Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Precision drug delivery to the central nervous system using engineered nanoparticles

Abstract

Development of novel therapies for central nervous system (CNS) disorders has experienced a high failure rate in clinical trials owing to unsatisfactory efficacy and adverse effects. One of the major reasons for limited therapeutic efficacy is the poor penetration of drugs across the blood–brain barrier. Despite the development of multiple drug delivery platforms, the overall drug accumulation in the brain remains sub-optimal. Another critical but overlooked factor is achieving precision delivery to a specific region and cell type in the brain. This specificity is crucial because most neurological disorders exhibit region-specific vulnerabilities. Multiple trials have failed owing to adverse CNS effects induced by nonspecific drug targeting. In this Review, we highlight the key regions and cell types that should be targeted in different CNS diseases. We discuss how physiological barriers and disease-mediated changes in the blood–brain barrier and the overall brain can impact the precision delivery of therapeutics via the systemic route. We then perform a systematic analysis of the current state-of-the-art approaches developed to overcome these barriers and achieve precision targeting at different levels. Finally, we discuss potential approaches to accelerate the development of precision delivery systems and outline the challenges and future research directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selective vulnerabilities of CNS diseases.
Fig. 2: Biological barriers to precision NPs en route to the brain.
Fig. 3: Distinct levels of precision targeting in CNS.
Fig. 4: Strategies to achieve precision targeting in CNS.
Fig. 5: Outlook of future research.

Similar content being viewed by others

References

  1. Valori, C. F., Possenti, A., Brambilla, L. & Rossi, D. Challenges and opportunities of targeting astrocytes to halt neurodegenerative disorders. Cells 10, 2019 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Prabakaran, A. et al. Nose-to-brain drug delivery for the treatment of Alzheimer’s disease: current advancements and challenges. Expert Opin. Drug Deliv. 19, 87–102 (2022).

    Google Scholar 

  3. Markowicz-Piasecka, M. et al. Current approaches to facilitate improved drug delivery to the central nervous system. Eur. J. Pharm. Biopharm. 181, 249–262 (2022).

    CAS  PubMed  Google Scholar 

  4. Doody, R. S. et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med. 369, 341–350 (2013).

    CAS  PubMed  Google Scholar 

  5. Imbimbo, B. P. & Giardina, G. A. M. γ-Secretase inhibitors and modulators for the treatment of Alzheimer’s disease: disappointments and hopes. Curr. Top. Med. Chem. 11, 1555–1570 (2011).

    CAS  PubMed  Google Scholar 

  6. Kouhi, A. et al. Brain disposition of antibody-based therapeutics: dogma, approaches and perspectives. Int. J. Mol. Sci. 22, 6442 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chang, H.-Y. et al. Brain pharmacokinetics of anti-transferrin receptor antibody affinity variants in rats determined using microdialysis. mAbs 13, 1874121 (2021).

    PubMed  PubMed Central  Google Scholar 

  8. Keiser, M. S. et al. Toxicity after AAV delivery of RNAi expression constructs into nonhuman primate brain. Nat. Med. 27, 1982–1989 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ling, Q., Herstine, J. A., Bradbury, A. & Gray, S. J. AAV-based in vivo gene therapy for neurological disorders. Nat. Rev. Drug Discov. 22, 789–806 (2023).

    CAS  PubMed  Google Scholar 

  10. Lee, H. et al. Multi-omic analysis of selectively vulnerable motor neuron subtypes implicates altered lipid metabolism in ALS. Nat. Neurosci. 24, 1673–1685 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Herb, B. R. et al. Single-cell genomics reveals region-specific developmental trajectories underlying neuronal diversity in the human hypothalamus. Sci. Adv. 9, eadf6251 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vialle, R. A., de Paiva Lopes, K., Bennett, D. A., Crary, J. F. & Raj, T. Integrating whole-genome sequencing with multi-omic data reveals the impact of structural variants on gene regulation in the human brain. Nat. Neurosci. 25, 504–514 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023). This article introduces a collaborative effort from the BRAIN Initiative Cell Census Network, presenting cellular maps of the mouse brain with high spatial resolution.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chini, M. & Hanganu-Opatz, I. L. Prefrontal cortex development in health and disease: lessons from rodents and humans. Trends Neurosci. 44, 227–240 (2021).

    CAS  PubMed  Google Scholar 

  15. Fu, H., Hardy, J. & Duff, K. E. Selective vulnerability in neurodegenerative diseases. Nat. Neurosci. 21, 1350–1358 (2018). This paper provides a comprehensive overview of the current understanding of biological mechanisms underpinning selective neuronal and regional vulnerability in neurological disorders.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Del Tredici, K., Rüb, U., De Vos, R. A. I., Bohl, J. R. E. & Braak, H. Where does Parkinson disease pathology begin in the brain? J. Neuropathol. Exp. Neurol. 61, 413–426 (2002).

    PubMed  Google Scholar 

  18. De Marchi, F. et al. Cognitive dysfunction in amyotrophic lateral sclerosis: can we predict it? Neurol. Sci. 42, 2211–2222 (2021).

    PubMed  PubMed Central  Google Scholar 

  19. Crockford, C. et al. ALS-specific cognitive and behavior changes associated with advancing disease stage in ALS. Neurology 91, e1370–e1380 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 8, a028936 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Haider, L. et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain 139, 807–815 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Knopman, D. S. et al. Alzheimer disease. Nat. Rev. Dis. Primers 7, 33 (2021).

    PubMed  PubMed Central  Google Scholar 

  23. Schöll, M. et al. Biomarkers for tau pathology. Mol. Cell. Neurosci. 97, 18–33 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Musolino, P. L. et al. Brain endothelial dysfunction in cerebral adrenoleukodystrophy. Brain 138, 3206–3220 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Pong, S., Karmacharya, R., Sofman, M., Bishop, J. R. & Lizano, P. The role of brain microvascular endothelial cell and blood-brain barrier dysfunction in schizophrenia. Complex Psychiatry 6, 30–46 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Estudillo, E. et al. Thinking outside the black box: are the brain endothelial cells the new main target in Alzheimer’s disease? Neural Regen. Res. 18, 2592 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mrdjen, D. et al. The basis of cellular and regional vulnerability in Alzheimer’s disease. Acta Neuropathol. 138, 729–749 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Bennett, H. C. & Kim, Y. Pericytes across the lifetime in the central nervous system. Front. Cell. Neurosci. 15, 627291 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Giguère, N., Burke Nanni, S. & Trudeau, L.-E. On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Front. Neurol. 9, 455 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Mamelak, M. Parkinson’s disease, the dopaminergic neuron and gammahydroxybutyrate. Neurol. Ther. 7, 5–11 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Reiner, A. & Deng, Y.-P. Disrupted striatal neuron inputs and outputs in Huntington’s disease. CNS Neurosci. Ther. 24, 250–280 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Spoleti, E. et al. Dopamine neuron degeneration in the ventral tegmental area causes hippocampal hyperexcitability in experimental Alzheimer’s disease. Mol. Psychiatry 29, 1265–1280 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nobili, A. et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat. Commun. 8, 14727 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, X.-Q. & Mobley, W. C. Exploring the pathogenesis of Alzheimer disease in basal forebrain cholinergic neurons: converging insights from alternative hypotheses. Front. Neurosci. 13, 446 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. Baker-Nigh, A. et al. Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer’s disease. Brain 138, 1722–1737 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. Vana, L. et al. Progression of tau pathology in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease. Am. J. Pathol. 179, 2533–2550 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tan, R. H. et al. Cerebellar neuronal loss in amyotrophic lateral sclerosis cases with ATXN2 intermediate repeat expansions. Ann. Neurol. 79, 295–305 (2016).

