Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Advanced material technologies for space and terrestrial medicine

Abstract

The medical risks of spaceflight are amplified as humans venture into longer-duration and greater-distance deep space voyages. During space missions, astronauts face the extremes of known health hazards, such as cosmic radiation and microgravity, as well as threats of the as-yet-unknown. For these missions to be productive and successful, ensuring the astronauts’ safety and well-being is of foremost priority, and this could be achieved through innovations in space medicine. This Perspective explores the use of material technologies for delivery of space medicine in the context of health maintenance and preventive care, as well as treatment for non-emergency and emergency needs. We highlight innovative drug delivery systems, living pharmacies, regenerative medicine, and 3D printing and bioprinting approaches for health-care provision, and we share our vision on their potential applications in space. Finally, we discuss the benefits of space medicine research and its implications for advancing terrestrial health care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Medical and logistical challenges for medicine in space.
Fig. 2: Long-acting delivery systems for potential applications in space medicine.
Fig. 3: Microbial sensors and therapeutics.
Fig. 4: Cell-based disease modelling in microgravity.
Fig. 5: 3D printing and bioprinting in space for on-demand medical provisions.

Similar content being viewed by others

References

  1. Belobrajdic, B., Melone, K. & Diaz-Artiles, A. Planetary extravehicular activity (EVA) risk mitigation strategies for long-duration space missions. NPJ Microgravity 7, 16 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Man, J., Graham, T., Squires-Donelly, G. & Laslett, A. L. The effects of microgravity on bone structure and function. NPJ Microgravity 8, 9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Juhl, O. J. et al. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 7, 28 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ong, J., Mader, T. H., Gibson, C. R., Mason, S. S. & Lee, A. G. Spaceflight associated neuro-ocular syndrome (SANS): an update on potential microgravity-based pathophysiology and mitigation development. Eye 37, 2409–2415 (2023).

    Article  PubMed  Google Scholar 

  5. Nelson, E. S., Mulugeta, L. & Myers, J. G. Microgravity-induced fluid shift and ophthalmic changes. Life 4, 621–665 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Seoane-Viaño, I., Ong, J. J., Basit, A. W. & Goyanes, A. To infinity and beyond: strategies for fabricating medicines in outer space. Int. J. Pharm. X 4, 100121 (2022).

    PubMed  PubMed Central  Google Scholar 

  7. Krittanawong, C. et al. Human health during space travel: state-of-the-art review. Cells 12, 40 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ploutz-Snyder, L. et al. Effects of sex and gender on adaptation to space: musculoskeletal health. J. Women’s Health 23, 963–966 (2014).

    Article  Google Scholar 

  9. Mark, S. et al. The impact of sex and gender on adaptation to space: executive summary. J. Women’s Health 23, 941–947 (2014).

    Article  Google Scholar 

  10. Moreno-Villanueva, M., Wong, M., Lu, T., Zhang, Y. & Wu, H. Interplay of space radiation and microgravity in DNA damage and DNA damage response. NPJ Microgravity 3, 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chancellor, J. C., Scott, G. B. & Sutton, J. P. Space radiation: the number one risk to astronaut health beyond low Earth orbit. Life 4, 491–510 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Siddiqui, R., Akbar, N. & Khan, N. A. Gut microbiome and human health under the space environment. J. Appl. Microbiol. 130, 14–24 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Bijlani, S., Stephens, E., Singh, N. K., Venkateswaran, K. & Wang, C. C. C. Advances in space microbiology. iScience 24, 102395 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arone, A. et al. The burden of space exploration on the mental health of astronauts: a narrative review. Clin. Neuropsychiatry 18, 237–246 (2021).

    PubMed  PubMed Central  Google Scholar 

  15. Blue, R. S. et al. Limitations in predicting radiation-induced pharmaceutical instability during long-duration spaceflight. NPJ Microgravity 5, 15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xia, D., Wood-Yang, A. J. & Prausnitz, M. R. Clearing away barriers to oral drug delivery. Sci. Robot. 7, eade3311 (2022).

