draft. All authors contributed to the discussion of content and writing of the manuscript, added substantial thoughts and revised the manuscript in a collaborative manner.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Belsa, B., Xia, L., Golovanova, V. et al. Materials challenges on the path to gigatonne CO2 electrolysis. Nat Rev Mater 9, 535–549 (2024). https://doi.org/10.1038/s41578-024-00696-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-024-00696-9