    CAS  PubMed  Google Scholar 

  39. Fukutani, Y., Cairns, N. J., Rossor, M. N. & Lantos, P. L. Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer’s disease. Neurosci. Lett. 214, 33–36 (1996).

    CAS  PubMed  Google Scholar 

  40. Singh-Bains, M. K. et al. Cerebellar degeneration correlates with motor symptoms in Huntington disease. Ann. Neurol. 85, 396–405 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Louis, E. D. et al. Torpedoes in Parkinson’s disease, Alzheimer’s disease, essential tremor, and control brains. Mov. Disord. 24, 1600–1605 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. Crabé, R., Aimond, F., Gosset, P., Scamps, F. & Raoul, C. How degeneration of cells surrounding motoneurons contributes to amyotrophic lateral sclerosis. Cells 9, 2550 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Elgayar, S. A. M., Abdel-Hafez, A. A. M., Gomaa, A. M. S. & Elsherif, R. Vulnerability of glia and vessels of rat substantia nigra in rotenone Parkinson model. Ultrastruct. Pathol. 42, 181–192 (2018).

    PubMed  Google Scholar 

  44. Cragnolini, A. B. et al. Regional brain susceptibility to neurodegeneration: what is the role of glial cells? Neural Regen. Res. 15, 838–842 (2019).

    PubMed Central  Google Scholar 

  45. Matute, C., Alberdi, E., Ibarretxe, G. & Sánchez-Gómez, M. V. Excitotoxicity in glial cells. Eur. J. Pharmacol. 447, 239–246 (2002).

    CAS  PubMed  Google Scholar 

  46. Petito, C. K., Olarte, J. P., Roberts, B., Nowak, T. S. & Pulsinelli, W. A. Selective glial vulnerability following transient global ischemia in rat brain. J. Neuropathol. Exp. Neurol. 57, 231–238 (1998).

    CAS  PubMed  Google Scholar 

  47. Kim, Y.-K. & Na, K.-S. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 70, 117–126 (2016).

    CAS  PubMed  Google Scholar 

  48. Giuliani, F., Goodyer, C. G., Antel, J. P. & Yong, V. W. Vulnerability of human neurons to T cell-mediated cytotoxicity. J. Immunol. 171, 368–379 (2003).

    CAS  PubMed  Google Scholar 

  49. Paß, T., Wiesner, R. J. & Pla-Martín, D. Selective neuron vulnerability in common and rare diseases — mitochondria in the focus. Front. Mol. Biosci. 8, 676187 (2021).

    PubMed  PubMed Central  Google Scholar 

  50. Penzes, P., Buonanno, A., Passafarro, M., Sala, C. & Sweet, R. A. Developmental vulnerability of synapses and circuits associated with neuropsychiatric disorders. J. Neurochem. 126, 165–182 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Purves, D. et al. in Neuroscience 2nd edn Ch. 1 (Sinauer Associates, 2001).

  52. Eipel, C., Abshagen, K. & Vollmar, B. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J. Gastroenterol. 16, 6046–6057 (2010).

    PubMed  PubMed Central  Google Scholar 

  53. Dalal, R., Bruss, Z. S. & Sehdev, J. S. Physiology, Renal Blood Flow and Filtration (StatPearls, 2023).

  54. Cabral, H., Li, J., Miyata, K. & Kataoka, K. Controlling the biodistribution and clearance of nanomedicines. Nat. Rev. Bioeng. 2, 214–232 (2024). This comprehensive review details consequence of different NP designs on their pharmacokinetics, with abundant clinical data included.

    Google Scholar 

  55. Du, B., Yu, M. & Zheng, J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 3, 358–374 (2018).

    Google Scholar 

  56. Wang, J. & Liu, G. Imaging nano–bio interactions in the kidney: toward a better understanding of nanoparticle clearance. Angew. Chem. Int. Ed. 57, 3008–3010 (2018). This review details quantitative NP–kidney interactions along with coverage on strategies to modulate NP size, shape and surface chemistry to minimize glomerular clearance.

    CAS  Google Scholar 

  57. Rawal, M., Singh, A. & Amiji, M. M. Quality-by-design concepts to improve nanotechnology-based drug development. Pharm. Res. 36, 153 (2019).

    PubMed  Google Scholar 

  58. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015). This seminal review discusses the design principles of NPs to avoid delivery challenges, with focus on opsonization, blood vessel fluid dynamics and site-directed entry.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Park, J.-K. et al. Cellular distribution of injected PLGA-nanoparticles in the liver. Nanomedicine 12, 1365–1374 (2016).

    CAS  PubMed  Google Scholar 

  60. Poon, W. et al. Elimination pathways of nanoparticles. ACS Nano 13, 5785–5798 (2019).

    CAS  PubMed  Google Scholar 

  61. Lazarovits, J. et al. Supervised learning and mass spectrometry predicts the in vivo fate of nanomaterials. ACS Nano 13, 8023–8034 (2019).

    CAS  PubMed  Google Scholar 

  62. Anraku, Y., Kishimura, A., Kobayashi, A., Oba, M. & Kataoka, K. Size-controlled long-circulating PICsome as a ruler to measure critical cut-off disposition size into normal and tumor tissues. Chem. Commun. 47, 6054–6056 (2011).

    CAS  Google Scholar 

  63. Lundqvist, M. et al. The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5, 7503–7509 (2011).

    CAS  PubMed  Google Scholar 

  64. Cai, R. & Chen, C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv. Mater. 31, e1805740 (2019).

    PubMed  Google Scholar 

  65. Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotech 7, 779–786 (2012).

    CAS  Google Scholar 

  66. Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. García-Álvarez, R., Hadjidemetriou, M., Sánchez-Iglesias, A., Liz-Marzán, L. M. & Kostarelos, K. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale 10, 1256–1264 (2018).

    PubMed  Google Scholar 

  68. Palchetti, S. et al. The protein corona of circulating PEGylated liposomes. Biochim. Biophys. Acta 1858, 189–196 (2016).

    CAS  PubMed  Google Scholar 

  69. Wang, H. et al. The nature of a hard protein corona forming on quantum dots exposed to human blood serum. Small 12, 5836–5844 (2016).

    CAS  PubMed  Google Scholar 

  70. Dobrovolskaia, M. A. et al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 5, 106–117 (2009).

    CAS  PubMed  Google Scholar 

  71. Sakulkhu, U., Mahmoudi, M., Maurizi, L., Salaklang, J. & Hofmann, H. Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings. Sci. Rep. 4, 5020 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lesniak, A. et al. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6, 5845–5857 (2012).

    CAS  PubMed  Google Scholar 

  73. Liu, K. et al. Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function. Nat. Commun. 14, 4007 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    CAS  PubMed  Google Scholar 

  75. Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotech 8, 137–143 (2013).

    CAS  Google Scholar 

  76. Zhao, Z., Ukidve, A., Kim, J. & Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020).

    CAS  PubMed  Google Scholar 

  77. Chen, F. et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat. Nanotech 12, 387–393 (2017).

    CAS  Google Scholar 

  78. Hoshyar, N., Gray, S., Han, H. & Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11, 673–692 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Moghimi, S. M., Simberg, D., Skotland, T., Yaghmur, A. & Hunter, A. C. The interplay between blood proteins, complement, and macrophages on nanomedicine performance and responses. J. Pharmacol. Exp. Ther. 370, 581–592 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang, W., Xiao, G., Zhang, Y. & Min, W. Research progress and application opportunities of nanoparticle–protein corona complexes. Biomed. Pharmacother. 139, 111541 (2021).