    Article  PubMed  Google Scholar 

  17. Shipp, L., Liu, F., Kerai-Varsani, L. & Okwuosa, T. C. Buccal films: a review of therapeutic opportunities, formulations & relevant evaluation approaches. J. Control. Rel. 352, 1071–1092 (2022).

    Article  CAS  Google Scholar 

  18. Aran, K. et al. An oral microjet vaccination system elicits antibody production in rabbits. Sci. Transl. Med. 9, eaaf6413 (2017).

    Article  PubMed  Google Scholar 

  19. Zhang, X., Chen, G., Zhang, H., Shang, L. & Zhao, Y. Bioinspired oral delivery devices. Nat. Rev. Bioeng. 1, 208–225 (2023).

    Article  Google Scholar 

  20. Ahadian, S. et al. Micro and nanoscale technologies in oral drug delivery. Adv. Drug. Deliv. Rev. 157, 37–62 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bellinger, A. M. et al. Oral, ultra-long-lasting drug delivery: application toward malaria elimination goals. Sci. Transl. Med. 8, 365ra157 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen, W. et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. Sci. Adv. 8, eabk1792 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Voorhies, A. A. et al. Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci. Rep. 9, 9911 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Roth, G. A. et al. Designing spatial and temporal control of vaccine responses. Nat. Rev. Mater. 7, 174–195 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Yang, Y. et al. Improved pharmacodynamics of epidermal growth factor via microneedles-based self-powered transcutaneous electrical stimulation. Nat. Commun. 13, 6908 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu, Z. et al. Blue-ringed octopus-inspired microneedle patch for robust tissue surface adhesion and active injection drug delivery. Sci. Adv. 9, eadh2213 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, X. & Burgess, D. J. Drug release from in situ forming implants and advances in release testing. Adv. Drug. Deliv. Rev. 178, 113912 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Benhabbour, S. R. et al. Ultra-long-acting tunable biodegradable and removable controlled release implants for drug delivery. Nat. Commun. 10, 4324 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ho, D.-K. et al. Fully synthetic injectable depots with high drug content and tunable pharmacokinetics for long-acting drug delivery. J. Control. Rel. 329, 257–269 (2021).

    Article  CAS  Google Scholar 

  30. Sharma, R. et al. Recent advances in lipid-based long-acting injectable depot formulations. Adv. Drug. Deliv. Rev. 199, 114901 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Coulter, S. M. et al. Enzyme-triggered l-α/d-peptide hydrogels as a long-acting injectable platform for systemic delivery of HIV/AIDS drugs. Adv. Healthc. Mater. 12, 2203198 (2023).

    Article  CAS  Google Scholar 

  32. Li, W. et al. Clinical translation of long-acting drug delivery formulations. Nat. Rev. Mater. 7, 406–420 (2022).

    Article  Google Scholar 

  33. Pons-Faudoa, F. P. et al. Long-acting refillable nanofluidic implant confers protection against SHIV infection in nonhuman primates. Sci. Transl. Med. 15, eadg2887 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Ballerini, A. et al. Counteracting muscle atrophy on Earth and in space via nanofluidics delivery of formoterol. Adv. Ther. 3, 2000014 (2020).

    Article  CAS  Google Scholar 

  35. Di Trani, N. et al. Remotely controlled nanofluidic implantable platform for tunable drug delivery. Lab Chip 19, 2192–2204 (2019).

    Article  PubMed  Google Scholar 

  36. Di Trani, N. et al. Electrostatically gated nanofluidic membrane for ultra-low power controlled drug delivery. Lab Chip 20, 1562–1576 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. An investigation to test remote-controlled drug delivery implant to launch on SpaceX CRS-26. ISS National Lab www.issnationallab.org/spx-crs26-houston-methodist-implant-research/ (2022).

  38. Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 4, 122ra121–122ra121 (2012).

