Abstract
Berry curvature physics and quantum geometric effects have been instrumental in advancing topological condensed matter physics in recent decades. Although Landau level-based flat bands and conventional 3D solids have been pivotal in exploring rich topological phenomena, they are constrained by their limited ability to undergo dynamic tuning. By stark contrast, moiré systems have risen as a versatile platform for engineering bands and manipulating the distribution of Berry curvature in momentum space. These moiré systems not only harbour tunable topological bands, modifiable through a plethora of parameters, but also provide unprecedented access to large length scales and low energy scales. Furthermore, they offer unique opportunities stemming from the symmetry-breaking mechanisms and electron correlations associated with the underlying flat bands that are beyond the reach of conventional crystalline solids. A diverse array of tools, encompassing quantum electron transport in both linear and nonlinear response regimes and optical excitation techniques, provide direct avenues for investigating Berry physics in these materials. This Review navigates the evolving landscape of tunable moiré materials, highlighting recent experimental breakthroughs in the field of topological physics. Additionally, we delineate the most pressing challenges and offer insights into promising avenues for future research.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021). This review discusses using the tunability of moiré heterostructures to experimentally simulate different fundamental many-body quantum models in condensed matter.
He, F. et al. Moiré patterns in 2D materials: a review. ACS Nano 15, 5944–5958 (2021).
Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018). This theoretical study identifies possible 2D materials.
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). This review provides an early overview of 2D materials research.
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016). This review provides an overview of the emerging 2D materials research.
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).
Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). This paper provides the first experimental demonstration of a correlated insulator arising in a moiré superlattice.
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). This paper reports the first observation of superconductivity in flat bands of a moiré superlattice.
Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020). This paper reports the observation of the quantized anomalous Hall effect in a moiré superlattice.
Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019). This paper reports the observation of the anomalous Hall effect in a moiré superlattice.
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010). This review covers the different mechanisms responsible for the anomalous Hall effect observed in non-moiré materials.
von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys. 58, 519–531 (1986). This review discusses the quantum Hall effect.
Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010). This review provides a pedagogical introduction to Berry physics and its experimental effects.
Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).
Wang, N. et al. Quantum metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).
Liu, J., Ma, Z., Gao, J. & Dai, X. Quantum valley Hall effect, orbital magnetism, and anomalous Hall effect in twisted multilayer graphene systems. Phys. Rev. X 9, 031021 (2019).
Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015). This paper theoretically proposes second-harmonic Hall voltage generation owing to the Berry curvature dipole.
Sinha, S. et al. Berry curvature dipole senses topological transition in a moiré superlattice. Nat. Phys. 18, 765–770 (2022). This paper reports the experimental detection of a topological transition in a moiré material, probed using the Berry curvature dipole.
Bhalla, P., Das, K., Culcer, D. & Agarwal, A. Resonant second-harmonic generation as a probe of quantum geometry. Phys. Rev. Lett. 129, 227401 (2022).
Ahn, J., Guo, G.-Y., Nagaosa, N. & Vishwanath, A. Riemannian geometry of resonant optical responses. Nat. Phys. 18, 290–295 (2022).
Chang, C.-Z., Liu, C.-X. & MacDonald, A. H. Colloquium: quantum anomalous Hall effect. Rev. Mod. Phys. 95, 011002 (2023).
Jungwirth, T., Niu, Q. & MacDonald, A. H. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207208 (2002).
Ren, Y., Qiao, Z. & Niu, Q. Topological phases in two-dimensional materials: a review. Rep. Prog. Phys. 79, 066501 (2016).
Vanderbilt, D. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ. Press, 2018).
Bernevig, B. A. Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).
Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).
Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007). This paper presents a theoretical study of the Berry phase inducing a valley-dependent Hall transport.
Sinha, S. et al. Bulk valley transport and Berry curvature spreading at the edge of flat bands. Nat. Commun. 11, 5548 (2020).
Song, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological Bloch bands in graphene superlattices. Proc. Natl Acad. Sci. USA 112, 10879–10883 (2015). This theoretical study highlights that moiré bands can be topological.