    CAS  PubMed  Google Scholar 

  81. Klepac, D. et al. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins — the introduction of protein-corona-free polymer nanomedicine. Nanoscale 10, 6194–6204 (2018).

    CAS  PubMed  Google Scholar 

  82. Müller, K., Fedosov, D. A. & Gompper, G. Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci. Rep. 4, 4871 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Lane, L. A. Physics in nanomedicine: phenomena governing the in vivo performance of nanoparticles. Appl. Phys. Rev. 7, 011316 (2020).

    CAS  Google Scholar 

  84. Cooley, M. et al. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale 10, 15350–15364 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kumar, A., Rivera, R. G. H. & Graham, M. D. Flow-induced segregation in confined multicomponent suspensions: effects of particle size and rigidity. J. Fluid Mech. 738, 423–462 (2014).

    CAS  Google Scholar 

  86. Tosi, G., Duskey, J. T. & Kreuter, J. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert Opin. Drug Deliv. 17, 23–32 (2020).

    CAS  PubMed  Google Scholar 

  87. Pandit, R., Chen, L. & Götz, J. The blood-brain barrier: physiology and strategies for drug delivery. Adv. Drug Deliv. Rev. 165166, 1–14 (2020).

    PubMed  Google Scholar 

  88. Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

    CAS  PubMed  Google Scholar 

  89. Kucharz, K. et al. Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nat. Commun. 12, 4121 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Uchida, Y. et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J. Neurochem. 117, 333–345 (2011).

    CAS  PubMed  Google Scholar 

  91. Yeo, N. J. Y., Chan, E. J. J. & Cheung, C. Choroidal neovascularization: mechanisms of endothelial dysfunction. Front. Pharmacol. 10, 1363 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018). This comprehensive review discusses the BBB dysfunction in multiple neurological disorders using neuroimaging studies in living human and post-mortem brain tissues.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Malek, N. et al. Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson’s disease. Mov. Disord. 31, 1518–1526 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Drouin-Ouellet, J. et al. Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann. Neurol. 78, 160–177 (2015).

    PubMed  Google Scholar 

  95. Profaci, C. P., Munji, R. N., Pulido, R. S. & Daneman, R. The blood-brain barrier in health and disease: important unanswered questions. J. Exp. Med. 217, e20190062 (2020).

    PubMed  PubMed Central  Google Scholar 

  96. Nguyen, B., Bix, G. & Yao, Y. Basal lamina changes in neurodegenerative disorders. Mol. Neurodegener. 16, 81 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Prakash, R. & Carmichael, S. T. Blood–brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr. Opin. Neurol. 28, 556–564 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. Price, L., Wilson, C. & Grant, G. in Translational Research in Traumatic Brain Injury Ch. 4 (eds Laskowitz, D. & Grant, G.) (CRC, 2016).

  99. Clond, M. A. et al. Reactive oxygen species-activated nanoprodrug of ibuprofen for targeting traumatic brain injury in mice. PLoS ONE 8, e61819 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu, J. et al. Theranostic oxygen reactive polymers for treatment of traumatic brain injury. Adv. Funct. Mater. 26, 4124–4133 (2016).

    CAS  Google Scholar 

  101. Ruozi, B. et al. PLGA nanoparticles loaded cerebrolysin: studies on their preparation and investigation of the effect of storage and serum stability with reference to traumatic brain injury. Mol. Neurobiol. 52, 899–912 (2015).

    CAS  PubMed  Google Scholar 

  102. Gaudin, A. et al. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat. Nanotechnol. 9, 1054–1062 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen, H. et al. Nanoerythropoietin is 10-times more effective than regular erythropoietin in neuroprotection in a neonatal rat model of hypoxia and ischemia. Stroke 43, 884–887 (2012).

    CAS  PubMed  Google Scholar 

  104. D’Ambrosi, N. & Apolloni, S. Fibrotic scar in neurodegenerative diseases. Front. Immunol. 11, 1394 (2020).

    PubMed  PubMed Central  Google Scholar 

  105. Fernández-Klett, F. & Priller, J. The fibrotic scar in neurological disorders. Brain Pathol. 24, 404–413 (2014).

    PubMed  PubMed Central  Google Scholar 

  106. Sun, N. et al. Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s disease. Nat. Neurosci. 26, 970–982 (2023). This transcriptomic study across 6 brain regions from 220 individuals with AD and 208 age-matched controls demonstrates a large number of differentially expressed genes in neurovascular units, including endothelium, astrocytes and pericytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, W. et al. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS 17, 47 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang, A. C. et al. Physiological blood–brain transport is impaired with age by a shift in transcytosis. Nature 583, 425–430 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Winkler, E. A. et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521–530 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhao, L. et al. Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nat. Commun. 11, 4413 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, M., Fang, X., Yang, Y. & Wang, C. Peptide-enabled targeted delivery systems for therapeutic applications. Front. Bioeng. Biotechnol. 9, 701504 (2021).

    PubMed  PubMed Central  Google Scholar 

  112. Deane, R., Sagare, A. & Zlokovic, B. The role of the cell surface LRP and soluble LRP in blood-brain barrier Aβ clearance in Alzheimer’s disease. Curr. Pharm. Des. 14, 1601–1605 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. & Zlokovic, B. V. Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78 (2019).

    CAS  PubMed  Google Scholar 

  114. Li, W. et al. BBB pathophysiology-independent delivery of siRNA in traumatic brain injury. Sci. Adv. 7, eabd6889 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hladky, S. B. & Barrand, M. A. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11, 26 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Shetty, A. K. & Zanirati, G. The interstitial system of the brain in health and disease. Aging Dis. 11, 200–211 (2020).

    PubMed  PubMed Central  Google Scholar 

  117. Nakada, T. & Kwee, I. L. Fluid dynamics inside the brain barrier: current concept of interstitial flow, glymphatic flow, and cerebrospinal fluid circulation in the brain. Neuroscientist 25, 155–166 (2019).

    PubMed  Google Scholar 

  118. Gao, Y. et al. Simulation study of the effects of interstitial fluid pressure and blood flow velocity on transvascular transport of nanoparticles in tumor microenvironment. Comput. Methods Prog. Biomed. 193, 105493 (2020).

    Google Scholar 

  119. Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. & Gage, F. H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Whiteford, J. R., De Rossi, G. & Woodfin, A. Mutually supportive mechanisms of inflammation and vascular remodeling. Int. Rev. Cell Mol. Biol. 326, 201–278 (2016).

    CAS  PubMed  Google Scholar 

  121. Zhang, X. et al. High-resolution mapping of brain vasculature and its impairment in the hippocampus of Alzheimer’s disease mice. Natl Sci. Rev. 6, 1223–1238 (2019).

    PubMed  PubMed Central  Google Scholar 

  122. Wolak, D. J. & Thorne, R. G. Diffusion of macromolecules in the brain: implications for drug delivery. Mol. Pharm. 10, 1492–1504 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hammarlund-Udenaes, M., Fridén, M., Syvänen, S. & Gupta, A. On the rate and extent of drug delivery to the brain. Pharm. Res. 25, 1737–1750 (2008).