    Article  Google Scholar 

  39. Zhang, Z., Ramiya Ramesh Babu, N. A., Adelgais, K. & Ozkaynak, M. Designing and implementing smart glass technology for emergency medical services: a sociotechnical perspective. JAMIA Open. 5, ooac113 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wagner, R. et al. Assessment of pediatric telemedicine using remote physical examinations with a mobile medical device: a nonrandomized controlled trial. JAMA Netw. Open. 6, e2252570 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lee, S. H. et al. Fully portable continuous real-time auscultation with a soft wearable stethoscope designed for automated disease diagnosis. Sci. Adv. 8, eabo5867 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Uschnig, C., Recker, F., Blaivas, M., Dong, Y. & Dietrich, C. F. Tele-ultrasound in the era of COVID-19: a practical guide. Ultrasound Med. Biol. 48, 965–974 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mercado-Young, R. et al. Virtual guidance: a new technique to empower point-of-care ultrasound in remote or extreme environments. Crit. Ultrasound J. 2, 19–24 (2010).

    Article  Google Scholar 

  44. Komatsu, M. et al. Towards clinical application of artificial intelligence in ultrasound imaging. Biomedicines 9, 720 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nhat, P. T. H. et al. Clinical benefit of AI-assisted lung ultrasound in a resource-limited intensive care unit. Crit. Care 27, 257 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Alexander, L. M. & van Pijkeren, J.-P. Modes of therapeutic delivery in synthetic microbiology. Trends Microbiol. 31, 197–211 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Tanniche, I. & Behkam, B. Engineered live bacteria as disease detection and diagnosis tools. J. Biol. Eng. 17, 65 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  48. McNerney, M. P., Doiron, K. E., Ng, T. L., Chang, T. Z. & Silver, P. A. Theranostic cells: emerging clinical applications of synthetic biology. Nat. Rev. Genet. 22, 730–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jimenez, M., Langer, R. & Traverso, G. Microbial therapeutics: new opportunities for drug delivery. J. Exp. Med. 216, 1005–1009 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koehle, A. P., Brumwell, S. L., Seto, E. P., Lynch, A. M. & Urbaniak, C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 9, 47 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jimenez, M. et al. Synthetic extremophiles: species-specific formulations for microbial therapeutics and beyond. Preprint at bioRxiv https://doi.org/10.1101/2022.11.30.518573 (2022).

  53. FDA okays first human stool therapy. Nat. Biotechnol. 41, 5 (2023).

  54. Nilsson, A. G., Sundh, D., Bäckhed, F. & Lorentzon, M. Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: a randomized, placebo-controlled, double-blind, clinical trial. J. Intern. Med. 284, 307–317 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Gurbatri, C. R., Arpaia, N. & Danino, T. Engineering bacteria as interactive cancer therapies. Science 378, 858–864 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396–403 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Yamaguchi, N. et al. Microbial monitoring of crewed habitats in space — current status and future perspectives. Microbes Env. 29, 250–260 (2014).

    Article  Google Scholar 

  58. Kuehnast, T. et al. The crewed journey to Mars and its implications for the human microbiome. Microbiome 10, 26 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Stahl-Rommel, S. et al. Real-time culture-independent microbial profiling onboard the International Space Station using nanopore sequencing. Genes 12, 106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van der Meer, J. R. & Belkin, S. Where microbiology meets microengineering: design and applications of reporter bacteria. Nat. Rev. Microbiol. 8, 511–522 (2010).