Wolf, T. M. R., Zilberberg, O., Levkivskyi, I. & Blatter, G. Substrate-induced topological minibands in graphene. Phys. Rev. B 98, 125408 (2018).
Zhang, Y.-H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019).
Chittari, B. L., Chen, G., Zhang, Y., Wang, F. & Jung, J. Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices. Phys. Rev. Lett. 122, 016401 (2019).
Zhang, S., Dai, X. & Liu, J. Spin-polarized nematic order, quantum valley Hall states, and field-tunable topological transitions in twisted multilayer graphene systems. Phys. Rev. Lett. 128, 026403 (2022).
Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).
Zhu, J., Su, J.-J. & MacDonald, A. Voltage-controlled magnetic reversal in orbital Chern insulators. Phys. Rev. Lett. 125, 227702 (2020).
Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).
Adak, P. C. et al. Perpendicular electric field drives Chern transitions and layer polarization changes in Hofstadter bands. Nat. Commun. 13, 7781 (2022).
Hao, Z. et al. Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).
Mannaï, M., Fuchs, J.-N., Piéchon, F. & Haddad, S. Stacking-induced Chern insulator. Phys. Rev. B 107, 045117 (2023).
Stauber, T., Low, T. & Gómez-Santos, G. Chiral response of twisted bilayer graphene. Phys. Rev. Lett. 120, 046801 (2018).
Crosse, J. A., Nakatsuji, N., Koshino, M. & Moon, P. Hofstadter butterfly and the quantum Hall effect in twisted double bilayer graphene. Phys. Rev. B 102, 035421 (2020).
Koshino, M. Band structure and topological properties of twisted double bilayer graphene. Phys. Rev. B 99, 235406 (2019).
Chebrolu, N. R., Chittari, B. L. & Jung, J. Flat bands in twisted double bilayer graphene. Phys. Rev. B 99, 235417 (2019).
Liu, B. et al. Higher-order band topology in twisted moiré superlattice. Phys. Rev. Lett. 126, 066401 (2021).
He, M. et al. Symmetry-broken Chern insulators in twisted double bilayer graphene. Nano Lett. 23, 11066–11072 (2023).
Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022). This review highlights the reproducibility issues and challenges in the fabrication of moiré superlattice devices.
Hu, J.-X., Zhang, C.-P., Xie, Y.-M. & Law, K. T. Nonlinear Hall effects in strained twisted bilayer WSe2. Commun. Phys. 5, 255 (2022).
Zhang, C.-P. et al. Giant nonlinear Hall effect in strained twisted bilayer graphene. Phys. Rev. B 106, L041111 (2022).
Chakraborty, A. et al. Nonlinear anomalous Hall effects probe topological phase-transitions in twisted double bilayer graphene. 2D Mater. 9, 045020 (2022).
Zhang, D., Schoenherr, P., Sharma, P. & Seidel, J. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 8, 25–40 (2023).
McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).
Kalinin, S. V. & Meunier, V. Electronic flexoelectricity in low-dimensional systems. Phys. Rev. B 77, 033403 (2008).
Wang, B., Gu, Y., Zhang, S. & Chen, L.-Q. Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater. Sci. 106, 100570 (2019).
Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).
Kang, K. et al. Switchable moiré potentials in ferroelectric WTe2/WSe2 superlattices. Nat. Nanotechnol. 18, 861–866 (2023).
Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).
Lin, J.-X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).
Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).
Lin, J.-X. et al. Spin-orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, 437–441 (2022).
Devakul, T. & Fu, L. Quantum anomalous Hall effect from inverted charge transfer gap. Phys. Rev. X 12, 021031 (2022).
Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018). This theoretical paper proposes TMDCs as a Hubbard model simulator.
Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).
Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019). This theoretical study highlights that TMDC moiré materials are a platform to realize correlated and topological states.
Crépel, V. & Fu, L. Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides. Phys. Rev. B 107, L201109 (2023).
Wu, F., Lovorn, T. & MacDonald, A. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017).
Xiong, R. et al. Correlated insulator of excitons in WSe2/WS2 moiré superlattices. Science 380, 860–864 (2023).
Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).
Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).
Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).
Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021).
Liu, X. et al. Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening. Science 371, 1261–1265 (2021).
Burg, G. W. et al. Emergence of correlations in alternating twist quadrilayer graphene. Nat. Mater. 21, 884–889 (2022).
Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).
Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).
Bhowmik, S., Ghosh, A. & Chandni, U. Emergent phases in graphene flat bands. Preprint at http://arxiv.org/abs/2309.08938 (2023).
Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11, 421–425 (2016).
Shimazaki, Y. et al. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat. Phys. 11, 1032–1036 (2015).
Sui, M. et al. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys. 11, 1027–1031 (2015).
Yin, J. et al. Tunable and giant valley-selective Hall effect in gapped bilayer graphene. Science 375, 1398–1402 (2022).
Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014). This experimental work is the first demonstration of the valley Hall effect.
Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).
Adak, P. C. et al. Tunable bandwidths and gaps in twisted double bilayer graphene on the verge of correlations. Phys. Rev. B 101, 125428 (2020).
Wang, Y. et al. Bulk and edge properties of twisted double bilayer graphene. Nat. Phys. 18, 48–53 (2022).
Ma, C. et al. Moiré band topology in twisted bilayer graphene. Nano Lett. 20, 6076–6083 (2020).
Aharon-Steinberg, A. et al. Long-range nontopological edge currents in charge-neutral graphene. Nature 593, 528–534 (2021).
Liu, C.-X., Zhang, S.-C. & Qi, X.-L. The quantum anomalous Hall effect: theory and experiment. Annu. Rev. Condens. Matter Phys. 7, 301–321 (2016).
Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988). This theoretical paper outlines the Haldane model that demonstrates the possibility of having a quantum Hall effect in the absence of a magnetic field.
Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013). This paper reports the first experimental observation of the quantum anomalous Hall effect in a topological insulator.
Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).
Wang, Z., Tang, C., Sachs, R., Barlas, Y. & Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 114, 016603 (2015).
Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).
Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).
Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).
Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).
Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023). Together with Cai et al. (2023), Park et al. (2023) and Zeng et al. (2023), this paper experimentally demonstrates the fractional quantum anomalous Hall effect in moiré heterostructures.
Ledwith, P. J., Tarnopolsky, G., Khalaf, E. & Vishwanath, A. Fractional Chern insulator states in twisted bilayer graphene: an analytical approach. Phys. Rev. Res. 2, 023237 (2020).
Repellin, C. & Senthil, T. Chern bands of twisted bilayer graphene: fractional Chern insulators and spin phase transition. Phys. Rev. Res. 2, 023238 (2020).
Wilhelm, P., Lang, T. C. & Läuchli, A. M. Interplay of fractional Chern insulator and charge density wave phases in twisted bilayer graphene. Phys. Rev. B 103, 125406 (2021).
Wang, C. et al. Fractional Chern insulator in twisted bilayer MoTe2. Phys. Rev. Lett. 132, 036501 (2024).
Reddy, A. P., Alsallom, F. F., Zhang, Y., Devakul, T. & Fu, L. Fractional quantum anomalous Hall states in twisted bilayer MoTe2 and WSe2. Phys. Rev. B 108, 085117 (2023).
Reddy, A. P. & Fu, L. Toward a global phase diagram of the fractional quantum anomalous Hall effect. Phys. Rev. B 108, 245159 (2023).
Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).
Li, H., Kumar, U., Sun, K. & Lin, S.-Z. Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices. Phys. Rev. Res. 3, L032070 (2021).
Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).
Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).
Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2023).
Dong, Z., Patri, A. S. & Senthil, T. Theory of fractional quantum anomalous Hall phases in pentalayer rhombohedral graphene moiré structures. Preprint at http://arxiv.org/abs/2311.03445 (2023).
Zhou, B., Yang, H. & Zhang, Y.-H. Fractional quantum anomalous Hall effects in rhombohedral multilayer graphene in the moiréless limit and in Coulomb imprinted superlattice. Preprint at http://arxiv.org/abs/2311.04217 (2023).