    CAS  PubMed  Google Scholar 

  124. Barua, S. & Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9, 223–243 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Engin, A. B. et al. Mechanistic understanding of nanoparticles’ interactions with extracellular matrix: the cell and immune system. Part. Fibre Toxicol. 14, 22 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. Chen, K. L. & Bothun, G. D. Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ. Sci. Technol. 48, 873–880 (2014).

    CAS  PubMed  Google Scholar 

  127. Mahmoudi, M. et al. Cell ‘vision’: complementary factor of protein corona in nanotoxicology. Nanoscale 4, 5461–5468 (2012).

    CAS  PubMed  Google Scholar 

  128. Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Smith, S. A., Selby, L. I., Johnston, A. P. R. & Such, G. K. The endosomal escape of nanoparticles: toward more efficient cellular delivery. Bioconjug. Chem. 30, 263–272 (2019).

    CAS  PubMed  Google Scholar 

  130. Foroozandeh, P. & Aziz, A. A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 13, 339 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. Treuel, L., Jiang, X. & Nienhaus, G. U. New views on cellular uptake and trafficking of manufactured nanoparticles. J. R. Soc. Interface 10, 20120939 (2013).

    PubMed  PubMed Central  Google Scholar 

  132. Biber, K. et al. Microglial drug targets in AD: opportunities and challenges in drug discovery and development. Front. Pharmacol. 10, 840 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Fatoba, O., Itokazu, T. & Yamashita, T. Microglia as therapeutic target in central nervous system disorders. J. Pharmacol. Sci. 144, 102–118 (2020).

    CAS  PubMed  Google Scholar 

  134. Mahmood, A. & Miron, V. E. Microglia as therapeutic targets for central nervous system remyelination. Curr. Opin. Pharmacol. 63, 102188 (2022).

    CAS  PubMed  Google Scholar 

  135. Kimelberg, H. K. & Nedergaard, M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7, 338–353 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Leng, F. & Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 17, 157–172 (2021).

    PubMed  Google Scholar 

  137. Zhang, G., Wang, Z., Hu, H., Zhao, M. & Sun, L. Microglia in Alzheimer’s disease: a target for therapeutic intervention. Front. Cell Neurosci. 15, 749587 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Donat, C. K., Scott, G., Gentleman, S. M. & Sastre, M. Microglial activation in traumatic brain injury. Front. Aging Neurosci. 9, 208 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. Kandell, R. M., Kudryashev, J. A. & Kwon, E. J. Targeting the extracellular matrix in traumatic brain injury increases signal generation from an activity-based nanosensor. ACS Nano 15, 20504–20516 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Lutton, E. M. et al. Endothelial targeted strategies to combat oxidative stress: improving outcomes in traumatic brain injury. Front. Neurol. 10, 582 (2019).

    PubMed  PubMed Central  Google Scholar 

  141. Wang, R. et al. Strategies for the design of nanoparticles: starting with long-circulating nanoparticles, from lab to clinic. Biomater. Sci. 9, 3621–3637 (2021).

    CAS  PubMed  Google Scholar 

  142. Zhu, G. H., Gray, A. B. C. & Patra, H. K. Nanomedicine: controlling nanoparticle clearance for translational success. Trends Pharmacol. Sci. 43, 709–711 (2022).

    CAS  PubMed  Google Scholar 

  143. Soo Choi, H. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Google Scholar 

  144. Weiss, M. et al. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential. J. Nanobiotechnol. 19, 5 (2021).

    CAS  Google Scholar 

  145. Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Bertrand, N. et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 8, 777 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Wang, J.-L. et al. The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. Biomaterials 182, 104–113 (2018).

    CAS  PubMed  Google Scholar 

  148. Ben-Akiva, E. et al. Biomimetic anisotropic polymeric nanoparticles coated with red blood cell membranes for enhanced circulation and toxin removal. Sci. Adv. 6, eaay9035 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Hu, C.-M. J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Gurnani, P. et al. Probing the effect of rigidity on the cellular uptake of core-shell nanoparticles: stiffness effects are size dependent. Small 18, 2203070 (2022).

    CAS  Google Scholar 

  151. Madathiparambil Visalakshan, R. et al. The influence of nanoparticle shape on protein corona formation. Small 16, 2000285 (2020).

    CAS  Google Scholar 

  152. Cheng, J. et al. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol. 136, 507–523 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Geranmayeh, M. H., Rahbarghazi, R. & Farhoudi, M. Targeting pericytes for neurovascular regeneration. Cell Commun. Signal. 17, 26 (2019).

    PubMed  PubMed Central  Google Scholar 

  154. Porro, G. M. et al. Identifying molecular tags selectively retained on the surface of brain endothelial cells to generate artificial targets for therapy delivery. Fluids Barriers CNS 20, 88 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Lasagna-Reeves, C. et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem. Biophys. Res. Commun. 393, 649–655 (2010).

    CAS  PubMed  Google Scholar 

  156. Liu, D.-F. et al. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles. Nanoscale 6, 15161–15167 (2014).

    CAS  PubMed  Google Scholar 

  157. Shankar, R., Joshi, M. & Pathak, K. Lipid nanoparticles: a novel approach for brain targeting. Pharm. Nanotechnol. 6, 81–93 (2018).

    CAS  PubMed  Google Scholar 

  158. Dehouck, B. et al. A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J. Cell Biol. 138, 877–889 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Jose, S. et al. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int. J. Pharm. 474, 6–13 (2014).

    CAS  PubMed  Google Scholar 

  160. Cox, A. et al. Evolution of nanoparticle protein corona across the blood-brain barrier. ACS Nano 12, 7292–7300 (2018). This study reveals drastic changes in protein corona composition around NPs as they pass form the blood to the brain side, which can alter their final distribution inside the brain parenchyma.

    CAS  PubMed  Google Scholar 

  161. Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021).

    CAS  PubMed  Google Scholar 

  162. Ciofani, G. et al. Roadmap on nanomedicine for the central nervous system. J. Phys. Mater. 6, 022501 (2023).

    Google Scholar 

  163. Jefferies, W. A. et al. Transferrin receptor on endothelium of brain capillaries. Nature 312, 162–163 (1984).

    CAS  PubMed  Google Scholar 

  164. Sheridan, C. Drugs catch a ride through the blood–brain barrier. Nat. Biotechnol. 41, 1182–1184 (2023).

    CAS  PubMed  Google Scholar 

  165. Hultqvist, G., Syvänen, S., Fang, X. T., Lannfelt, L. & Sehlin, D. Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor. Theranostics 7, 308–318 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhou, Q.-H. et al. Receptor-mediated abeta amyloid antibody targeting to Alzheimer’s disease mouse brain. Mol. Pharm. 8, 280–285 (2011).

    CAS  PubMed  Google Scholar 

  167. Weber, F. et al. Brain shuttle antibody for Alzheimer’s disease with attenuated peripheral effector function due to an inverted binding mode. Cell Rep. 22, 149–162 (2018).

    CAS  PubMed  Google Scholar 

  168. Niewoehner, J. et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81, 49–60 (2014).

    CAS  PubMed  Google Scholar 

  169. Li, X. et al. Enhanced in vivo blood–brain barrier penetration by circular tau–transferrin receptor bifunctional aptamer for tauopathy therapy. J. Am. Chem. Soc. 142, 3862–3872 (2020).