    Article  PubMed  Google Scholar 

  61. Atkinson, J. T. et al. Real-time bioelectronic sensing of environmental contaminants. Nature 611, 548–553 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Ostrov, N. et al. A modular yeast biosensor for low-cost point-of-care pathogen detection. Sci. Adv. 3, e1603221 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Inda-Webb, M. E. et al. Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ. Nature 620, 386–392 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Sakai, T. et al. Probiotics into outer space: feasibility assessments of encapsulated freeze-dried probiotics during 1 month’s storage on the International Space Station. Sci. Rep. 8, 10687 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Onofri, S. et al. Survival of Antarctic cryptoendolithic fungi in simulated martian conditions on board the International Space Station. Astrobiology 15, 1052–1059 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Pantoja Angles, A., Valle-Pérez, A. U., Hauser, C. & Mahfouz, M. M. Microbial biocontainment systems for clinical, agricultural, and industrial applications. Front. Bioeng. Biotechnol. 10, 830200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Carr, C. E. et al. Nanopore sequencing at Mars, Europa, and microgravity conditions. NPJ Microgravity 6, 24 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Calles, J., Justice, I., Brinkley, D., Garcia, A. & Endy, D. Fail-safe genetic codes designed to intrinsically contain engineered organisms. Nucleic Acids Res. 47, 10439–10451 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dai, X. et al. Massively parallel knock-in engineering of human T cells. Nat. Biotechnol. 41, 1239–1255 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, L. L. et al. Cell therapies in the clinic. Bioeng. Transl. Med. 6, e10214 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Butler, P. C. & Gale, E. A. Reversing type 1 diabetes with stem cell-derived islets: a step closer to the dream? J. Clin. Invest. 132, e58305 (2022).

    Article  Google Scholar 

  73. Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Odak, A. et al. Novel extragenic genomic safe harbors for precise therapeutic T-cell engineering. Blood 141, 2698–2712 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Choi, Y. R. et al. A genome-engineered bioartificial implant for autoregulated anticytokine drug delivery. Sci. Adv. 7, eabj1414 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bansal, A., Shikha, S. & Zhang, Y. Towards translational optogenetics. Nat. Biomed. Eng. 7, 349–369 (2023).

    Article  PubMed  Google Scholar 

  77. Kinney, S. M., Ortaleza, K., Vlahos, A. E. & Sefton, M. V. Degradable methacrylic acid-based synthetic hydrogel for subcutaneous islet transplantation. Biomaterials 281, 121342 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Paez-Mayorga, J. et al. Implantable niche with local immunosuppression for islet allotransplantation achieves type 1 diabetes reversal in rats. Nat. Commun. 13, 7951 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, X. et al. Laminin-coated electronic scaffolds with vascular topography for tracking and promoting the migration of brain cells after injury. Nat. Biomed. Eng. 7, 1282–1292 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Citro, A. et al. Directed self-assembly of a xenogeneic vascularized endocrine pancreas for type 1 diabetes. Nat. Commun. 14, 878 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bose, S. et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. Nat. Biomed. Eng. 4, 814–826 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Song, W. et al. Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nat. Commun. 10, 4602 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Krawczyk, K. et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science 368, 993–1001 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Scarpa, J., Parazynski, S. & Strangman, G. Space exploration as a catalyst for medical innovations. Front. Med. 10, 1226531 (2023).

    Article  Google Scholar 

  85. Asrar, F. M. et al. Can space-based technologies help manage and prevent pandemics? Nat. Med. 27, 1489–1490 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Nunes, E. A., Stokes, T., McKendry, J., Currier, B. S. & Phillips, S. M. Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: mechanisms, prevention, and recovery strategies. Am. J. Physiol. Cell Physiol. 322, C1068–C1084 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, S. J. et al. Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight. Proc. Natl Acad. Sci. USA 117, 23942–23951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ha, P. et al. Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice. NPJ Microgravity 9, 75 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tran, Q. D. et al. Space medicines for space health. ACS Med. Chem. Lett. 13, 1231–1247 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Reichert, P. et al. Pembrolizumab microgravity crystallization experimentation. NPJ Microgravity 5, 28 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Clemens, R. Infectious Disease Research on the ISS National Lab. ISS National Lab www.issnationallab.org/infectious-disease-research-perspectives-wvic/ (2020).

  92. Smith, A. W. Examining Nanoparticle Formation in Microgravity for Improved Therapeutic Cancer Vaccines. ISS National Lab www.issnationallab.org/examining-nanoparticle-formation-in-microgravity-for-improved-therapeutic-cancer-vaccines/ (2019).