Dong, J. et al. Anomalous Hall crystals in rhombohedral multilayer graphene I: interaction-driven Chern bands and fractional quantum Hall states at zero magnetic field. Preprint at http://arxiv.org/abs/2311.05568 (2023).
Polshyn, H. et al. Topological charge density waves at half-integer filling of a moiré superlattice. Nat. Phys. 18, 42–47 (2022).
Bhowmik, S. et al. Broken-symmetry states at half-integer band fillings in twisted bilayer graphene. Nat. Phys. 18, 639–643 (2022).
Rhodes, D. A. et al. Enhanced superconductivity in monolayer Td-MoTe2. Nano Lett. 21, 2505–2511 (2021).
Jindal, A. et al. Coupled ferroelectricity and superconductivity in bilayer Td-MoTe2. Nature 613, 48–52 (2023).
Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).
Claassen, M., Xian, L., Kennes, D. M. & Rubio, A. Ultra-strong spin-orbit coupling and topological moiré engineering in twisted ZrS2 bilayers. Nat. Commun. 13, 4915 (2022).
Dong, J., Wang, J., Ledwith, P. J., Vishwanath, A. & Parker, D. E. Composite fermi liquid at zero magnetic field in twisted MoTe2. Phys. Rev. Lett. 131, 136502 (2023).
Goldman, H., Reddy, A. P., Paul, N. & Fu, L. Zero-field composite fermi liquid in twisted semiconductor bilayers. Phys. Rev. Lett. 131, 136501 (2023).
Jain, J. In a twist, composite fermions form and flow without a magnetic field. Physics 16, 163 (2023).
Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021).
Du, Z., Lu, H.-Z. & Xie, X. Nonlinear Hall effects. Nat. Rev. Phys. 3, 744–752 (2021).
Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019). This paper represents the first experimental report of the nonlinear Hall effect.
Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).
Son, J., Kim, K.-H., Ahn, Y., Lee, H.-W. & Lee, J. Strain engineering of the Berry curvature dipole and valley magnetization in monolayer MoS2. Phys. Rev. Lett. 123, 036806 (2019).
Qin, M.-S. et al. Strain tunable Berry curvature dipole, orbital magnetization and nonlinear Hall effect in WSe2 monolayer. Chin. Phys. Lett. 38, 017301 (2021).
Huang, M. et al. Giant nonlinear Hall effect in twisted bilayer WSe2. Natl Sci. Rev. 10, nwac232 (2023).
Huang, M. et al. Intrinsic nonlinear Hall effect and gate-switchable Berry curvature sliding in twisted bilayer graphene. Phys. Rev. Lett. 131, 066301 (2023).
Kazmierczak, N. P. et al. Strain fields in twisted bilayer graphene. Nat. Mater. 20, 956–963 (2021).
Turkel, S. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 376, 193–199 (2022).
Pantaleón, P. A., Low, T. & Guinea, F. Tunable large Berry dipole in strained twisted bilayer graphene. Phys. Rev. B 103, 205403 (2021).
He, Z. & Weng, H. Giant nonlinear Hall effect in twisted bilayer WTe2. npj Quantum Mater. 6, 101 (2021).
Mannaï, M. & Haddad, S. Twistronics versus straintronics in twisted bilayers of graphene and transition metal dichalcogenides. Phys. Rev. B 103, L201112 (2021).
Facio, J. I. et al. Strongly enhanced Berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett. 121, 246403 (2018).
He, P. et al. Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378–383 (2022).
Duan, J. et al. Giant second-order nonlinear Hall effect in twisted bilayer graphene. Phys. Rev. Lett. 129, 186801 (2022).
Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).
Lahiri, S., Bhore, T., Das, K. & Agarwal, A. Nonlinear magnetoresistivity in two-dimensional systems induced by Berry curvature. Phys. Rev. B 105, 045421 (2022).
Xiao, J. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 16, 1028–1034 (2020).
Nishijima, T. et al. Ferroic Berry curvature dipole in a topological crystalline insulator at room temperature. Nano Lett. 23, 2247–2252 (2023).