    CAS  PubMed  Google Scholar 

  170. Kang, T. et al. Enhancing glioblastoma-specific penetration by functionalization of nanoparticles with an iron-mimic peptide targeting transferrin/transferrin receptor complex. Mol. Pharm. 12, 2947–2961 (2015).

    CAS  PubMed  Google Scholar 

  171. Lane-Donovan, C. E., Philips, G. T. & Herz, J. More than cholesterol transporters: lipoprotein receptors in CNS function and neurodegeneration. Neuron 83, 771–787 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Kreuter, J. et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target. 10, 317–325 (2002).

    CAS  PubMed  Google Scholar 

  173. Hartl, N., Adams, F. & Merkel, O. M. From adsorption to covalent bonding: apolipoprotein E functionalization of polymeric nanoparticles for drug delivery across the blood-brain barrier. Adv. Ther. 4, 2000092 (2021).

    CAS  Google Scholar 

  174. Neves, A. R., Queiroz, J. F., Lima, S. A. C., Reis, S. & Apo, E. Functionalization of solid lipid nanoparticles enhances brain drug delivery: uptake mechanism and transport pathways. Bioconjug. Chem. 28, 995–1004 (2017).

    CAS  PubMed  Google Scholar 

  175. Zhang, D. et al. Near infrared-activatable biomimetic nanogels enabling deep tumor drug penetration inhibit orthotopic glioblastoma. Nat. Commun. 13, 6835 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Molino, Y. et al. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J. 31, 1807–1827 (2017).

    CAS  PubMed  Google Scholar 

  177. Duro-Castano, A. et al. Targeting Alzheimer’s disease with multimodal polypeptide-based nanoconjugates. Sci. Adv. 7, eabf9180 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhang, Z. et al. Brain-targeted drug delivery by manipulating protein corona functions. Nat. Commun. 10, 3561 (2019).

    PubMed  PubMed Central  Google Scholar 

  179. Wiley, D. T., Webster, P., Gale, A. & Davis, M. E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc. Natl Acad. Sci. USA 110, 8662–8667 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Banks, W. A. & Erickson, M. A. The blood-brain barrier and immune function and dysfunction. Neurobiol. Dis. 37, 26–32 (2010).

    CAS  PubMed  Google Scholar 

  181. Klyachko, N. L. et al. Macrophages with cellular backpacks for targeted drug delivery to the brain. Biomaterials 140, 79–87 (2017). This article presents one of the early successful demonstrations of cellular backpacks as a means to transport NPs across the BBB.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wu, J. R., Hernandez, Y., Miyasaki, K. F. & Kwon, E. J. Engineered nanomaterials that exploit blood-brain barrier dysfunction for delivery to the brain. Adv. Drug Deliv. Rev. 197, 114820 (2023).

    CAS  PubMed  Google Scholar 

  183. Brenner, J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9, 2684 (2018).

    PubMed  PubMed Central  Google Scholar 

  184. Knox, E. G., Aburto, M. R., Clarke, G., Cryan, J. F. & O’Driscoll, C. M. The blood-brain barrier in aging and neurodegeneration. Mol. Psychiatry 27, 2659–2673 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Nian, K., Harding, I. C., Herman, I. M. & Ebong, E. E. Blood-brain barrier damage in ischemic stroke and its regulation by endothelial mechanotransduction. Front. Physiol. 11, 605398 (2020).

    PubMed  PubMed Central  Google Scholar 

  186. Ogawa, K. et al. Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain. J. Control. Release 348, 34–41 (2022).

    CAS  PubMed  Google Scholar 

  187. Abrahao, A. et al. First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat. Commun. 10, 4373 (2019).

    PubMed  PubMed Central  Google Scholar 

  188. Tønnesen, J., Hrabĕtová, S. & Soria, F. N. Local diffusion in the extracellular space of the brain. Neurobiol. Dis. 177, 105981 (2023).

    PubMed  Google Scholar 

  189. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl Med. 4, 147ra111 (2012).

    PubMed  PubMed Central  Google Scholar 

  190. Abbott, N. J. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem. Int. 45, 545–552 (2004).

    CAS  PubMed  Google Scholar 

  191. Jin, B.-J., Smith, A. J. & Verkman, A. S. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. J. Gen. Physiol. 148, 489–501 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Ray, L., Iliff, J. J. & Heys, J. J. Analysis of convective and diffusive transport in the brain interstitium. Fluids Barriers CNS 16, 6 (2019).

    PubMed  PubMed Central  Google Scholar 

  193. Kreuter, J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J. Nanosci. Nanotechnol. 4, 484–488 (2004).

    CAS  PubMed  Google Scholar 

  194. Surfactants influence polymer nanoparticle fate within the brain. Biomaterials 277, 121086 (2021).

  195. McKenna, M., Shackelford, D., Ferreira Pontes, H., Ball, B. & Nance, E. Multiple particle tracking detects changes in brain extracellular matrix and predicts neurodevelopmental age. ACS Nano 15, 8559–8573 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Negron, K., Khalasawi, N. & Suk, J. S. in Nanotherapy for Brain Tumor Drug Delivery (eds Agrahari, V. et al.) 179–204 (Springer, 2021).

  197. Gu, X. et al. Clearance of two organic nanoparticles from the brain via the paravascular pathway. J. Control. Release 322, 31–41 (2020).

    CAS  PubMed  Google Scholar 

  198. Waggoner, L. E. et al. Porous silicon nanoparticles targeted to the extracellular matrix for therapeutic protein delivery in traumatic brain injury. Bioconjug Chem. 33, 1685–1697 (2022).

    CAS  PubMed  Google Scholar 

  199. Mann, A. P. et al. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat. Commun. 7, 11980 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhao, Y. et al. Dual targeted nanocarrier for brain ischemic stroke treatment. J. Control. Release 233, 64–71 (2016).

    CAS  PubMed  Google Scholar 

  201. Han, Z. et al. A novel targeted nanoparticle for traumatic brain injury treatment: combined effect of ROS depletion and calcium overload inhibition. Adv. Healthc. Mater. 11, 2102256 (2022).

    CAS  Google Scholar 

  202. Carron, S. F., Alwis, D. S. & Rajan, R. Traumatic brain injury and neuronal functionality changes in sensory cortex. Front. Syst. Neurosci. 10, 47 (2016).

    PubMed  PubMed Central  Google Scholar 

  203. Praça, C. et al. A nanoformulation for the preferential accumulation in adult neurogenic niches. J. Control. Release 284, 57–72 (2018).

    PubMed  Google Scholar 

  204. Hour, F. Q. et al. Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton’s jelly in Alzheimer’s rat models. J. Control. Release 321, 430–441 (2020).

    CAS  PubMed  Google Scholar 

  205. Merienne, N. et al. Cell-type-specific gene expression profiling in adult mouse brain reveals normal and disease-state signatures. Cell Rep. 26, 2477–2493.e9 (2019).

    CAS  PubMed  Google Scholar 

  206. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    CAS  PubMed  Google Scholar 

  207. Skene, N. G. & Grant, S. G. N. Identification of vulnerable cell types in major brain disorders using single cell transcriptomes and expression weighted cell type enrichment. Front. Neurosci. 10, 16 (2016).

    PubMed  PubMed Central  Google Scholar 

  208. Pak, V. et al. Distinctive whole-brain cell-types strongly predict tissue damage patterns in eleven neurodegenerative disorders. eLife 12, RP89368 (2023).