  93. Reichard, J. F., Phelps, S. E., Lehnhardt, K. R., Young, M. & Easter, B. D. The effect of long-term spaceflight on drug potency and the risk of medication failure. NPJ Microgravity 9, 35 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jemison, M. & Olabisi, R. Biomaterials for human space exploration: a review of their untapped potential. Acta Biomater. 128, 77–99 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Petersen, L. G. et al. Lower body negative pressure to safely reduce intracranial pressure. J. Physiol. 597, 237–248 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Cheraghi, E., Chen, S. & Yeow, J. T. W. Boron nitride-based nanomaterials for radiation shielding: a review. IEEE Nanotechnol. Mag. 15, 8–17 (2021).

    Article  Google Scholar 

  97. Montesinos, C. A. et al. Space radiation protection countermeasures in microgravity and planetary exploration. Life 11, 829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kanhaiya, P. S. et al. Carbon nanotubes for radiation-tolerant electronics. ACS Nano 15, 17310–17318 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Puspitasari, A. et al. Hibernation as a tool for radiation protection in space exploration. Life 11, 54 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cerri, M., Hitrec, T., Luppi, M. & Amici, R. Be cool to be far: exploiting hibernation for space exploration. Neurosci. Biobehav. Rev. 128, 218–232 (2021).

    Article  PubMed  Google Scholar 

  101. Shi, Z. et al. Human torpor: translating insights from nature into manned deep space expedition. Biol. Rev. Camb. Philos. Soc. 96, 642–672 (2021).

    Article  PubMed  Google Scholar 

  102. Low, L. A. & Giulianotti, M. A. Tissue chips in space: modeling human diseases in microgravity. Pharm. Res. 37, 8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Garrett-Bakelman, F. E. et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shaka, S., Carpo, N., Tran, V., Cepeda, C. & Espinosa-Jeffrey, A. Space microgravity alters neural stem cell division: implications for brain cancer research on Earth and in space. Int. J. Mol. Sci. 23, 14320 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Biolo, G., Heer, M., Narici, M. & Strollo, F. Microgravity as a model of ageing. Curr. Opin. Clin. Nutr. Metab. Care 6, 31–40 (2003).

    Article  PubMed  Google Scholar 

  106. Strollo, F., Gentile, S., Strollo, G., Mambro, A. & Vernikos, J. Recent progress in space physiology and aging. Front. Physiol. 9, 1551 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Scott, J. M., Stoudemire, J., Dolan, L. & Downs, M. Leveraging spaceflight to advance cardiovascular research on Earth. Circ. Res. 130, 942–957 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yau, A. et al. Biosensor integrated tissue chips and their applications on Earth and in space. Biosens. Bioelectron. 222, 114820 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Sances, S. et al. Human iPSC-derived endothelial cells and microengineered organ-chip enhance neuronal development. Stem Cell Rep. 10, 1222–1236 (2018).

    Article  CAS  Google Scholar 

  110. Vatine, G. D. et al. Human iPSC-derived blood–brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24, 995–1005 e1006 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Otero, M. G. et al. Organ-chips enhance the maturation of human iPSC-derived dopamine neurons. Int. J. Mol. Sci. 24, 14227 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sharma, A., Sances, S., Workman, M. J. & Svendsen, C. N. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery. Cell Stem Cell 26, 309–329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chakraborty, N. et al. Gene-metabolite network linked to inhibited bioenergetics in association with spaceflight-induced loss of male mouse quadriceps muscle. J. Bone Min. Res. 35, 2049–2057 (2020).

    Article  CAS  Google Scholar 

  114. da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 1185–1201.e1120 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lawler, J. M. et al. Nox2 inhibition regulates stress response and mitigates skeletal muscle fiber atrophy during simulated microgravity. Int. J. Mol. Sci. 22, 3252 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Semple, C. et al. Using electrical impedance myography as a biomarker of muscle deconditioning in rats exposed to micro- and partial-gravity analogs. Front. Physiol. 11, 557796 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Smith, R. C. et al. Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength. PLoS ONE 15, e0230818 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hughson, R. L., Helm, A. & Durante, M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat. Rev. Cardiol. 15, 167–180 (2018).