Song, J. C. W. & Rudner, M. S. Chiral plasmons without magnetic field. Proc. Natl Acad. Sci. USA 113, 4658–4663 (2016).
Kumar, A. et al. Chiral plasmon in gapped Dirac systems. Phys. Rev. B 93, 041413 (2016).
Huang, T. et al. Observation of chiral and slow plasmons in twisted bilayer graphene. Nature 605, 63–68 (2022).
Chakraborty, A., Dutta, D. & Agarwal, A. Tunable interband and intraband plasmons in twisted double bilayer graphene. Phys. Rev. B 106, 155422 (2022).
Hesp, N. C. H. et al. Observation of interband collective excitations in twisted bilayer graphene. Nat. Phys. 17, 1162–1168 (2021).
Zhao, W. et al. Efficient Fizeau drag from Dirac electrons in monolayer graphene. Nature 594, 517–521 (2021).
Arora, A., Rudner, M. S. & Song, J. C. W. Quantum plasmonic nonreciprocity in parity-violating magnets. Nano Lett. 22, 9351–9357 (2022).
Papaj, M. & Lewandowski, C. Plasmonic nonreciprocity driven by band hybridization in moiré materials. Phys. Rev. Lett. 125, 066801 (2020).
Dutta, D., Chakraborty, A. & Agarwal, A. Intrinsic nonreciprocal bulk plasmons in noncentrosymmetric magnetic systems. Phys. Rev. B 107, 165404 (2023).
Rossi, E. Quantum metric and correlated states in two-dimensional systems. Curr. Opin. Solid State Mater. Sci. 25, 100952 (2021).
Mandal, D., Sarkar, S., Das, K. & Agarwal, A. Quantum geometry induced third order nonlinear transport responses. Preprint at https://doi.org/10.48550/arXiv.2310.19092 (2023).
Das, K., Ghorai, K., Culcer, D. & Agarwal, A. Nonlinear valley Hall effect. Phys. Rev. Lett. 132, 096302 (2024).
Das, K., Lahiri, S., Atencia, R. B., Culcer, D. & Agarwal, A. Intrinsic nonlinear conductivities induced by the quantum metric. Phys. Rev. B 108, L201405 (2023).
Komissarov, I., Holder, T. & Queiroz, R. The quantum geometric origin of capacitance in insulators. Preprint at https://doi.org/10.48550/arXiv.2306.08035 (2023).
Wei, M. et al. Quantum fluctuation of the quantum geometric tensor and its manifestation as intrinsic Hall signatures in time-reversal invariant systems. Phys. Rev. Lett. 130, 036202 (2023).
Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015). These theoretical papers connect the idea of quantum metric to that of flat-band superconductivity.
Julku, A., Peotta, S., Vanhala, T. I., Kim, D.-H. & Törmä, P. Geometric origin of superfluidity in the Lieb-lattice flat band. Phys. Rev. Lett. 117, 045303 (2016). Together with Peotta and Törmä (2015), this theoretical paper connects the idea of quantum metric to that of flat-band superconductivity.
Liang, L. et al. Band geometry, Berry curvature, and superfluid weight. Phys. Rev. B 95, 024515 (2017).
Törmä, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528–542 (2022).
Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).
Hazra, T., Verma, N. & Randeria, M. Bounds on the superconducting transition temperature: applications to twisted bilayer graphene and cold atoms. Phys. Rev. X 9, 031049 (2019).
Mao, D. & Chowdhury, D. Diamagnetic response and phase stiffness for interacting isolated narrow bands. Proc. Natl Acad. Sci. USA 120, e2217816120 (2023).
Arora, A., Kong, J. F. & Song, J. C. W. Strain-induced large injection current in twisted bilayer graphene. Phys. Rev. B 104, L241404 (2021).
Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).
Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).
Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).
Hu, J.-X., Xie, Y.-M. & Law, K. T. Berry curvature, spin Hall effect, and nonlinear optical response in moiré transition metal dichalcogenide heterobilayers. Phys. Rev. B 107, 075424 (2023).