    Google Scholar 

  209. Lee, H.-G., Wheeler, M. A. & Quintana, F. J. Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug Discov. 21, 339–358 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Kwon, H. S. & Koh, S.-H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegen. 9, 42 (2020).

    Google Scholar 

  211. Maragakis, N. J. & Rothstein, J. D. Mechanisms of disease: astrocytes in neurodegenerative disease. Nat. Clin. Pract. Neurol. 2, 679–689 (2006).

    CAS  PubMed  Google Scholar 

  212. Joshi, C. R. et al. Reaching for the stars in the brain: polymer-mediated gene delivery to human astrocytes. Mol. Ther. Nucleic Acids 12, 645–657 (2018).

    PubMed  PubMed Central  Google Scholar 

  213. Sabourian, P. et al. Targeting reactive astrocytes by pH-responsive ligand-bonded polymeric nanoparticles in spinal cord injury. Drug Deliv. Transl. Res. 13, 1842–1855 (2023).

    CAS  PubMed  Google Scholar 

  214. Surnar, B. et al. Nanotechnology-mediated crossing of two impermeable membranes to modulate the stars of the neurovascular unit for neuroprotection. Proc. Natl Acad. Sci. USA 115, E12333–E12342 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Zhu, J. et al. Reactive A1 astrocyte-targeted nucleic acid nanoantiepileptic drug downregulating adenosine kinase to rescue endogenous antiepileptic pathway. ACS Appl. Mater. Interfaces 15, 29876–29888 (2023).

    CAS  PubMed  Google Scholar 

  216. Colonna, M. & Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441–468 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Ortiz, C. et al. Molecular atlas of the adult mouse brain. Sci. Adv. 6, eabb3446 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    CAS  PubMed  Google Scholar 

  219. Zhao, N., Francis, N. L., Calvelli, H. R. & Moghe, P. V. Microglia-targeting nanotherapeutics for neurodegenerative diseases. APL Bioeng. 4, 030902 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Albanese, A., Sykes, E. A. & Chan, W. C. W. Rough around the edges: the inflammatory response of microglial cells to spiky nanoparticles. ACS Nano 4, 2490–2493 (2010).

    CAS  PubMed  Google Scholar 

  221. Hutter, E. et al. Microglial response to gold nanoparticles. ACS Nano 4, 2595–2606 (2010).

    CAS  PubMed  Google Scholar 

  222. Choi, B. et al. Highly selective microglial uptake of ceria–zirconia nanoparticles for enhanced analgesic treatment of neuropathic pain. Nanoscale 11, 19437–19447 (2019).

    CAS  PubMed  Google Scholar 

  223. Ralvenius, W. T. et al. Nanoparticle-mediated delivery of anti-PU.1 siRNA via localized intracisternal administration reduces neuroinflammation. Adv. Mater. 36, e2309225 (2023).

    PubMed  Google Scholar 

  224. Roussarie, J.-P. et al. Selective neuronal vulnerability in Alzheimer’s disease: a network-based analysis. Neuron 107, 821–835.e12 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Surmeier, D. J., Obeso, J. A. & Halliday, G. M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci. 18, 101–113 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Khan, F. A., Almohazey, D., Alomari, M. & Almofty, S. A. Impact of nanoparticles on neuron biology: current research trends. Int. J. Nanomed. 13, 2767–2776 (2018).

    CAS  Google Scholar 

  228. Stojiljković, A. et al. High-content analysis of factors affecting gold nanoparticle uptake by neuronal and microglial cells in culture. Nanoscale 8, 16650–16661 (2016).

    PubMed  Google Scholar 

  229. Orlando, A. et al. Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner. Int. J. Nanomed. 12, 3547–3559 (2017).

    CAS  Google Scholar 

  230. Prabhu, B. M., Ali, S. F., Murdock, R. C., Hussain, S. M. & Srivatsan, M. Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 4, 150–160 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Dante, S. et al. Selective targeting of neurons with inorganic nanoparticles: revealing the crucial role of nanoparticle surface charge. ACS Nano 11, 6630–6640 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Walters, R. et al. Nanoparticle targeting to neurons in a rat hippocampal slice culture model. ASN Neuro 4, 383–392 (2012).

    CAS  PubMed  Google Scholar 

  233. Zapukhliak, O. S., Kachanovska, V. O., Isaeva, E. V., Netsyk, O. V. & Isaev, D. S. Surface charge impact in nonsynaptic model of epilepsy in rat hippocampus. Fiziol. Zhurnal 62, 35–40 (2016).

    CAS  Google Scholar 

  234. Gao, Y. et al. RVG-peptide-linked trimethylated chitosan for delivery of siRNA to the brain. Biomacromolecules 15, 1010–1018 (2014).

    CAS  PubMed  Google Scholar 

  235. Kwon, E. J., Skalak, M., Lo Bu, R. & Bhatia, S. N. Neuron-targeted nanoparticle for siRNA delivery to traumatic brain injuries. ACS Nano 10, 7926–7933 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Khongkow, M. et al. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood–brain barrier penetration. Sci. Rep. 9, 8278 (2019).

    PubMed  PubMed Central  Google Scholar 

  237. Ren, M. et al. Functionalized nanoparticles in prevention and targeted therapy of viral diseases with neurotropism properties, special insight on COVID-19. Front. Microbiol. 12, 767104 (2021).

    PubMed  PubMed Central  Google Scholar 

  238. Zhou, R. et al. Targeted brain delivery of RVG29‐modified rifampicin‐loaded nanoparticles for Alzheimer’s disease treatment and diagnosis. Bioeng. Transl. Med. 7, e10395 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Chung, E. P. et al. Targeting small molecule delivery to the brain and spinal cord via intranasal administration of rabies virus glycoprotein (RVG29)-modified PLGA nanoparticles. Pharmaceutics 12, 93 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Dos Santos Rodrigues, B., Arora, S., Kanekiyo, T. & Singh, J. Efficient neuronal targeting and transfection using RVG and transferrin-conjugated liposomes. Brain Res. 1734, 146738 (2020).

    PubMed  Google Scholar 

  241. Lian, M., Hueffer, K. & Weltzin, M. M. Interactions between the rabies virus and nicotinic acetylcholine receptors: a potential role in rabies virus induced behavior modifications. Heliyon 8, e10434 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Fontana, I. C., Kumar, A. & Nordberg, A. The role of astrocytic α7 nicotinic acetylcholine receptors in Alzheimer disease. Nat. Rev. Neurol. 19, 278–288 (2023).

    PubMed  Google Scholar 

  243. Hoogland, I. C. M. et al. Microglial cell response in α7 nicotinic acetylcholine receptor-deficient mice after systemic infection with Escherichia coli. J. Neuroinflamm. 19, 94 (2022).

    CAS  Google Scholar 

  244. Jurado-Coronel, J. C. et al. Targeting the nicotinic acetylcholine receptors (nAChRs) in astrocytes as a potential therapeutic target in Parkinson’s disease. Curr. Pharm. Des. 22, 1305–1311 (2016).

    CAS  PubMed  Google Scholar 

  245. Moon, J. H., Kim, S. Y., Lee, H. G., Kim, S. U. & Lee, Y. B. Activation of nicotinic acetylcholine receptor prevents the production of reactive oxygen species in fibrillar β amyloid peptide (1-42)-stimulated microglia. Exp. Mol. Med. 40, 11–18 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Park, I.-K., Lasiene, J., Chou, S.-H., Horner, P. J. & Pun, S. H. Neuron-specific delivery of nucleic acids mediated by Tet1-modified poly(ethylenimine). J. Gene Med. 9, 691–702 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Liu, J. K. et al. A novel peptide defined through phage display for therapeutic protein and vector neuronal targeting. Neurobiol. Dis. 19, 407–418 (2005).