    Article  PubMed  Google Scholar 

  119. Tsui, J. H. et al. Tunable electroconductive decellularized extracellular matrix hydrogels for engineering human cardiac microphysiological systems. Biomaterials 272, 120764 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wnorowski, A. et al. Effects of spaceflight on human induced pluripotent stem cell-derived cardiomyocyte structure and function. Stem Cell Rep. 13, 960–969 (2019).

    Article  CAS  Google Scholar 

  121. Baio, J. et al. Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties. NPJ Microgravity 4, 13 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Camberos, V. et al. Effects of spaceflight and simulated microgravity on YAP1 expression in cardiovascular progenitors: implications for cell-based repair. Int. J. Mol. Sci. 20, 2742 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jha, R. et al. Simulated microgravity and 3D culture enhance induction, viability, proliferation and differentiation of cardiac progenitors from human pluripotent stem cells. Sci. Rep. 6, 30956 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Camberos, V. et al. The impact of spaceflight and microgravity on the human islet-1+ cardiovascular progenitor cell transcriptome. Int. J. Mol. Sci. 22, 3577 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Blaber, E. A. et al. Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21. PLoS ONE 8, e61372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fitzgerald, J. Cartilage breakdown in microgravity — a problem for long-term spaceflight? NPJ Regen. Med. 2, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Louis, F. et al. RhoGTPase stimulation is associated with strontium chloride treatment to counter simulated microgravity-induced changes in multipotent cell commitment. NPJ Microgravity 3, 7 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Vico, L. et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355, 1607–1611 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Mattei, C., Alshawaf, A., D’Abaco, G., Nayagam, B. & Dottori, M. Generation of neural organoids from human embryonic stem cells using the rotary cell culture system: effects of microgravity on neural progenitor cell fate. Stem Cell Dev. 27, 848–857 (2018).

    Article  Google Scholar 

  130. Marotta, D. et al. Studies on the International Space Station to assess the effects of microgravity on iPSC-derived neural organoids. bioRxiv https://doi.org/10.1101/2023.08.10.552814 (2023).

  131. Kidder, L. S., Zea, L., Countryman, S., Stodieck, L. S. & Hammer, B. E. A novel protocol permitting the use of frozen cell cultures on low Earth orbit. J. Gravitational Space Res. 8, 25–30 (2020).

    Article  Google Scholar 

  132. Blaber, E. A. et al. Microgravity reduces the differentiation and regenerative potential of embryonic stem cells. Stem Cell Dev. 24, 2605–2621 (2015).

    Article  CAS  Google Scholar 

  133. Lei, X. et al. Effect of microgravity on proliferation and differentiation of embryonic stem cells in an automated culturing system during the TZ-1 space mission. Cell Prolif. 51, e12466 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Timilsina, S. et al. Enhanced self-renewal of human pluripotent stem cells by simulated microgravity. NPJ Microgravity 8, 22 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang, C., Li, L., Chen, J. & Wang, J. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation. Cell Biol. Int. 39, 647–656 (2015).

    Article  PubMed  Google Scholar 

  136. Yuge, L. et al. Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation. Stem Cell Dev. 15, 921–929 (2006).

    Article  CAS  Google Scholar 

  137. Imura, T., Otsuka, T., Kawahara, Y. & Yuge, L. Microgravity as a unique and useful stem cell culture environment for cell-based therapy. Regen. Ther. 12, 2–5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Li, H. et al. Spaceflight promoted myocardial differentiation of induced pluripotent stem cells: results from Tianzhou-1 space mission. Stem Cell Dev. 28, 357–360 (2019).

    Article  CAS  Google Scholar 

  139. Zhou, J. et al. Real microgravity condition promoted regeneration capacity of induced pluripotent stem cells during the TZ-1 space mission. Cell Prolif. 52, e12574 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Rampoldi, A. et al. Space microgravity improves proliferation of human iPSC-derived cardiomyocytes. Stem Cell Rep. 17, 2272–2285 (2022).

    Article  CAS  Google Scholar 

  141. Huang, P. et al. Feasibility, potency, and safety of growing human mesenchymal stem cells in space for clinical application. NPJ Microgravity 6, 16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Andrzejewska, A., Lukomska, B. & Janowski, M. Concise review: mesenchymal stem cells: from roots to boost. Stem Cell 37, 855–864 (2019).