Tschirhart, C. L. et al. Intrinsic spin Hall torque in a moiré Chern magnet. Nat. Phys. 19, 807–813 (2023).
Tao, Z. et al. Giant spin Hall effect in AB-stacked MoTe2/WSe2 bilayers. Nat. Nanotechnol. 19, 28–33 (2023).
Kaplan, D., Holder, T. & Yan, B. Twisted photovoltaics at terahertz frequencies from momentum shift current. Phys. Rev. Res. 4, 013209 (2022).
Chaudhary, S., Lewandowski, C. & Refael, G. Shift-current response as a probe of quantum geometry and electron-electron interactions in twisted bilayer graphene. Phys. Rev. Res. 4, 013164 (2022).
Khalifa, A., Murthy, G. & Kaul, R. K. Absence of edge states in the valley Chern insulator in moiré graphene. Phys. Rev. B 107, 085138 (2023).
Parameswaran, S. A., Roy, R. & Sondhi, S. L. Fractional quantum Hall physics in topological flat bands. C. R. Phys. 14, 816–839 (2013).
Liu, Z. & Bergholtz, E. J. in Encyclopedia of Condensed Matter Physics 2nd edn, Vol. 1 (eds Chakraborty, T. et al.) 515–538 (Elsevier, 2023).
Park, M. J., Kim, Y., Cho, G. Y. & Lee, S. Higher-order topological insulator in twisted bilayer graphene. Phys. Rev. Lett. 123, 216803 (2019).
Liu, B.-B., Zeng, X.-T., Chen, C., Chen, Z. & Sheng, X.-L. Second-order and real Chern topological insulator in twisted bilayer α-graphyne. Phys. Rev. B 106, 035153 (2022).
Rodriguez-Vega, M., Vogl, M. & Fiete, G. A. Low-frequency and Moiré-Floquet engineering: a review. Ann. Phys. 435, 168434 (2021).
Topp, G. E. et al. Topological Floquet engineering of twisted bilayer graphene. Phys. Rev. Res. 1, 023031 (2019).
Li, Y., Fertig, H. A. & Seradjeh, B. Floquet-engineered topological flat bands in irradiated twisted bilayer graphene. Phys. Rev. Res. 2, 043275 (2020).
Lu, M., Zeng, J., Liu, H., Gao, J.-H. & Xie, X. C. Valley-selective Floquet Chern flat bands in twisted multilayer graphene. Phys. Rev. B 103, 195146 (2021).
Vogl, M., Rodriguez-Vega, M., Flebus, B., MacDonald, A. H. & Fiete, G. A. Floquet engineering of topological transitions in a twisted transition metal dichalcogenide homobilayer. Phys. Rev. B 103, 014310 (2021).
Brem, S., Linderälv, C., Erhart, P. & Malic, E. Tunable phases of moiré excitons in van der Waals heterostructures. Nano Lett. 20, 8534–8540 (2020).
Zhao, S. et al. Excitons in mesoscopically reconstructed moiré heterostructures. Nat. Nanotechnol. 18, 572–579 (2023).
Suri, N., Wang, C., Zhang, Y. & Xiao, D. Chiral phonons in moiré superlattices. Nano Lett. 21, 10026–10031 (2021).
Liu, X., Peng, R., Sun, Z. & Liu, J. Moiré phonons in magic-angle twisted bilayer graphene. Nano Lett. 22, 7791–7797 (2022).
Lin, M.-L. et al. Moiré phonons in twisted bilayer MoS2. ACS Nano 12, 8770–8780 (2018).
Li, Z., Lai, J.-M. & Zhang, J. Review of phonons in moiré superlattices. J. Semicond. 44, 011902 (2023).
Li, Y.-H. & Cheng, R. Moiré magnons in twisted bilayer magnets with collinear order. Phys. Rev. B 102, 094404 (2020).
Ganguli, S. C. et al. Visualization of moiré magnons in monolayer ferromagnet. Nano Lett. 23, 3412–3417 (2023).