    PubMed  Google Scholar 

  248. Wang, P. et al. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer’s disease. J. Control. Release 279, 220–233 (2018).

    CAS  PubMed  Google Scholar 

  249. Zhang, Y. et al. Targeted delivery of Tet1 peptide functionalized polymersomes to the rat cochlear nerve. Int. J. Nanomed. 7, 1015–1022 (2012).

    Google Scholar 

  250. Mathew, A. et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS ONE 7, e32616 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Guo, Q. et al. A dual-ligand fusion peptide improves the brain-neuron targeting of nanocarriers in Alzheimer’s disease mice. J. Control. Release 320, 347–362 (2020).

    CAS  PubMed  Google Scholar 

  252. Guo, Q. et al. Brain-neuron targeted nanoparticles for peptide synergy therapy at dual-target of Alzheimer’s disease. J. Control. Release 355, 604–621 (2023).

    CAS  PubMed  Google Scholar 

  253. Hou, Q. et al. Dual targeting nanoparticles for epilepsy therapy. Chem. Sci. 13, 12913–12920 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Garcia-Chica, J. et al. An overview of nanomedicines for neuron targeting. Nanomedicine 15, 1617–1636 (2020).

    CAS  PubMed  Google Scholar 

  255. Spencer, A. P. et al. Breaking barriers: bioinspired strategies for targeted neuronal delivery to the central nervous system. Pharmaceutics 12, 192 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Zhang, F., Lin, Y.-A., Kannan, S. & Kannan, R. M. Targeting specific cells in the brain with nanomedicines for CNS therapies. J. Control. Release 240, 212–226 (2016).

    CAS  PubMed  Google Scholar 

  257. Zhang, H. et al. Selective neuronal targeting, protection and signaling network analysis via dopamine-mediated mesoporous silica nanoparticles. Med. Chem. Commun. 6, 1117–1129 (2015).

    CAS  Google Scholar 

  258. Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R. & Ribeiro, F. M. Alzheimer’s disease: targeting the cholinergic system. Curr. Neuropharmacol. 14, 101–115 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Qian, K. et al. Cholinergic neuron targeting nanosystem delivering hybrid peptide for combinatorial mitochondrial therapy in Alzheimer’s disease. ACS Nano 16, 11455–11472 (2022).

    CAS  PubMed  Google Scholar 

  260. Luthi-Carter, R. et al. Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum. Mol. Genet. 9, 1259–1271 (2000).

    CAS  PubMed  Google Scholar 

  261. Dencker, D. et al. Muscarinic acetylcholine receptor subtypes as potential drug targets for the treatment of schizophrenia, drug abuse, and Parkinson’s disease. ACS Chem. Neurosci. 3, 80–89 (2011).

    PubMed Central  Google Scholar 

  262. Piggott, M. A. et al. Muscarinic receptors in basal ganglia in dementia with Lewy bodies, Parkinson’s disease and Alzheimer’s disease. J. Chem. Neuroanat. 25, 161–173 (2003).

    CAS  PubMed  Google Scholar 

  263. Rinne, J. O., Lo¨nnberg, P., Marjama¨ki, P. & Rinne, U. K. Brain muscarinic receptor subtypes are differently affected in Alzheimer’s disease and Parkinson’s disease. Brain Res. 483, 402–406 (1989).

    CAS  PubMed  Google Scholar 

  264. Liu, W. et al. Applications of machine learning in computational nanotechnology. Nanotechnology 33, 16 (2022).

    Google Scholar 

  265. Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Lv, H. & Chen, X. Intelligent control of nanoparticle synthesis through machine learning. Nanoscale 14, 6688–6708 (2022).

    CAS  PubMed  Google Scholar 

  267. Tao, H. et al. Nanoparticle synthesis assisted by machine learning. Nat. Rev. Mater. 6, 701–716 (2021).

    Google Scholar 

  268. Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366 (1996).

    CAS  PubMed  Google Scholar 

  269. Pleiko, K. et al. In vivo phage display: identification of organ-specific peptides using deep sequencing and differential profiling across tissues. Nucleic Acids Res. 49, e38 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Bakhshinejad, B., Karimi, M. & Khalaj-Kondori, M. Phage display: development of nanocarriers for targeted drug delivery to the brain. Neural Regen. Res. 10, 862–865 (2015).

    PubMed  PubMed Central  Google Scholar 

  271. Li, J. et al. Identification of peptide sequences that target to the brain using in vivo phage display. Amino Acids 42, 2373–2381 (2012).

    CAS  PubMed  Google Scholar 

  272. Li, J. et al. Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials 32, 4943–4950 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Ruta, A., Krishnan, K. & Elisseeff, J. H. Single-cell transcriptomics in tissue engineering and regenerative medicine. Nat. Rev. Bioeng. 2, 101–119 (2024).

    Google Scholar 

  274. Jung, N. & Kim, T.-K. Spatial transcriptomics in neuroscience. Exp. Mol. Med. 55, 2105–2115 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Garland, E. F., Hartnell, I. J. & Boche, D. Microglia and astrocyte function and communication: what do we know in humans? Front. Neurosci. 16, 824888 (2022).

    PubMed  PubMed Central  Google Scholar 

  276. Matejuk, A. & Ransohoff, R. M. Crosstalk between astrocytes and microglia: an overview. Front. Immunol. 11, 1416 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Szepesi, Z., Manouchehrian, O., Bachiller, S. & Deierborg, T. Bidirectional microglia–neuron communication in health and disease. Front. Cell. Neurosci. 12, 323 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Jha, M. K., Jo, M., Kim, J.-H. & Suk, K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist 25, 227–240 (2019).

    CAS  PubMed  Google Scholar 

  279. Linville, R. M. & Searson, P. C. Next-generation in vitro blood–brain barrier models: benchmarking and improving model accuracy. Fluids Barriers CNS 18, 56 (2021).

    PubMed  PubMed Central  Google Scholar 

  280. Bagchi, S. et al. In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug Des. Dev. Ther. 13, 3591–3605 (2019).

    CAS  Google Scholar 

  281. Pérez-López, A., Torres-Suárez, A. I., Martín-Sabroso, C. & Aparicio-Blanco, J. An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines. Adv. Drug Deliv. Rev. 196, 114816 (2023).

    PubMed  Google Scholar 

  282. Rouleau, N., Murugan, N. J. & Kaplan, D. L. Functional bioengineered models of the central nervous system. Nat. Rev. Bioeng. 1, 252–270 (2023).

    PubMed  PubMed Central  Google Scholar 

  283. Dara, S., Dhamercherla, S., Jadav, S. S., Babu, C. M. & Ahsan, M. J. Machine learning in drug discovery: a review. Artif. Intell. Rev. 55, 1947–1999 (2022).

    PubMed  Google Scholar 

  284. Vora, L. K. et al. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 15, 1916 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Dawson, T. M., Golde, T. E. & Lagier-Tourenne, C. Animal models of neurodegenerative diseases. Nat. Neurosci. 21, 1370–1379 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Kodamullil, A. T. et al. Of mice and men: comparative analysis of neuro-inflammatory mechanisms in human and mouse using cause-and-effect models. J. Alzheimers Dis. 59, 1045–1055 (2017).