    Article  Google Scholar 

  143. Sharma, A. et al. Biomanufacturing in low Earth orbit for regenerative medicine. Stem Cell Rep. 17, 1–13 (2022).

    Article  Google Scholar 

  144. Prasad, B. et al. Exploration of space to achieve scientific breakthroughs. Biotechnol. Adv. 43, 107572 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Swaminathan, V., Bechtel, G. & Tchantchaleishvili, V. Artificial tissue creation under microgravity conditions: considerations and future applications. Artif. Organs 45, 1446–1455 (2021).

    Article  PubMed  Google Scholar 

  146. Moroni, L. et al. What can biofabrication do for space and what can space do for biofabrication? Trends Biotechnol. 40, 398–411 (2021).

    Article  PubMed  Google Scholar 

  147. Cubo-Mateo, N. et al. Can 3D bioprinting be a key for exploratory missions and human settlements on the Moon and Mars? Biofabrication 12, 043001 (2020).

    Article  PubMed  Google Scholar 

  148. Cubo-Mateo, N. & Gelinsky, M. Wound and skin healing in space: the 3D bioprinting perspective. Front. Bioeng. Biotechnol. 9, 720217 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Cui, Y., Liu, W., Zhao, S., Zhao, Y. & Dai, J. Advances in microgravity directed tissue engineering. Adv. Healthc. Mater. 12, 2202768 (2023).

    Article  CAS  Google Scholar 

  150. Greco, J. A. et al. Activation of retinal ganglion cells using a biomimetic artificial retina. J. Neural Eng. https://doi.org/10.1088/1741-2552/ac395c (2021).

  151. Lawrence, D. B., Greco, J. A., Birge, R. R. & Wagner, N. L. in In‐Space Manufacturing and Resources, 285–301 (2022).

  152. Parent, S. D. et al. Ritonavir form III: a coincidental concurrent discovery. Cryst. Growth Des. 23, 320–325 (2023).

    Article  CAS  Google Scholar 

  153. Vance, A. Drugs in Orbit: One Startup’s Big Idea for Microgravity. Bloomberg www.bloomberg.com/news/articles/2023-03-15/satellite-startup-varda-eyes-drug-development-process (2023).

  154. Yang, H., Lin, W. & Zheng, Y. Advances and perspective on the translational medicine of biodegradable metals. Biomater. Transl. 2, 177–187 (2021).

    PubMed  PubMed Central  Google Scholar 

  155. Salunke, P. et al. Magnesium single crystals for biomedical applications grown in vertical Bridgman apparatus. Rev. Sci. Instrum. 87, 105126 (2016).

    Article  PubMed  Google Scholar 

  156. Majumder, N. & Ghosh, S. 3D biofabrication and space: a ‘far-fetched dream’ or a ‘forthcoming reality’? Biotechnol. Adv. 69, 108273 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Prater, T. et al. 3D printing in zero G technology demonstration mission: complete experimental results and summary of related material modeling efforts. Int. J. Adv. Manuf. Technol. 101, 391–417 (2019).

    Article  PubMed  Google Scholar 

  158. Paek, S. W., Balasubramanian, S. & Stupples, D. Composites additive manufacturing for space applications: a review. Materials 15, 4709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Saunders, S. Astronauts 3D print the first medical supplies in space, which can also teach us more about healthcare on Earth. 3DR 3dprint.com/162241/3d-print-medical-supplies-in-space/ (2017).

  160. Van Ombergen, A. et al. 3D bioprinting in microgravity: opportunities, challenges, and possible applications in space. Adv. Healthc. Mater. 12, 2300443 (2023).

    Article  Google Scholar 

  161. Iordachescu, A., Eisenstein, N. & Appleby-Thomas, G. Space habitats for bioengineering and surgical repair: addressing the requirement for reconstructive and research tissues during deep-space missions. NPJ Microgravity 9, 23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Warth, N. et al. Bioprint firstaid: a handheld bioprinter for first aid utilization on space exploration missions. Acta Astronaut. 215, 194–204 (2024).