Fujimoto, M., Koschke, H. & Koshino, M. Topological charge pumping by a sliding moiré pattern. Phys. Rev. B 101, 041112 (2020).
Zhang, Y., Gao, Y. & Xiao, D. Topological charge pumping in twisted bilayer graphene. Phys. Rev. B 101, 041410 (2020).
Su, Y. & Lin, S.-Z. Topological sliding moiré heterostructure. Phys. Rev. B 101, 041113 (2020).
Zhai, D. & Yao, W. Theory of tunable flux lattices in the homobilayer moiré of twisted and uniformly strained transition metal dichalcogenides. Phys. Rev. Mater. 4, 094002 (2020).
Classen, L., Honerkamp, C. & Scherer, M. M. Competing phases of interacting electrons on triangular lattices in moiré heterostructures. Phys. Rev. B 99, 195120 (2019).
Wu, F. Topological chiral superconductivity with spontaneous vortices and supercurrent in twisted bilayer graphene. Phys. Rev. B 99, 195114 (2019).
Pershoguba, S. S. & Yakovenko, V. M. Optical control of topological memory based on orbital magnetization. Phys. Rev. B 105, 064423 (2022).
Yuan, S. et al. Geometric deep optical sensing. Science 379, eade1220 (2023).
Onishi, Y. & Fu, L. High-efficiency energy harvesting based on nonlinear Hall rectifier. Preprint at http://arxiv.org/abs/2211.17219 (2023).
Montblanch, A. R.-P., Barbone, M., Aharonovich, I., Atatüre, M. & Ferrari, A. C. Layered materials as a platform for quantum technologies. Nat. Nanotechnol. 18, 555–571 (2023).
He, P. et al. Quantum frequency doubling in the topological insulator Bi2Se3. Nat. Commun. 12, 698 (2021).
Ho, S.-C. et al. Hall effects in artificially corrugated bilayer graphene without breaking time-reversal symmetry. Nat. Electron. 4, 116–125 (2021).
Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).
Chen, S. et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat. Phys. 17, 374–380 (2021).
Tseng, C.-C. et al. Anomalous Hall effect at half filling in twisted bilayer graphene. Nat. Phys. 18, 1038–1042 (2022).
Kuiri, M. et al. Spontaneous time-reversal symmetry breaking in twisted double bilayer graphene. Nat. Commun. 13, 6468 (2022).
Sundaram, G. & Niu, Q. Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys. Rev. B 59, 14915–14925 (1999).
Ong, N. & Lee, W. Geometry and the anomalous Hall effect in ferromagnets. In Proc. 8th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, ISQM-Tokyo 2005 121–126 (World Scientific, 2006).
Zhou, J., Shan, W.-Y., Yao, W. & Xiao, D. Berry phase modification to the energy spectrum of excitons. Phys. Rev. Lett. 115, 166803 (2015).
Karplus, R. & Luttinger, J. M. Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954).
Acknowledgements
The authors thank J. Sarkar, A. Mukherjee, K. Maji, S. Layek, A. Basu, U. Chandni, B. Datta, J. Song, J. K. Jain, A. Chakraborty, K. Das and P. Yadav for the discussions. M.M.D. acknowledges the Department of Science and Technology (DST) of India for the J.C. Bose fellowship JCB/2022/000045, Nanomission grant SR/NM/NS45/2016, and DST SUPRA grant SPR/2019/001247 along with the Department of Atomic Energy of the Government of India 12-R&D-TFR-5.10-0100 for the support. A.A. thanks the Department of Science and Technology of the Government of India for project number DST/NM/TUE/QM-6/2019(G)-IIT Kanpur, for the financial support. P.C.A. acknowledges support by the National Science Foundation under grant number OMA-2328993.
Author information
Authors and Affiliations
Contributions
M.M.D. ideated and led the writing of this Review. All authors discussed and contributed to the writing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Review Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Adak, P.C., Sinha, S., Agarwal, A. et al. Tunable moiré materials for probing Berry physics and topology. Nat Rev Mater 9, 481–498 (2024). https://doi.org/10.1038/s41578-024-00671-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-024-00671-4