    PubMed  PubMed Central  Google Scholar 

  287. Xie, F. et al. Investigation of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers for brain targeting. Int. J. Nanomed. 7, 163–175 (2012).

    CAS  Google Scholar 

  288. Anraku, Y. et al. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat. Commun. 8, 1001 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Zhou, Y. et al. Blood-brain barrier-penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci. Adv. 6, eabc7031 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Arora, S. & Singh, J. In vitro and in vivo optimization of liposomal nanoparticles based brain targeted Vgf gene therapy. Int. J. Pharm. 608, 121095 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Boado, R. J. et al. Genetic engineering of a lysosomal enzyme fusion protein for targeted delivery across the human blood-brain barrier. Biotechnol. Bioeng. 99, 475–484 (2008).

    CAS  PubMed  Google Scholar 

  292. Hou, J. et al. Accessing neuroinflammation sites: monocyte/neutrophil-mediated drug delivery for cerebral ischemia. Sci. Adv. 5, eaau8301 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Zensi, A. et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control. Release 137, 78–86 (2009).

    CAS  PubMed  Google Scholar 

  294. Sorrentino, N. C. et al. A highly secreted sulphamidase engineered to cross the blood-brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIA. EMBO Mol. Med. 5, 675–690 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Spencer, B. et al. A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates Alzheimer disease pathology and restores neurogenesis. J. Biol. Chem. 289, 17917–17931 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Song, Q. et al. Biomimetic ApoE-reconstituted high density lipoprotein nanocarrier for blood-brain barrier penetration and amyloid beta-targeting drug delivery. Mol. Pharm. 13, 3976–3987 (2016).

    CAS  PubMed  Google Scholar 

  297. Meng, F. et al. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. Colloids Surf. B Biointerfaces 134, 88–97 (2015).

    CAS  PubMed  Google Scholar 

  298. Bana, L. et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood-brain-barrier: implications for therapy of Alzheimer disease. Nanomedicine 10, 1583–1590 (2014).

    CAS  PubMed  Google Scholar 

  299. Liu, Y. et al. A leptin derived 30-amino-acid peptide modified pegylated poly-l-lysine dendrigraft for brain targeted gene delivery. Biomaterials 31, 5246–5257 (2010).

    CAS  PubMed  Google Scholar 

  300. Thom, G. et al. A peptide derived from melanotransferrin delivers a protein-based interleukin 1 receptor antagonist across the BBB and ameliorates neuropathic pain in a preclinical model. J. Cereb. Blood Flow Metab. 39, 2074–2088 (2019).

    CAS  PubMed  Google Scholar 

  301. Liu, L. et al. Targeted exosome coating gene-chem nanocomplex as ‘nanoscavenger’ for clearing α-synuclein and immune activation of Parkinson’s disease. Sci. Adv. 6, eaba3967 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Broadwell, R. D., Baker-Cairns, B. J., Friden, P. M., Oliver, C. & Villegas, J. C. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Exp. Neurol. 142, 47–65 (1996).

    CAS  PubMed  Google Scholar 

  303. Ulbrich, K., Hekmatara, T., Herbert, E. & Kreuter, J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur. J. Pharm. Biopharm. 71, 251–256 (2009).

    CAS  PubMed  Google Scholar 

  304. Yu, Y. J. et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl Med. 3, 84ra44 (2011).

    PubMed  Google Scholar 

  305. Papademetriou, I. T., Garnacho, C., Schuchman, E. H. & Muro, S. In vivo performance of polymer nanocarriers dually-targeted to epitopes of the same or different receptors. Biomaterials 34, 3459–3466 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Valiante, S. et al. Peptide gH625 enters into neuron and astrocyte cell lines and crosses the blood–brain barrier in rats. Int. J. Nanomed. 10, 1885–1898 (2015).

    CAS  Google Scholar 

  307. Minami, S. S. et al. Selective targeting of microglia by quantum dots. J. Neuroinflamm. 9, 22 (2012).

    CAS  Google Scholar 

  308. Liu, H. et al. Targeting microglia for therapy of Parkinson’s disease by using biomimetic ultrasmall nanoparticles. J. Am. Chem. Soc. 142, 21730–21742 (2020).

    CAS  PubMed  Google Scholar 

  309. Ren, M. et al. RVG peptide-functionalized favipiravir nanoparticle delivery system facilitates antiviral therapy of neurotropic virus infection in a mouse model. Int. J. Mol. Sci. 24, 5851 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all authors whose work in CNS drug delivery and related areas contributed to this Review. The authors also thank the reviewers for their constructive suggestions, which helped them to improve this Review.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. J.G., Z.J.X., S.G., J.M.K. and N.J. contributed substantially to the discussion of the content. J.G., Z.J.X., S.G. and C.J. wrote the article. C.J. crafted all the figures. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Jingjing Gao, Jeffrey M. Karp or Nitin Joshi.

Ethics declarations

Competing interests

N.J. and J.M.K. have one pending patent on nanoparticles for gene delivery in the brain. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Horacio Cabral and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Basal Ganglia: https://my.clevelandclinic.org/health/body/23962-basal-ganglia

Cognitive functioning: https://mayfieldclinic.com/pe-pd.htm

Glossary

Blood–brain barrier

(BBB). A selective barrier formed by endothelial cells, astrocytes and pericytes that regulates the passage of substances from the bloodstream into the central nervous system.

Braak stages

A classification system that describes the progression of abnormal protein deposits, particularly tau proteins, within specific brain regions, providing insights in pathology progression in neurodegenerative diseases such as Alzheimer disease.

Cerebrospinal fluid

Produced by the choroid plexus in brain ventricles; it surrounds the brain and spinal cord, providing mechanical support, nutrient delivery, waste removal and regulation of intracranial pressure within the central nervous system.

Convection-enhanced delivery

A local delivery method that utilize pressure to drive the flow of therapeutic agents through the brain parenchyma.

Extracellular matrix

A dynamic network of proteins and carbohydrates in the brain that surround neurons and glial cells, influencing synaptic plasticity, cell adhesion and neuronal migration.

Glymphatic pathway

A waste clearance system unique to the brain that relies on glial cells (especially astrocytes) to facilitate the cerebrospinal fluid–interstitial fluid exchange in the perivascular space.

Interstitial fluid

A fluid that fills the brain interstitial space and directly surrounds neurons and glial cells for nutrient delivery, waste removal and cell signalling.

Parenchyma

The main functional tissue of the brain, consisting of neurons, glial cells and other acellular supporting structures to maintain the cognitive and physiological function of the brain.

Protein corona

A layer of proteins that adsorb onto the surface of nanoparticles upon exposure to biological fluids, influencing their behaviour, interactions and biological responses.

Reticuloendothelial system

(RES). A network of phagocytic cells, mainly macrophages, that are primarily located in the liver and spleen and actively remove foreign substances via engulfment.

Tight junctions

Specialized intercellular junctions between endothelial cells that create a barrier to control the passage of ions, molecules and cells across epithelial and endothelial cell layers.

Transcytosis

The process by which macromolecules or particles are transported across a cell, involving their uptake on one side through endocytosis, intracellular transport, and release on the opposite side through exocytosis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Xia, Z.(., Gunasekar, S. et al. Precision drug delivery to the central nervous system using engineered nanoparticles. Nat Rev Mater 9, 567–588 (2024). https://doi.org/10.1038/s41578-024-00695-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00695-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research