    Article  Google Scholar 

  163. Tabury, K., Rehnberg, E., Baselet, B., Baatout, S. & Moroni, L. Bioprinting of cardiac tissue in space: where are we? Adv. Healthc. Mater. 12, e2203338 (2023).

    Article  PubMed  Google Scholar 

  164. Bernal, P. N. et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31, 1904209 (2019).

    Article  CAS  Google Scholar 

  165. Jing, S. et al. Advances in volumetric bioprinting. Biofabrication https://doi.org/10.1088/1758-5090/ad0978 (2023).

  166. Giulianotti, M. A. & Low, L. A. Pharmaceutical research enabled through microgravity: perspectives on the use of the International Space Station U.S. National Laboratory. Pharm. Res. 37, 1 (2019).

    Article  PubMed  Google Scholar 

  167. Waddington, C. H. The Strategy of the Genes (Routledge, 2014).

  168. Childress, S. D., Williams, T. C. & Francisco, D. R. NASA Space Flight Human-System Standard: enabling human spaceflight missions by supporting astronaut health, safety, and performance. NPJ Microgravity 9, 31 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  169. NASA-STD-3001 Technical Brief. Pharmaceutical Care OCHMO-TB-006 Rev. A. NASA https://www.nasa.gov/wp-content/uploads/2023/12/ochmo-tb-006-pharmaceuticals.pdf (2023).

  170. Iosim, S., MacKay, M., Westover, C. & Mason, C. E. Translating current biomedical therapies for long duration, deep space missions. Precis. Clin. Med. 2, 259–269 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. NASA 3.001 Medical Kit — Contents and Reference (NASA, 2015).

  172. Tariq, R. A., Vashisht, R., Sinha, A. & Scherbak, Y. Medication Dispensing Errors and Prevention. StatPearls [Internet] https://www.ncbi.nlm.nih.gov/books/NBK519065/ (updated 12 February 2024).

  173. Wotring, V. E. & Smith, L. K. Dose tracker application for collecting medication use data from International Space Station crew. Aerosp. Med. Hum. Perform. 91, 41–45 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Houston Methodist Research Institute (A.G., C.Y.X.C.) and ISS National Laboratory (A.G., CASIS GA 2020-145). M.J. is grateful for previous support by the Translational Research Institute for Space Health through Cooperative Agreement (NNX16A069A). A.S. and C.N.S. are supported by the Board of Governors Regenerative Medicine Institute at Cedars-Sinai, the California Institute for Regenerative Medicine (CIRM) and an In-Space Production Award (InSPA) from NASA (NNJ13ZBG001N). They are grateful for support from the American Heart Association Career Development Award 856987 (to A.S.). A.S. is supported by the Donna and Jesse Garber Award for Cancer Research. They thank S. Svendsen for critical reading and editing of the regenerative medicine section.

Author information

Authors and Affiliations

Authors

Contributions

A.G. and C.Y.X.C. conceived and outlined the manuscript. All authors researched data for the article, contributed to its writing and the discussion of the content. A.G. and C.Y.X.C. created the figures with contribution from all co-authors. A.G. and C.Y.X.C. reviewed, edited and finalized the manuscript before submission.

Corresponding author

Correspondence to Alessandro Grattoni.

Ethics declarations

Competing interests

A.G. and C.Y.X.C. are inventors of IP licensed by Semper Therapeutics and NanoGland. M.J. consults for VitaKey. Complete details of all relationships for profit and not for profit for G.T. can be found in the Supplementary Information. For a list of entities with which R. Langer is or has been recently involved, compensated or uncompensated, see the Supplementary Information. R. Lugo is the CEO of the Center for the Advancement of Science in Space (CASIS). All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Mirella Dottori; Michael Gelinsky; and Volker Hessel, who co-reviewed with Quy Don Tran, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chua, C.Y.X., Jimenez, M., Mozneb, M. et al. Advanced material technologies for space and terrestrial medicine. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00691-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00691-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research